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Bounded arithmetic: quick review

Language: symbols for all polytime computable functions & relations
on the natural numbers. In particular, no 2x, but we do have xlog y.

Σ̂b
n formulas: ∃x1 < t1∀x2 < t2 . . .Qxn < tn ψ, where ψ open.

Correspond to properties in the n-th level of the polynomial hierarchy.

I Full BA: induction for bounded formulas in this language.
Essentially a notational variant of I∆0 +Ω1.

I The fragment Tn
2 : induction for Σ̂b

n.
I Role of T0

2 played by PV: a basic theory for polynomial time.
(PV is to polytime as PRA is to primitive recursive).
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Bounded arithmetic: motivation

I connections to computational complexity:
I witnessing theorems: if T ⊢ ∀x ∃y A(x, y) for A of the right form,

then y can be found by a given kind of algorithm/search process,
I natural framework for stating complexity-theoretical questions,

with the hope of getting independence results,

I connections to propositional proof complexity: arithmetical
proofs can be translated into short propositional proofs.

I desire to understand how much combinatorics, number theory,
logic etc. can be done without the exponential function.
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Bounded arithmetic: relativized setting

Fundamental (and seemingly hopeless) open problem:
Do the theories Tn

2 form a strict hierarchy?

More open problems come from relativized BA,
where we have a new “oracle” predicate α and allow the ptime
functions/relations to query α (which gives Σ̂b

n(α),T
n
2 (α),PV(α) etc.)

For instance, is is known that PV(α) ( T1
2 (α) ( T2

2 (α) ( T3
2 (α) . . .

(Krajíček-Pudlák-Takeuti 1991).
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Two current major open problems

1. Can the theories Tn
2 (α) be separated by a ∀Σ̂b

1(α) sentence?
I only PV(α) ̸4∀Σ̂b

1(α)
T1

2 (α) ̸4∀Σ̂b
1(α)

T2
2 (α) known.

2. An “interesting” independence result for BA(α) with a parity
quantifier, “there is an odd number of x < t such that”.

I e.g. for PHP: “α is not a 1-1 function from x + 1 to x”,
already known to be independent from BA(α).

Main theme of this talk: in both problems, the same kind of theory
seems to show up as an obstacle.
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Detour: approximate counting
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Weak pigeonhole principles

iWPHP(F): injective WPHP for function class F :
no function f ∈ F is injective from y ≫ x into x,
sWPHP(F): surjective WPHP for function class F :
no function f ∈ F is surjective from x onto y ≫ x.

Typically, y ≫ x means y = x2, 2x, at times has to be x(1 + 1/ log x).

I easy: sWPHP(FPNP(α)) ⊢ iWPHP(α),
I likewise, iWPHP(FPNP(α)) ⊢ sWPHP(α),
I T2

2 (α) ⊢ iWPHP(α), sWPHP(α) (Maciel-Pitassi-Woods 2002).
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Approximate counting

Jeřábek 2005-2009:

I APC1 = PV + sWPHP(FP) can approximate the size
of polytime set X ⊆ 2n up to 1/poly(n) fraction of 2n.

I APC2 = T1
2 + sWPHP(FPNP) can do the same for X ∈ PNP,

while for X ∈ NP it finds surjections witnessing
m � X � m + m/polylog(m).
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APC theories within the hierarchy

PV T1
2 T2

2 T3
2

APC2APC1
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Peskiness of APC2

Empirical observation:
The ∀Σ̂b

1(α) principles used to separate low levels of the BA(α)
hierarchy from the rest are either complete for some level (hence hard
to work with) or provable in APC2(α).

Mathematical result:
Bounded arithmetic with the parity quantifier, BA⊕,
is equal to a “parity version” of APC2 (and this relativizes).
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The non-parity case

11 / 25



A pesky theory of bounded arithmetic

Typical separating principles

Some ∀Σ̂b
1(α) principles separating T1

2 (α) from stronger theories:

I iWPHP(α),
I Ramsey’s principle: the graph determined by α on [0, x)

has a homogeneous set of size (log x)/2,
I ordering principle OP: if α is a linear ordering on [0, x), then it

has a least element (has to be Herbrandized to become ∀Σ̂b
1(α)).

All these, and many similar principles, are either known or easily seen
to be provable in APC2(α).
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Example: APC2(α) ⊢ OP.

I Given x, prove by induction on y < log x that there exists z < x
such that the set of elements α-smaller than z has size
approximately less than than x/2y.

I Inductive step involves some additional counting arguments to
show that there is z′ α-smaller than approximately at least half of
the elements α-smaller than the current z.

I Induction formula is Σb
2(α), but the induction is only up to log x,

so there is a conservativity result that lets us use it.
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APC2 and ∀Σ̂b
1

Question:
Is there a ∀Σ̂b

1(α) sentence separating APC2(α) from full BA(α)?

?????

