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Preliminaries

Σ − a certain fixed finite alphabet
x ∈ Σ* − x is a string over the alphabet Σ
x − the length of x

NPTM − nondeterministic polynomial-time clocked Turing machines

(our basic computational model)

L(M) – the language accepted by M

N1, N2, N3, N4, ... the standard enumeration of all polynomial-time clocked
nondeterministic Turing machines

D1, D2, D3, D4, ... the standard enumeration of all polynomial-time clocked
deterministic Turing machines



1. Optimal proof systems

All propositional proof systems have three properties in common:

1. Correctness (soundness): If there is a proof in the system, then the formula
is indeed a tautology.

2. Completeness: Every tautology can be proved within the system.

3. Verifiability:  The validity of a proof can be easily verified.



Definition  (Cook, Reckhow)
An abstract propositional proof system (an abstract proof system for

TAUT)...

                                   onto
f:        Σ*                                           TAUT

       (proofs)                                                 (formulas)

f − computable by a deterministic Turing machine in time bounded by a
polynomial in the length of the input

   A string w such that f(w) = α we call a proof of a formula α.



Fact (Cook, Reckhow)
NP=co-NP if and only if, there exists a polynomially bounded

propositional proof system.

How does one compare the efficiency of
proof systems ?

h, h’  − proof systems for TAUT



Definition
We say that h p-simulates h’ iff, there exists a polynomial time

computable function  γ : Σ* → Σ* translating  proofs in  h’ into proofs in  h.

Definition
We say that h simulates h’ iff, there exists a polynomial p such that for

every tautology α ,  if α   has a proof of length n in h’ then α  has a proof of
length ≤ p(n) in h.

Definition  (Krajíček, Pudlák)
A proof system for TAUT is p-optimal (optimal) if it p-simulates

(simulates) any proof system for TAUT.

Open problems (Krajíček, Pudlák)
Does there exist a p-optimal proof system for TAUT ?
Does there exist an optimal proof system for TAUT ?



2. Semantic (promise) classes

UP, NP∩co-NP, BPP   −  promise classes
Disjoint NP − pairs  (DNPP)   −   also a promise class

These classes are defined using nondeterministic polynomial time clocked
Turing machines which obey special conditions (promises).

UP-machine..., NP∩co-NP-machine...,

Open problem
Do there exist complete languages for promise classes?



Syntactic vs. semantic classes

A class C is syntactically defined if for any polynomial-time clocked
Turing machine N, we can decide whether or not it defines an element of C
„simply by looking at it”.

Examples: P and NP are syntactic classes

♦   P = {L(M):  M is a deterministic polynomial-time clocked Turing
Machine}

♦    NP = {L(N):  N is a nondeterministic polynomial-time clocked TM }



                 A1 A3

                              f1                                          f3

A

                             f2                                  f4

A2 A4

The rule of thumb:

Syntactic classes possess complete languages, while semantic classes do
not.



3. Uniform enumeration

Definition
A family of languages C has a recursive presentation if and only if there

exists a recursively enumerable list of total Turing machines
{M 1i , M 2i , M 3i ,...} such that

C = {(L(M i k ):   k≥1}

a list of names of languages from C

A recursive presentation by means of polynomial - time clocked Turing
machines  = a uniform enumeratiom



Theorem (Hartmanis, Hemachandra)
Statements (i) -- (ii) are equivalent:
(i) There exists a complete language for UP.
(ii)  There exists a r. e. list of categorical nondeterministic polynomial-time
clocked TMs    N1i , N 2i , N 3i ,...  such that  {(L(Ni k ):   k≥1} = UP.

r.e. list of machines naming all languages from UP

a uniform enumeration of UP

NP∩co-NP        Kowalczyk 1981
BPP                   Hartmanis , Hemachandra 1988
DNPP                Glasser, Selman,Sengupta 2004



easy = polynomial-time computable

NP-easy = acceptable by a nondeterministic polynomial-time Turing machine

Theorem
Statements (i) --- (ii) are equivalent:

(i) There exists an optimal proof system for TAUT.
(ii)  The class of all NP-easy subsets of TAUT is uniformly enumerable.

Theorem
Statements (i) --- (ii) are equivalent:

(i) There exists  a p-optimal proof system for TAUT.
(ii)  The class of all easy subsets of TAUT is uniformly enumerable.



4. Two concrete examples

UP = {L(N):  N is a nondeterministic polynomial-time Turing machine which
                       on every input has at most one accepting path}

DNPP = {(A, B):  A, B ∈  NP    are  nonempty and A ∩  B = ∅ }

UP, DNPP                     semantic classes with propositionally expressible
promises



Expressing

For any nondeterministic poly-time clocked N we can construct
propositional formulas ....
αN

1 ,  α
N

2 ,  α
N

3 ,  α
N

4 , ...

Correctness
αN

n is a tautology if and only if, N obeys UP – promise for any input of the
length n.

More precisely
αN

n is a tautology if and only if N on any input of the length n has at most
one accepting path.



Representing (capturing)

Let A be a language such that A ∈ UP
Let f  be a proof system for TAUT

We say that A is p-representable in f if and only if there exists a polynomial-
time clocked UP machine N such that:

1. A = L(N)

2. we have short f-proofs of the tautologies
            αN

1 ,  α
N

2 ,  α
N

3 ,  α
N

4 , ...

3. these proofs can be constructed in polynomial time

         If every language A ∈ UP is p-representable in f then we say that the
class UP is p-representable in f.



Characterization

Theorem 1
Statements (i) – (iii) are equivalent:

(i) There exists a complete language for UP
(ii)  UP has a uniform enumeration
(iii)  There exists a propositional proof system h such that UP is p-

representable in h

uniform/nonuniform



DNPP

Expressing

(N, M)                      propositional formulas:

αN,M
1 ,  α

N,M
2 ,  α

N,M
3 ,  α

N,M
4 , ...

