Nonstandard Analysis: a new way to compute

Sam Sanders ${ }^{1}$

Model Theory and Proof Theory of Arithmetic
A Memorial Conference in Honour of H. Kotlarski and Z. Ratajczyk
July 25, 2012

${ }^{1}$ This research is generously supported by the John Templeton Foundation.

Take-home message

Take-home message

In Nonstandard Analysis, an algorithm is any object whose definition is independent of the choice of infinitesimal (Ω-invariance).

Take-home message

In Nonstandard Analysis, an algorithm is any object whose definition is independent of the choice of infinitesimal (Ω-invariance).

More technically, we define a translation between Constructive Analysis (BISH) and Nonstandard Analysis (NSA):

Take-home message

In Nonstandard Analysis, an algorithm is any object whose definition is independent of the choice of infinitesimal (Ω-invariance).

More technically, we define a translation between Constructive Analysis (BISH) and Nonstandard Analysis (NSA):
(Proof and Algorithm) in BISH $=($ Transfer and Ω-invariance) in NSA

Take-home message

In Nonstandard Analysis, an algorithm is any object whose definition is independent of the choice of infinitesimal (Ω-invariance).

More technically, we define a translation between Constructive Analysis (BISH) and Nonstandard Analysis (NSA):
(Proof and Algorithm) in BISH $=$ (Transfer and Ω-invariance) in NSA
Most results from CRM (= RM based on BISH) translate to NSA under a natural translation \mathbb{B}.

Son of a...

Son of a...

Son of a...

Son of a...

Son of a...

Son of a...

Son of a...

Son of a...

Son of a...

Son of a...

Son of a...

Errett Bishop's Constructive Analysis (also 'BISH') is a constructive redevelopment of Mathematics, consistent with CLASS, RUSS and INT.

Algorithm and Proof in Constructive Analysis

Errett Bishop's Constructive Analysis (BISH) is a constructive redevelopment of Mathematics, where algorithm and proof are central.

Algorithm and Proof in Constructive Analysis

Errett Bishop's Constructive Analysis (BISH) is a constructive redevelopment of Mathematics, where algorithm and proof are central.

Definition (Logical connectives in BISH: BHK)

Algorithm and Proof in Constructive Analysis

Errett Bishop's Constructive Analysis (BISH) is a constructive redevelopment of Mathematics, where algorithm and proof are central.

Definition (Logical connectives in BISH: BHK)

(1) $P \vee Q$: we have an algorithm that outputs either P or Q, together with a proof of the chosen disjunct.

Algorithm and Proof in Constructive Analysis

Errett Bishop's Constructive Analysis (BISH) is a constructive redevelopment of Mathematics, where algorithm and proof are central.

Definition (Logical connectives in BISH: BHK)

(1) $P \vee Q$: we have an algorithm that outputs either P or Q, together with a proof of the chosen disjunct.
(2) $P \wedge Q$: we have both a proof of P and a proof of Q.

Algorithm and Proof in Constructive Analysis

Errett Bishop's Constructive Analysis (BISH) is a constructive redevelopment of Mathematics, where algorithm and proof are central.

Definition (Logical connectives in BISH: BHK)

(1) $P \vee Q$: we have an algorithm that outputs either P or Q, together with a proof of the chosen disjunct.
(2) $P \wedge Q$: we have both a proof of P and a proof of Q.
(3) $P \rightarrow Q$: by means of an algorithm we can convert any proof of P into a proof of Q.

Algorithm and Proof in Constructive Analysis

Errett Bishop's Constructive Analysis (BISH) is a constructive redevelopment of Mathematics, where algorithm and proof are central.

Definition (Logical connectives in BISH: BHK)

(1) $P \vee Q$: we have an algorithm that outputs either P or Q, together with a proof of the chosen disjunct.
(2) $P \wedge Q$: we have both a proof of P and a proof of Q.
(3) $P \rightarrow Q$: by means of an algorithm we can convert any proof of P into a proof of Q.
(4) $\neg P \equiv P \rightarrow(0=1)$.

