Leszek Kołodziejczyk University of Warsaw

(based on joint work with Buss-Thapen and Buss-Zdanowski)

Kotlarski-Ratajczyk conference, Będlewo, July 2012

Bounded arithmetic: quick review

Language: symbols for all polytime computable functions & relations on the natural numbers. In particular, no 2^x , but we do have $x^{\log y}$.

 $\hat{\Sigma}_n^b$ formulas: $\exists x_1 < t_1 \forall x_2 < t_2 \dots Q x_n < t_n \psi$, where ψ open. Correspond to properties in the *n*-th level of the polynomial hierarchy.

- Full BA: induction for bounded formulas in this language. Essentially a notational variant of *I*Δ₀ + Ω₁.
- The fragment T_2^n : induction for $\hat{\Sigma}_n^b$.
- Role of T₂⁰ played by PV: a basic theory for polynomial time. (PV is to polytime as PRA is to primitive recursive).

Bounded arithmetic: motivation

- connections to computational complexity:
 - witnessing theorems: if T ⊢ ∀x ∃yA(x, y) for A of the right form, then y can be found by a given kind of algorithm/search process,
 - natural framework for stating complexity-theoretical questions, with the hope of getting independence results,
- connections to propositional proof complexity: arithmetical proofs can be translated into short propositional proofs.
- desire to understand how much combinatorics, number theory, logic etc. can be done without the exponential function.

Bounded arithmetic: relativized setting

Fundamental (and seemingly hopeless) open problem: Do the theories T_2^n form a strict hierarchy?

More open problems come from relativized BA, where we have a new "oracle" predicate α and allow the ptime functions/relations to query α (which gives $\hat{\Sigma}_n^b(\alpha), T_2^n(\alpha), PV(\alpha)$ etc.)

For instance, is is known that $PV(\alpha) \subsetneq T_2^1(\alpha) \subsetneq T_2^2(\alpha) \subsetneq T_2^3(\alpha) \dots$ (Krajíček-Pudlák-Takeuti 1991).

Two current major open problems

- 1. Can the theories $T_2^n(\alpha)$ be separated by a $\forall \hat{\Sigma}_1^b(\alpha)$ sentence?
 - ► only $PV(\alpha) \not\preccurlyeq_{\forall \hat{\Sigma}_{1}^{b}(\alpha)} T_{2}^{1}(\alpha) \not\preccurlyeq_{\forall \hat{\Sigma}_{1}^{b}(\alpha)} T_{2}^{2}(\alpha)$ known.
- 2. An "interesting" independence result for $BA(\alpha)$ with a parity quantifier, "there is an odd number of x < t such that".
 - e.g. for PHP: "α is not a 1-1 function from x + 1 to x", already known to be independent from BA(α).

Two current major open problems

- 1. Can the theories $T_2^n(\alpha)$ be separated by a $\forall \hat{\Sigma}_1^b(\alpha)$ sentence?
 - ► only $PV(\alpha) \not\preccurlyeq_{\forall \hat{\Sigma}_1^b(\alpha)} T_2^1(\alpha) \not\preccurlyeq_{\forall \hat{\Sigma}_1^b(\alpha)} T_2^2(\alpha)$ known.
- 2. An "interesting" independence result for $BA(\alpha)$ with a parity quantifier, "there is an odd number of x < t such that".
 - e.g. for PHP: "α is not a 1-1 function from x + 1 to x", already known to be independent from BA(α).

Main theme of this talk: in both problems, the same kind of theory seems to show up as an obstacle.

Detour: approximate counting

Weak pigeonhole principles

iWPHP(\mathcal{F}): injective WPHP for function class \mathcal{F} : no function $f \in \mathcal{F}$ is injective from $y \gg x$ into x, sWPHP(\mathcal{F}): surjective WPHP for function class \mathcal{F} : no function $f \in \mathcal{F}$ is surjective from x onto $y \gg x$.

Typically, $y \gg x$ means $y = x^2$, 2x, at times has to be $x(1 + 1/\log x)$.

