A pesky theory of bounded arithmetic

Leszek Kołodziejczyk
University of Warsaw
(based on joint work with Buss-Thapen and Buss-Zdanowski)

Kotlarski-Ratajczyk conference, Będlewo, July 2012

Bounded arithmetic: quick review

Language: symbols for all polytime computable functions \& relations on the natural numbers. In particular, no 2^{x}, but we do have $x^{\log y}$.
$\hat{\Sigma}_{n}^{b}$ formulas: $\exists x_{1}<t_{1} \forall x_{2}<t_{2} \ldots Q x_{n}<t_{n} \psi$, where ψ open.
Correspond to properties in the n-th level of the polynomial hierarchy.

- Full BA: induction for bounded formulas in this language. Essentially a notational variant of $I \Delta_{0}+\Omega_{1}$.
- The fragment T_{2}^{n} : induction for $\hat{\Sigma}_{n}^{b}$.
- Role of T_{2}^{0} played by PV: a basic theory for polynomial time. (PV is to polytime as PRA is to primitive recursive).

Bounded arithmetic: motivation

- connections to computational complexity:
- witnessing theorems: if $T \vdash \forall x \exists y A(x, y)$ for A of the right form, then y can be found by a given kind of algorithm/search process,
- natural framework for stating complexity-theoretical questions, with the hope of getting independence results,
- connections to propositional proof complexity: arithmetical proofs can be translated into short propositional proofs.
- desire to understand how much combinatorics, number theory, logic etc. can be done without the exponential function.

Bounded arithmetic: relativized setting

Fundamental (and seemingly hopeless) open problem:
Do the theories T_{2}^{n} form a strict hierarchy?

More open problems come from relativized BA, where we have a new "oracle" predicate α and allow the ptime functions/relations to query α (which gives $\hat{\Sigma}_{n}^{b}(\alpha), T_{2}^{n}(\alpha), \operatorname{PV}(\alpha)$ etc.)

For instance, is is known that $\mathrm{PV}(\alpha) \subsetneq T_{2}^{1}(\alpha) \subsetneq T_{2}^{2}(\alpha) \subsetneq T_{2}^{3}(\alpha) \ldots$ (Krajíček-Pudlák-Takeuti 1991).

Two current major open problems

1. Can the theories $T_{2}^{n}(\alpha)$ be separated by a $\forall \hat{\Sigma}_{1}^{b}(\alpha)$ sentence?

- only $\operatorname{PV}(\alpha) \not \AA_{\forall \hat{\Sigma}_{1}^{b}(\alpha)} T_{2}^{1}(\alpha) \not Æ_{\forall \hat{\Sigma}_{1}^{b}(\alpha)} T_{2}^{2}(\alpha)$ known.

2. An "interesting" independence result for $\mathrm{BA}(\alpha)$ with a parity quantifier, "there is an odd number of $x<t$ such that".

- e.g. for PHP: " α is not a $1-1$ function from $x+1$ to x ", already known to be independent from $\operatorname{BA}(\alpha)$.

Two current major open problems

1. Can the theories $T_{2}^{n}(\alpha)$ be separated by a $\forall \hat{\Sigma}_{1}^{b}(\alpha)$ sentence?

- only $\operatorname{PV}(\alpha) \AA_{\forall \hat{\Sigma}_{1}^{b}(\alpha)} T_{2}^{1}(\alpha) \AA_{\forall \hat{\Sigma}_{1}^{b}(\alpha)} T_{2}^{2}(\alpha)$ known.

2. An "interesting" independence result for $\mathrm{BA}(\alpha)$ with a parity quantifier, "there is an odd number of $x<t$ such that".

- e.g. for PHP: " α is not a $1-1$ function from $x+1$ to x ", already known to be independent from $\operatorname{BA}(\alpha)$.

Main theme of this talk: in both problems, the same kind of theory seems to show up as an obstacle.

Detour: approximate counting

Weak pigeonhole principles

$\mathrm{iWPHP}(\mathcal{F})$: injective WPHP for function class \mathcal{F} :
no function $f \in \mathcal{F}$ is injective from $y \gg x$ into x, $\operatorname{sWPHP}(\mathcal{F})$: surjective WPHP for function class \mathcal{F} : no function $f \in \mathcal{F}$ is surjective from x onto $y \gg x$.