Algorithm and Proof in Constructive Analysis

Errett Bishop's Constructive Analysis (BISH) is a constructive redevelopment of Mathematics, where algorithm and proof are central.

Definition (Logical connectives in BISH: BHK)

(1) $P \vee Q$: we have an algorithm that outputs either P or Q, together with a proof of the chosen disjunct.
(2) $P \wedge Q$: we have both a proof of P and a proof of Q.
(3) $P \rightarrow Q$: by means of an algorithm we can convert any proof of P into a proof of Q.
(9) $\neg P \equiv P \rightarrow(0=1)$.
(5) $(\exists x) P(x)$: an algorithm computes an object x_{0} such that $P\left(x_{0}\right)$

Algorithm and Proof in Constructive Analysis

Errett Bishop's Constructive Analysis (BISH) is a constructive redevelopment of Mathematics, where algorithm and proof are central.

Definition (Logical connectives in BISH: BHK)

(1) $P \vee Q$: we have an algorithm that outputs either P or Q, together with a proof of the chosen disjunct.
(2) $P \wedge Q$: we have both a proof of P and a proof of Q.
(3) $P \rightarrow Q$: by means of an algorithm we can convert any proof of P into a proof of Q.
(9) $\neg P \equiv P \rightarrow(0=1)$.
(5) $(\exists x) P(x)$: an algorithm computes an object x_{0} such that $P\left(x_{0}\right)$
(0) $(\forall x \in A) P(x)$: for all $x, x \in A \rightarrow P(x)$.

From BISH to NSA

In BISH, proof and algorithm are central.

From BISH to NSA

In BISH, proof and algorithm are central.
We define a system of Nonstandard Analyis NSA where Transfer (T) and Ω-invariant procedure play the same role.

From BISH to NSA

In BISH, proof and algorithm are central.
We define a system of Nonstandard Analyis NSA where Transfer (T) and Ω-invariant procedure play the same role.

NSA is similar to *RCA , a nonstandard version of RCA $_{0}$ (Keisler \& Yokoyama).

From BISH to NSA

In BISH, proof and algorithm are central.
We define a system of Nonstandard Analyis NSA where Transfer (T) and Ω-invariant procedure play the same role.

NSA is similar to *RCA ${ }_{0}$, a nonstandard version of RCA $_{0}$ (Keisler \& Yokoyama).

Three important features:

From BISH to NSA

In BISH, proof and algorithm are central.
We define a system of Nonstandard Analyis NSA where Transfer (T) and Ω-invariant procedure play the same role.

NSA is similar to *RCA , a nonstandard version of RCA $_{0}$ (Keisler \& Yokoyama).

Three important features:
(1) No Transfer Principle, except for Δ_{0}.

From BISH to NSA

In BISH, proof and algorithm are central.
We define a system of Nonstandard Analyis NSA where Transfer (T) and Ω-invariant procedure play the same role.

NSA is similar to *RCA , a nonstandard version of RCA (Keisler \& 2 Yokoyama).

Three important features:
(1) No Transfer Principle, except for Δ_{0}.
(2) No $\Delta_{1}^{0}-\mathrm{CA}$, but Ω-CA. (CA for Ω-invariant formulas)

From BISH to NSA

In BISH, proof and algorithm are central.
We define a system of Nonstandard Analyis NSA where Transfer (T) and Ω-invariant procedure play the same role.

NSA is similar to *RCA , a nonstandard version of RCA (Keisler \& 2 Yokoyama).

Three important features:
(1) No Transfer Principle, except for Δ_{0}.
(2) No Δ_{1}^{0}-CA, but Ω-CA. (CA for Ω-invariant formulas)
(3) Levels of infinity (Stratified NSA).