- easy: $sWPHP(FP^{NP(\alpha)}) \vdash iWPHP(\alpha)$,
- ► likewise, iWPHP($FP^{NP(\alpha)}$) \vdash sWPHP(α),
- ► $T_2^2(\alpha) \vdash iWPHP(\alpha)$, sWPHP(α) (Maciel-Pitassi-Woods 2002).

Approximate counting

Jeřábek 2005-2009:

- APC₁ = PV + sWPHP(FP) can approximate the size of polytime set X ⊆ 2ⁿ up to 1/poly(n) fraction of 2ⁿ.
- ► APC₂ = T_2^1 + sWPHP(FP^{NP}) can do the same for $X \in P^{NP}$, while for $X \in NP$ it finds surjections witnessing $m \leftarrow X \leftarrow m + m/\text{polylog}(m)$.

APC theories within the hierarchy

Peskiness of APC₂

Empirical observation:

The $\forall \hat{\Sigma}_1^b(\alpha)$ principles used to separate low levels of the BA(α) hierarchy from the rest are either complete for some level (hence hard to work with) or provable in APC₂(α).

Mathematical result:

Bounded arithmetic with the parity quantifier, BA^{\oplus} , is equal to a "parity version" of APC₂ (and this relativizes).

The non-parity case

Typical separating principles

Some $\forall \hat{\Sigma}_1^b(\alpha)$ principles separating $T_2^1(\alpha)$ from stronger theories:

- iWPHP(α),
- ► Ramsey's principle: the graph determined by α on [0, x) has a homogeneous set of size (log x)/2,
- ordering principle OP: if α is a linear ordering on [0, x), then it has a least element (has to be Herbrandized to become $\forall \hat{\Sigma}_{1}^{b}(\alpha)$).

All these, and many similar principles, are either known or easily seen to be provable in APC₂(α).

Example: $APC_2(\alpha) \vdash OP$.

- Given x, prove by induction on $y < \log x$ that there exists z < x such that the set of elements α -smaller than z has size approximately less than than $x/2^y$.
- Inductive step involves some additional counting arguments to show that there is z' α-smaller than approximately at least half of the elements α-smaller than the current z.
- Induction formula is Σ₂^b(α), but the induction is only up to log x, so there is a conservativity result that lets us use it.

APC₂ and
$$\forall \hat{\Sigma}_1^b$$

Question:

Is there a $\forall \hat{\Sigma}_1^b(\alpha)$ sentence separating APC₂(α) from full BA(α)?

APC₂ and
$$\forall \hat{\Sigma}_1^b$$

Question:

Is there a $\forall \hat{\Sigma}_1^b(\alpha)$ sentence separating APC₂(α) from full BA(α)?

?????

APC₂ and
$$\forall \hat{\Sigma}_1^b$$

Question: Is there a $\forall \hat{\Sigma}_1^b(\alpha)$ sentence separating APC₂(α) from full BA(α)?

?????

So, why not first consider natural fragments of APC₂? (Obtained by limiting induction or WPHP somewhat.)

Some fragments of APC₂

For the theories marked in red, we have a separation from $BA(\alpha)$ (in fact, from $APC_2(\alpha)$). For the others, still no separation known.

A useful principle

HOP:

"For all z, it is not true that \preccurlyeq is a linear order on [0, z) for which h is the predecessor function". (Oracle α provides \preccurlyeq and the bitgraph of h.)

A useful principle

HOP:

"For all z, it is not true that \preccurlyeq is a linear order on [0, z) for which h is the predecessor function". (Oracle α provides \preccurlyeq and the bitgraph of h.)

Theorem

HOP is unprovable in:

- $T_2^1(\alpha) + iWPHP(FP(\alpha))$,
- $PV(\alpha) + sWPHP(FP^{NP(\alpha)}).$

Provable in APC₂(α). Status in $T_2^1(\alpha) + sWPHP(FP(\alpha))$ unknown!

 $PV + sWPHP(FP^{NP})$

Theorem $PV(\alpha) + sWPHP(FP^{NP(\alpha)}) \not\vdash HOP.$

(note: $x \rightarrow 2x$ version; some issues about formalization of FP^{NP}.)

$PV + sWPHP(FP^{NP})$

Theorem $PV(\alpha) + sWPHP(FP^{NP(\alpha)}) \not\vdash HOP.$

(note: $x \rightarrow 2x$ version; some issues about formalization of FP^{NP}.)