Correctness

αN, M
n  is a tautology if and only if there does not exist a word x of the length n

such that x ∈ L(N)  and  x ∈ L(M).



Representing (capturing)

Let f  be a proof system for TAUT

We say that (A, B) is representable in f if and only if there exist polynomial-
time clocked nondeterministic Turing machines N and M such that:

1. A = L(N)  and  B = L(M)

2. we have short f-proofs of the tautologies
           αN,M

1 ,  α
N,M

2 ,  α
N,M

3 ,  α
N,M

4 , ...

3.

         If every disjoint NP  pair (A, B) is representable in f then we say that the
class DNPP is representable in f.



Characterization

Theorem
Statements (i) – (iv) are equivalent:

(i) There exists a complete disjoint NP pair
(ii)  DNPP has a uniform enumeration
(iii)  There exists a proof system f for TAUT such that DNPP is p-

representable in f
(iv) There exists a proof system f for TAUT such that DNPP is representable

in f

The class DNPP „can use nondeterminisn”

DNPP machines (pairs of machines) can perform nondeterministic
computations without violating the promise



5. The generalized approach to promise (semantic) classes

How does one formalize the general notion of a promise class?

Promise = binary relation between nondeterministic poly-time machines
and strings

R(N, x)  ----- N obeys  promise R on input x

A machine N is called an R-machine if N obeys R on any input x

Given a promise relation R we define the promise class generated by R as
CR = {L(N) :   N  is an  R-machine}



Example

The promise for UP:
R(N,x) holds iff N(x) has at most one accepting path.

Then UP = CR

Let L be a language (e. g.)   L = TAUT, L = SAT, L = QTAUT (the set of all
tautological quantified propositional formulas)

The promise of NP∩co-NP is expressible in QTAUT



Expressibility

Definition
A promise R is expressible in a language L if there exists a polynomial-

time computable function corr: Σ* ×  Σ* ×  0* →  Σ*  such that the following
conditions hold:

(1) Correctness: For every Turing machine N, for every x ∈ Σ∗  and m ∈ N
if corr(x, N, 0m) ∈ L,  then N obeys promise R on input x.

(2) Completeness: For every R-machine N with polynomial time bound p
the set Correct(N) = {corr(x, N, 0p(|x|)):  x ∈ Σ∗ } is a subset of L.

(3) Local recognizability: For every Turing machine N, the set Correct(N) is
polynomial-time decidable.



Definition  (Cook, Reckhow)
A proof system for a language L is a polynomial-time computable function

f with range L.

Representations

Let C be a promise class which is expressible in a language L. Let further
A ∈ C and  f  be a proof system for L.

Definition

      We say that A is representable in  f  if there exists a C-machine N for A
with running time p such that for every x ∈ Σ∗ we have short  f-proofs  of
corr(x, N, 0p(|x|)). If these f-proofs can even be constructed in polynomial time,
then we say that A is p-representable in  f.



Questions

Q1: Given a language L, does L have an optimal proof system ?

Q2: Given a promise class C, do there exist complete languages in C ?

Theorem
Statements (i) – (iii) are equivalent:

(i) L has a p-optimal proof system for L.
(ii)  The class of all easy subsets of L is uniformly enumerable.
(iii)  There exists a proof system f for L such that the class of all easy subsets

of L is p-representable in f.



6. Q2 – Complete Languages for Promise Classes

Let C be a promise language (or function) class and L be a language such that
C is expressible in L.

Theorem
The following conditions are equivalent:

(i) C has a complete language (or function).
(ii)  C has a uniform enumeration.
(iii)  There exists a proof system for L in which C is p-representable.

uniform/nonuniform



Let C be a promise language (or function) class which can use nondeterminism
and let L be a language such that C is expressible in L.

Theorem
The following conditions are equivalent:

(i) C has a complete language (or function).
(ii)  C has a uniform enumeration.
(iii)  There exists a proof system for L in which C is p-representable.
(iv) There exists a proof system for L in which C is representable.



7. Q1 and Q2  --  Optimal Proof Systems and Complete Sets

Theorem (A. Razborov)
If there exists an optimal proof system for TAUT then there exists a complete

disjoint NP-pair.

Theorem (J. Messner, J. Torán)
If there exists a p-optimal proof system for TAUT then there exists a complete

language for UP.

Why do reverse implications not hold?

Why, for some classes, does the existence of an optimal proof system imply the existence of complete languages but for other classes the
existence of a p-optimal proof system implies the existence of complete languages?



Theorem
The following conditions are equivalent:

(i) There exists a p-optimal proof system for L.
(ii)  There exists a proof system for L in which any promise class which is

expressible in L is p-representable.
(iii)  Every promise language and function class which is expressible in L has

a complete language or function.

The promise that a Turing machine computes a proof system for L is the
hardest one among those promises which are expressible in L.



Theorem
The following conditions are equivalent:

(i) There exists an optimal proof system for L.
(ii)  L has a proof system f such that every promise class which is expressible

in L is representable in f.

Corollary
If L has an optimal proof system, then any promise or function class C

which is expressible in L and which can use nondeterminism has a complete
language or function.



Conclusions

1. The class of all proof systems for L is the most semantic in the category of
promise classes expressible in L

2. The phenomenon of uniformity versus nonuniformity, known from proof
complexity, also appears in the context of the problems of the existence of
complete languages for promise classes.

"The links between propositional proof systems and bounded arithmetic theories have
many facets but informally one can view them as two sides of the same thing: The
former is a non-uniform version of the latter."

J. Krajíćek