So, why not first consider natural fragments of APC2?
(Obtained by limiting induction or WPHP somewhat.)
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Some fragments of APC2

APC1(α) APC2(α)

T1
2 (α) + iWPHP(FP(α))

T1
2 (α) + sWPHP(FP(α))

PV(α) + sWPHP(FPNP(α))

For the theories marked in red, we have a separation from BA(α)
(in fact, from APC2(α)). For the others, still no separation known.
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A useful principle

HOP:
“For all z, it is not true that 4 is a linear order on [0, z)
for which h is the predecessor function”.
(Oracle α provides 4 and the bitgraph of h.)

Theorem
HOP is unprovable in:

I T1
2 (α) + iWPHP(FP(α)),

I PV(α) + sWPHP(FPNP(α)).

Provable in APC2(α). Status in T1
2 (α) + sWPHP(FP(α)) unknown!
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PV + sWPHP(FPNP)

Theorem
PV(α) + sWPHP(FPNP(α)) ̸⊢ HOP.

(note: x → 2x version; some issues about formalization of FPNP.)

Proof ingredients:

I logic: (generalizations of) so-called KPT witnessing
for ∀∃∀ and more complex consequences of PV,

I simplified case: x → x2 version of sWPHP for single FPNP

function f , where x is a term depending only on z,
I witnessing gives constant round Student-Teacher game: given

v < x2, Student produces u < x and computation w witnessing
f (u) = v, or witness to HOP; Teacher gives counterexamples
showing that w contains a false ‘No’ answer to an NP query.
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PV + sWPHP(FPNP): arguing against Student
I Construction in stages 1, . . . , k = lh of S-T game. At each stage,

≼ defined on all of [0, z), but only part is settled (initially ∅),
the points below it are tentative;

I Always ≫ x v’s (initially all x2) are active, the rest is discarded.

I At stage i order the tentative part randomly and only keep a
1/polylog(z) fraction tentative, so that the least point remains
tentative and at most half the active v’s query a point that
remains tentative. Discard those v’s.

I When Student claims “f (u) = v” for a given u and many v’s,
for all but a single v Teacher can use the other v’s to find a
counterexample to a ‘No’ answer in the computation.
For each u, that “bad” v is discarded.

I At the end of the S-T game, there are still a lot of active v’s for
which Student does not have a good u.
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PV + sWPHP(FPNP) proof: picture of a stage
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Open problem

Separate T1
2 (α) + sWPHP(FP(α)) from BA(α)!

I Candidate hard problems: HOP, iWPHP, etc.
I Characterizations of provability in T1

2 (α) + sWPHP(FP(α))
in terms of “randomized” propositional proofs and algorithmic
search procedures are known.
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The parity case
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Limiting the use of ⊕

⊕ x < y := “there is an odd number of x < y such that”.

Σ̂b,⊕P
n formulas: ∃x1 < t1∀x2 < t2 . . .Qxn < tn ψ,

where ψ open except for perhaps ⊕ in front of polytime formulas.

Tn,⊕P
2 : induction for Σ̂b,⊕P

n . Note that
∪

n Tn,⊕P
2 ̸= BA⊕.

This all relativizes smoothly to α.
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The collapse result

APC⊕P
2 = T2,⊕P

2 + sWPHP(FPNP⊕P
).

Theorem
BA⊕ is conservative over APC⊕P

2 , and this relativizes.

Remark
This has implications for propositional proof complexity: constant
depth systems with parity gates are (for simple enough formulas)
quasipolynomially simulated by depth 3 systems with formulas
in a particular form (or even depth 2 systems with additional axioms
corresponding to sWPHP).

23 / 25



A pesky theory of bounded arithmetic

The collapse result: comments on proof

I Toda’s Theorem: each problem in the closure of the polynomial
hierarchy under the parity quantifier has a probabilistic polytime
reduction to ⊕Sat, the problem whether a given propositional
formula has an odd number of satisfying assignments.

I We inductively assign to each bounded formula with ⊕ a “∆b,⊕P
1

translation” correct on a bounded interval, more or less following
the usual proof of Toda’s Theorem. The translation is well
behaved in APC⊕P

2 , which is strong enough to handle various
probabilistic/counting arguments involved.

I Example of place where APC⊕P
2 seems needed: when we say

that given a formula φ in n variables, there is k ≤ n such that φ
has between 2k−2 and 2k satisfying assignments.
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Current picture

PV⊕P(α)

T1,⊕P
2 (α) APC⊕P

1 (α)

APC⊕P
2 (α)

I Unprovability of PHP (and some variants of HOP) in T1,⊕P
2 (α)

follows easily from known results in proof complexity.
I For the theories involving sWPHP, something can be done if ⊕

is allowed only in the induction part, not the sWPHP part.
I Independence of, say, PHP from even APC⊕P

1 (α) is open, and
seems hard.
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