Proof ingredients:

- logic: (generalizations of) so-called KPT witnessing for ∀∃∀ and more complex consequences of PV,
- ▶ simplified case: $x \to x^2$ version of sWPHP for single FP^{NP} function *f*, where *x* is a term depending only on *z*,
- ▶ witnessing gives constant round Student-Teacher game: given v < x², Student produces u < x and computation w witnessing f(u) = v, or witness to HOP; Teacher gives counterexamples showing that w contains a false 'No' answer to an NP query.</p>

$PV + sWPHP(FP^{NP})$: arguing against Student

- Always $\gg x v$'s (initially all x^2) are active, the rest is discarded.

$PV + sWPHP(FP^{NP})$: arguing against Student

- Always $\gg x v$'s (initially all x^2) are active, the rest is discarded.
- ► At stage *i* order the tentative part randomly and only keep a 1/polylog(z) fraction tentative, so that the least point remains tentative and at most half the active v's query a point that remains tentative. Discard those v's.

$PV + sWPHP(FP^{NP})$: arguing against Student

- Always $\gg x v$'s (initially all x^2) are active, the rest is discarded.
- At stage *i* order the tentative part randomly and only keep a 1/polylog(z) fraction tentative, so that the least point remains tentative and at most half the active v's query a point that remains tentative. Discard those v's.
- When Student claims "f(u) = v" for a given u and many v's, for all but a single v Teacher can use the other v's to find a counterexample to a 'No' answer in the computation.
 For each u, that "bad" v is discarded.
- At the end of the S-T game, there are still a lot of active v's for which Student does not have a good u.

Open problem

Separate $T_2^1(\alpha) + \text{sWPHP}(\text{FP}(\alpha))$ from BA(α)!

- Candidate hard problems: HOP, iWPHP, etc.
- Characterizations of provability in T¹₂(α) + sWPHP(FP(α)) in terms of "randomized" propositional proofs and algorithmic search procedures are known.

The parity case

Limiting the use of \oplus

 $\oplus x < y :=$ "there is an odd number of x < y such that".

$$\hat{\Sigma}_n^{b,\oplus P}$$
 formulas: $\exists x_1 < t_1 \forall x_2 < t_2 \dots Qx_n < t_n \psi$,
where ψ open except for perhaps \oplus in front of polytime formulas.
 $T_2^{n,\oplus P}$: induction for $\hat{\Sigma}_n^{b,\oplus P}$. Note that $\bigcup_n T_2^{n,\oplus P} \neq BA^{\oplus}$.

This all relativizes smoothly to α .

The collapse result

$$APC_2^{\oplus P} = T_2^{2, \oplus P} + sWPHP(FP^{NP^{\oplus P}}).$$

Theorem

 BA^{\oplus} is conservative over $APC_2^{\oplus P}$, and this relativizes.

Remark

This has implications for propositional proof complexity: constant depth systems with parity gates are (for simple enough formulas) quasipolynomially simulated by depth 3 systems with formulas in a particular form (or even depth 2 systems with additional axioms corresponding to sWPHP).

The collapse result: comments on proof

- ► Toda's Theorem: each problem in the closure of the polynomial hierarchy under the parity quantifier has a probabilistic polytime reduction to ⊕Sat, the problem whether a given propositional formula has an odd number of satisfying assignments.
- We inductively assign to each bounded formula with ⊕ a "∆₁^{b,⊕P} translation" correct on a bounded interval, more or less following the usual proof of Toda's Theorem. The translation is well behaved in APC₂^{⊕P}, which is strong enough to handle various probabilistic/counting arguments involved.
- Example of place where APC₂^{⊕P} seems needed: when we say that given a formula φ in n variables, there is k ≤ n such that φ has between 2^{k-2} and 2^k satisfying assignments.

- Unprovability of PHP (and some variants of HOP) in $T_2^{1,\oplus P}(\alpha)$ follows easily from known results in proof complexity.
- ► For the theories involving sWPHP, something can be done if ⊕ is allowed only in the induction part, not the sWPHP part.
- ► Independence of, say, PHP from even APC₁^{⊕P}(α) is open, and seems hard.