Feature 3: Stratified Nonstandard Analysis

Feature 3: Stratified Nonstandard Analysis

The usual picture of ${ }^{*} \mathbb{N}$:

* \mathbb{N}, the hypernatural numbers

\mathbb{N}, the natural/finite numbers
$\Omega={ }^{*} \mathbb{N} \backslash \mathbb{N}$, the infinite numbers

Feature 3: Stratified Nonstandard Analysis

The usual picture of ${ }^{*} \mathbb{N}$:

In NSA, the infinite numbers are split into 'small' and 'large'.

* \mathbb{N}, the hypernatural numbers

\mathbb{N}, the natural/finite numbers
$\Omega={ }^{*} \mathbb{N} \backslash \mathbb{N}$, the infinite numbers

Feature 3: Stratified Nonstandard Analysis

The usual picture of ${ }^{*} \mathbb{N}$:
In NSA, the infinite numbers are split into 'small' and 'large'.

Feature 3: Stratified Nonstandard Analysis

The usual picture of ${ }^{*} \mathbb{N}$:
In NSA, the infinite numbers are split into 'small' and 'large'.

* \mathbb{N}, the hypernatural numbers
$\mathbb{N}_{1}=\mathbb{N} \cup$ the small infinite numbers $\Omega_{1}={ }^{*} \mathbb{N} \backslash \mathbb{N}_{1}$, the large infinite numbers

\mathbb{N}, the natural/finite numbers
$\Omega={ }^{*} \mathbb{N} \backslash \mathbb{N}$, the infinite numbers

Feature 2: Ω-invariance

Feature 2: Ω-invariance

Ω-invariance \approx algorithm \approx finite procedure

Definition (Ω-invariance)

For $\psi(n, m) \in \Delta_{0}$ and $\omega \in \Omega$, the formula $\psi(n, \omega)$ is Ω-invariant if

Feature 2: Ω-invariance

Ω-invariance \approx algorithm \approx finite procedure

Definition (Ω-invariance)

For $\psi(n, m) \in \Delta_{0}$ and $\omega \in \Omega$, the formula $\psi(n, \omega)$ is Ω-invariant if

$$
(\forall n \in \mathbb{N})\left(\forall \omega^{\prime} \in \Omega\right)\left[\psi(n, \omega) \leftrightarrow \psi\left(n, \omega^{\prime}\right)\right] .
$$

Feature 2: Ω-invariance

Ω-invariance \approx algorithm \approx finite procedure

Definition (Ω-invariance)

For $\psi(n, m) \in \Delta_{0}$ and $\omega \in \Omega$, the formula $\psi(n, \omega)$ is Ω-invariant if

$$
(\forall n \in \mathbb{N})\left(\forall \omega^{\prime} \in \Omega\right)\left[\psi(n, \omega) \leftrightarrow \psi\left(n, \omega^{\prime}\right)\right] .
$$

Note that $\psi(n, \omega)$ depends on $\omega \in \Omega$, but not on the choice of $\omega \in \Omega$.

Feature 2: Ω-invariance

Ω-invariance \approx algorithm \approx finite procedure

Definition (Ω-invariance)

For $\psi(n, m) \in \Delta_{0}$ and $\omega \in \Omega$, the formula $\psi(n, \omega)$ is Ω-invariant if

$$
(\forall n \in \mathbb{N})\left(\forall \omega^{\prime} \in \Omega\right)\left[\psi(n, \omega) \leftrightarrow \psi\left(n, \omega^{\prime}\right)\right] .
$$

Note that $\psi(n, \omega)$ depends on $\omega \in \Omega$, but not on the choice of $\omega \in \Omega$.
NSA has Ω-CA instead of Δ_{1}-CA.