Typically, $y \gg x$ means $y=x^{2}, 2 x$, at times has to be $x(1+1 / \log x)$.

- easy: $\operatorname{sWPHP}\left(\operatorname{FP}^{\mathrm{NP}(\alpha)}\right) \vdash \mathrm{iWPHP}(\alpha)$,
- likewise, $\operatorname{iWPHP}\left(\operatorname{FP}^{\operatorname{NP}(\alpha)}\right) \vdash \operatorname{sWPHP}(\alpha)$,
- $T_{2}^{2}(\alpha) \vdash \operatorname{iWPHP}(\alpha), \operatorname{sWPHP}(\alpha)$ (Maciel-Pitassi-Woods 2002).

Approximate counting

Jeřábek 2005-2009:

- $\mathrm{APC}_{1}=\mathrm{PV}+\mathrm{sWPHP}(\mathrm{FP})$ can approximate the size of polytime set $X \subseteq 2^{n}$ up to $1 / \operatorname{poly}(n)$ fraction of 2^{n}.
- $\mathrm{APC}_{2}=T_{2}^{1}+\operatorname{sWPHP}\left(\mathrm{FP}^{\mathrm{NP}}\right)$ can do the same for $X \in \mathrm{P}^{\mathrm{NP}}$, while for $X \in$ NP it finds surjections witnessing $m \leftrightarrow X \leftrightarrow m+m / \operatorname{polylog}(m)$.

APC theories within the hierarchy

Peskiness of APC_{2}

Empirical observation:
The $\forall \hat{\Sigma}_{1}^{b}(\alpha)$ principles used to separate low levels of the $\operatorname{BA}(\alpha)$ hierarchy from the rest are either complete for some level (hence hard to work with) or provable in $\mathrm{APC}_{2}(\alpha)$.

Mathematical result:

Bounded arithmetic with the parity quantifier, BA^{\oplus}, is equal to a "parity version" of APC_{2} (and this relativizes).

The non-parity case

Typical separating principles

Some $\forall \hat{\Sigma}_{1}^{b}(\alpha)$ principles separating $T_{2}^{1}(\alpha)$ from stronger theories:

- iWPHP (α),
- Ramsey's principle: the graph determined by α on $[0, x)$ has a homogeneous set of size $(\log x) / 2$,
- ordering principle OP: if α is a linear ordering on $[0, x)$, then it has a least element (has to be Herbrandized to become $\forall \hat{\Sigma}_{1}^{b}(\alpha)$).

All these, and many similar principles, are either known or easily seen to be provable in $\mathrm{APC}_{2}(\alpha)$.

Example: $\mathrm{APC}_{2}(\alpha) \vdash \mathrm{OP}$.

- Given x, prove by induction on $y<\log x$ that there exists $z<x$ such that the set of elements α-smaller than z has size approximately less than than $x / 2^{y}$.
- Inductive step involves some additional counting arguments to show that there is $z^{\prime} \alpha$-smaller than approximately at least half of the elements α-smaller than the current z.
- Induction formula is $\Sigma_{2}^{b}(\alpha)$, but the induction is only up to $\log x$, so there is a conservativity result that lets us use it.

APC_{2} and $\forall \hat{\Sigma}_{1}^{b}$

Question:

Is there a $\forall \hat{\Sigma}_{1}^{b}(\alpha)$ sentence separating $\mathrm{APC}_{2}(\alpha)$ from full $\mathrm{BA}(\alpha)$?

APC_{2} and $\forall \hat{\Sigma}_{1}^{b}$

Question:

Is there a $\forall \hat{\Sigma}_{1}^{b}(\alpha)$ sentence separating $\mathrm{APC}_{2}(\alpha)$ from full $\mathrm{BA}(\alpha)$?
?????

APC_{2} and $\forall \hat{\Sigma}_{1}^{b}$

Question:

Is there $\mathrm{a} \forall \hat{\Sigma}_{1}^{b}(\alpha)$ sentence separating $\operatorname{APC}_{2}(\alpha)$ from full $\mathrm{BA}(\alpha)$?
?????