Principle ($\Omega-C A$)

For all Ω-invariant $\psi(n, \omega)$, we have

$$
(\exists X \subset \mathbb{N})(\forall n \in \mathbb{N})(n \in X \leftrightarrow \psi(n, \omega)) .
$$

The translation \mathbb{B} from BISH to $\mathbb{N S} A$

The translation \mathbb{B} from BISH to $\mathbb{N S A}$ BISH (based on BHK)

The translation \mathbb{B} from BISH to NSA BISH (based on BHK)

The translation \mathbb{B} from BISH to NSA BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

The translation \mathbb{B} from BISH to $\mathbb{N S A}$

 BISH (based on BHK)Central: algorithm and proof
$A \vee B:$
an algo yields a proof of A or of B

The translation \mathbb{B} from BISH to NSA

 BISH (based on BHK) NSA (based on CL)Central: algorithm and proof
Central: Ω-invariance and $\operatorname{Transfer}(\mathbb{T})$
$A \vee B:$
an algo yields a proof of A or of B

The translation \mathbb{B} from BISH to NSA

 BISH (based on BHK)Central: algorithm and proof
$A \vee B:$
an algo yields a proof of A or of B

NSA (based on CL)
Central: Ω-invariance and Transfer (\mathbb{T})
$A \vee B:$

The translation \mathbb{B} from BISH to NSA

 BISH (based on BHK)Central: algorithm and proof
$A \vee B:$
an algo yields a proof of A or of B

NSA (based on CL)

Central: Ω-invariance and Transfer (\mathbb{T})
$A \vee B$: There is Ω-invariant $\psi(\vec{x}, \omega)$ s.t.

$$
\left.\left.\begin{array}{rl}
\psi(\vec{x}, \omega) & \rightarrow[A(\vec{x})
\end{array} \wedge[A(\vec{x}) \in \mathbb{T}]\right]\right] \text { (}{ }^{(\vec{x}, \omega)} \rightarrow[B(\vec{x}) \wedge[B(\vec{x}) \in \mathbb{T}]] .
$$

The translation \mathbb{B} from BISH to NSA

 BISH (based on BHK)Central: algorithm and proof
$A \vee B:$
an algo yields a proof of A or of B
$A \rightarrow B$: an algo converts a proof of A to a proof of B

NSA (based on CL)
Central: Ω-invariance and Transfer (\mathbb{T})
$A \vee B$: There is Ω-invariant $\psi(\vec{x}, \omega)$ s.t.

$$
\begin{aligned}
\psi(\vec{x}, \omega) & \rightarrow[A(\vec{x}) \wedge[A(\vec{x}) \in \mathbb{T}]] \\
\neg \psi(\vec{x}, \omega) & \rightarrow[B(\vec{x}) \wedge[B(\vec{x}) \in \mathbb{T}]]
\end{aligned}
$$

The translation \mathbb{B} from BISH to NSA

 BISH (based on BHK)Central: algorithm and proof
$A \vee B:$
an algo yields a proof of A or of B
$A \rightarrow B$: an algo converts a proof of A to a proof of B

NSA (based on CL)
Central: Ω-invariance and Transfer (\mathbb{T})
$A \vee B$: There is Ω-invariant $\psi(\vec{x}, \omega)$ s.t.

$$
\begin{aligned}
\psi(\vec{x}, \omega) & \rightarrow[A(\vec{x}) \wedge[A(\vec{x}) \in \mathbb{T}]] \\
\neg \psi(\vec{x}, \omega) & \rightarrow[B(\vec{x}) \wedge[B(\vec{x}) \in \mathbb{T}]]
\end{aligned}
$$

$A \Rightarrow B:[A \wedge[A \in \mathbb{T}]] \rightarrow[B \wedge[B \in \mathbb{T}]]$

The translation \mathbb{B} from BISH to NSA

 BISH (based on BHK)Central: algorithm and proof
$A \vee B:$
an algo yields a proof of A or of B
$A \rightarrow B$: an algo converts a proof of A to a proof of B

NSA (based on CL)
Central: Ω-invariance and Transfer (\mathbb{T})
$A \vee B$: There is Ω-invariant $\psi(\vec{x}, \omega)$ s.t.

$$
\begin{aligned}
\psi(\vec{x}, \omega) & \rightarrow[A(\vec{x}) \wedge[A(\vec{x}) \in \mathbb{T}]] \\
\neg \psi(\vec{x}, \omega) & \rightarrow[B(\vec{x}) \wedge[B(\vec{x}) \in \mathbb{T}]]
\end{aligned}
$$

$$
A \Rightarrow B:[A \wedge[A \in \mathbb{T}]] \rightarrow[B \wedge[B \in \mathbb{T}]]
$$

' $A \in \mathbb{T}$ ' means ' A satisfies Transfer'.