So, why not first consider natural fragments of APC_{2} ? (Obtained by limiting induction or WPHP somewhat.)

Some fragments of APC_{2}

For the theories marked in red, we have a separation from $\mathrm{BA}(\alpha)$ (in fact, from $\mathrm{APC}_{2}(\alpha)$). For the others, still no separation known.

A useful principle

HOP:
"For all z, it is not true that \preccurlyeq is a linear order on $[0, z)$ for which h is the predecessor function".
(Oracle α provides \preccurlyeq and the bitgraph of h.)

A useful principle

HOP:

"For all z, it is not true that \preccurlyeq is a linear order on $[0, z)$ for which h is the predecessor function".
(Oracle α provides \preccurlyeq and the bitgraph of h.)
Theorem
HOP is unprovable in:

- $T_{2}^{1}(\alpha)+\mathrm{iWPHP}(\mathrm{FP}(\alpha))$,
$-\operatorname{PV}(\alpha)+\operatorname{sWPHP}\left(\operatorname{FP}^{\mathrm{NP}(\alpha)}\right)$.
Provable in $\operatorname{APC}_{2}(\alpha)$. Status in $T_{2}^{1}(\alpha)+\operatorname{sWPHP}(\operatorname{FP}(\alpha))$ unknown!

$\mathrm{PV}+\mathrm{sWPHP}\left(\mathrm{FP}^{\mathrm{NP}}\right)$

Theorem
$\operatorname{PV}(\alpha)+\operatorname{sWPHP}\left(\operatorname{FP}^{\mathrm{NP}(\alpha)}\right) \nvdash \mathrm{HOP}$.
(note: $x \rightarrow 2 x$ version; some issues about formalization of $\mathrm{FP}^{\mathrm{NP}}$.)

$\mathrm{PV}+\mathrm{sWPHP}\left(\mathrm{FP}^{\mathrm{NP}}\right)$

Theorem
$\mathrm{PV}(\alpha)+\operatorname{sWPHP}\left(\mathrm{FP}^{\mathrm{NP}(\alpha)}\right) \nvdash \mathrm{HOP}$.
(note: $x \rightarrow 2 x$ version; some issues about formalization of $\mathrm{FP}^{\mathrm{NP}}$.)
Proof ingredients:

- logic: (generalizations of) so-called KPT witnessing for $\forall \exists \forall$ and more complex consequences of PV,
- simplified case: $x \rightarrow x^{2}$ version of sWPHP for single FP ${ }^{\text {NP }}$ function f, where x is a term depending only on z,
- witnessing gives constant round Student-Teacher game: given $v<x^{2}$, Student produces $u<x$ and computation w witnessing $f(u)=v$, or witness to HOP; Teacher gives counterexamples showing that w contains a false 'No' answer to an NP query.

$\mathrm{PV}+\mathrm{sWPHP}\left(\mathrm{FP}^{\mathrm{NP}}\right)$: arguing against Student

- Construction in stages $1, \ldots, k=\mathrm{lh}$ of S-T game. At each stage, \preceq defined on all of $[0, z)$, but only part is settled (initially \emptyset), the points below it are tentative;
- Always $\gg x v$'s (initially all x^{2}) are active, the rest is discarded.

$\mathrm{PV}+\mathrm{sWPHP}\left(\mathrm{FP}^{\mathrm{NP}}\right)$: arguing against Student

- Construction in stages $1, \ldots, k=1 \mathrm{~h}$ of S-T game. At each stage, \preceq defined on all of $[0, z)$, but only part is settled (initially \emptyset), the points below it are tentative;
- Always $\gg x v$'s (initially all x^{2}) are active, the rest is discarded.
- At stage i order the tentative part randomly and only keep a $1 / \operatorname{polylog}(z)$ fraction tentative, so that the least point remains tentative and at most half the active v 's query a point that remains tentative. Discard those v 's.

$\mathrm{PV}+\mathrm{sWPHP}\left(\mathrm{FP}^{\mathrm{NP}}\right)$: arguing against Student

- Construction in stages $1, \ldots, k=\mathrm{lh}$ of S-T game. At each stage, \preceq defined on all of $[0, z)$, but only part is settled (initially \emptyset), the points below it are tentative;
- Always $\gg x v$'s (initially all x^{2}) are active, the rest is discarded.
- At stage i order the tentative part randomly and only keep a $1 / \operatorname{poly} \log (z)$ fraction tentative, so that the least point remains tentative and at most half the active v 's query a point that remains tentative. Discard those v 's.
- When Student claims " $f(u)=v$ " for a given u and many v 's, for all but a single v Teacher can use the other v 's to find a counterexample to a 'No' answer in the computation. For each u, that "bad" v is discarded.
- At the end of the S-T game, there are still a lot of active v 's for which Student does not have a good u.
$\mathrm{PV}+\mathrm{sWPHP}\left(\mathrm{FP}^{\mathrm{NP}}\right)$ proof: picture of a stage active v 's
$u^{\prime} s$
claims about f

will be discorded for querying
a pt that remains tentative
々:

Open problem

Separate $T_{2}^{1}(\alpha)+\operatorname{sWPHP}(\operatorname{FP}(\alpha))$ from $\operatorname{BA}(\alpha)$!

- Candidate hard problems: HOP, iWPHP, etc.
- Characterizations of provability in $T_{2}^{1}(\alpha)+\operatorname{sWPHP}(\operatorname{FP}(\alpha))$ in terms of "randomized" propositional proofs and algorithmic search procedures are known.

The parity case

Limiting the use of \oplus

$\oplus x<y$:= "there is an odd number of $x<y$ such that".
$\hat{\Sigma}_{n}^{b, \oplus \mathrm{P}}$ formulas: $\exists x_{1}<t_{1} \forall x_{2}<t_{2} \ldots Q x_{n}<t_{n} \psi$, where ψ open except for perhaps \oplus in front of polytime formulas.
$T_{2}^{n, \oplus \mathrm{P}}$: induction for $\hat{\Sigma}_{n}^{b, \oplus \mathrm{P}}$. Note that $\bigcup_{n} T_{2}^{n, \oplus \mathrm{P}} \neq \mathrm{BA}^{\oplus}$.
This all relativizes smoothly to α.

The collapse result

$$
\mathrm{APC}_{2}^{\oplus \mathrm{P}}=T_{2}^{2, \oplus \mathrm{P}}+\operatorname{sWPHP}\left(\mathrm{FP}^{\mathrm{NP}^{\oplus \mathrm{P}}}\right) .
$$

Theorem
BA^{\oplus} is conservative over $\mathrm{APC}_{2}^{\oplus \mathrm{P}}$, and this relativizes.

Remark

This has implications for propositional proof complexity: constant depth systems with parity gates are (for simple enough formulas) quasipolynomially simulated by depth 3 systems with formulas in a particular form (or even depth 2 systems with additional axioms corresponding to sWPHP).

The collapse result: comments on proof

- Toda's Theorem: each problem in the closure of the polynomial hierarchy under the parity quantifier has a probabilistic polytime reduction to \oplus Sat, the problem whether a given propositional formula has an odd number of satisfying assignments.
- We inductively assign to each bounded formula with \oplus a " $\Delta_{1}^{b, \oplus \mathrm{P}}$ translation" correct on a bounded interval, more or less following the usual proof of Toda's Theorem. The translation is well behaved in $\mathrm{APC}_{2}^{\oplus \mathrm{P}}$, which is strong enough to handle various probabilistic/counting arguments involved.
- Example of place where $\mathrm{APC}_{2}^{\oplus \mathrm{P}}$ seems needed: when we say that given a formula φ in n variables, there is $k \leq n$ such that φ has between 2^{k-2} and 2^{k} satisfying assignments.

Current picture

- Unprovability of PHP (and some variants of HOP) in $T_{2}^{1, \oplus \mathrm{P}}(\alpha)$ follows easily from known results in proof complexity.
- For the theories involving sWPHP, something can be done if \oplus is allowed only in the induction part, not the sWPHP part.
- Independence of, say, PHP from even $\operatorname{APC}_{1}^{\oplus \mathrm{P}}(\alpha)$ is open, and seems hard.