The translation \mathbb{B} from BISH to NSA

 BISH (based on BHK) NSA (based on CL)Central: algorithm and proof
$A \vee B:$
an algo yields a proof of A or of B
$A \rightarrow B$: an algo converts a proof of A to a proof of B

Central: Ω-invariance and Transfer (\mathbb{T})
$A \vee B$: There is Ω-invariant $\psi(\vec{x}, \omega)$ s.t.

$$
\begin{aligned}
\psi(\vec{x}, \omega) & \rightarrow[A(\vec{x}) \wedge[A(\vec{x}) \in \mathbb{T}]] \\
\neg \psi(\vec{x}, \omega) & \rightarrow[B(\vec{x}) \wedge[B(\vec{x}) \in \mathbb{T}]]
\end{aligned}
$$

$A \Rightarrow B:[A \wedge[A \in \mathbb{T}]] \rightarrow[B \wedge[B \in \mathbb{T}]]$
' $A \in \mathbb{T}$ ' means ' A satisfies Transfer'.
E.g. ' $(\forall n \in \mathbb{N}) \varphi(n) \in \mathbb{T}^{\prime}$ is $\left[(\forall n \in \mathbb{N}) \varphi(n) \rightarrow\left(\forall n \in{ }^{*} \mathbb{N}\right) \varphi(n)\right]$

The translation \mathbb{B} from BISH to NSA

 BISH (based on BHK) NSA (based on CL)Central: algorithm and proof
$A \vee B:$
an algo yields a proof of A or of B
$A \rightarrow B$: an algo converts a proof of A to a proof of B

Central: Ω-invariance and Transfer (\mathbb{T})
$A \vee B$: There is Ω-invariant $\psi(\vec{x}, \omega)$ s.t.

$$
\begin{aligned}
\psi(\vec{x}, \omega) & \rightarrow[A(\vec{x}) \wedge[A(\vec{x}) \in \mathbb{T}]] \\
\neg \psi(\vec{x}, \omega) & \rightarrow[B(\vec{x}) \wedge[B(\vec{x}) \in \mathbb{T}]]
\end{aligned}
$$

$A \Rightarrow B:[A \wedge[A \in \mathbb{T}]] \rightarrow[B \wedge[B \in \mathbb{T}]]$
' $A \in \mathbb{T}$ ' means ' A satisfies Transfer'.
E.g. ' $(\forall n \in \mathbb{N}) \varphi(n) \in \mathbb{T}^{\prime}$ is $\left[(\forall n \in \mathbb{N}) \varphi(n) \rightarrow\left(\forall n \in{ }^{*} \mathbb{N}\right) \varphi(n)\right]$
E.g. ' $\left(\exists n \in{ }^{*} \mathbb{N}\right) \varphi(n) \in \mathbb{T}$ ' is $\left[\left(\exists n \in{ }^{*} \mathbb{N}\right) \varphi(n) \rightarrow\left(\exists n \in \mathbb{N}_{1}\right) \varphi(n)\right]$

The translation \mathbb{B} from BISH to NSA

BISH (based on BHK)

Central: algorithm and proof
$A \vee B:$
an algo yields a proof of A or of B
$A \rightarrow B$: an algo converts a proof of A to a proof of B $\neg A: A \rightarrow(0=1)$

NSA (based on CL)
Central: Ω-invariance and Transfer (\mathbb{T})
$A \vee B$: There is Ω-invariant $\psi(\vec{x}, \omega)$ s.t.

$$
\begin{aligned}
\psi(\vec{x}, \omega) & \rightarrow[A(\vec{x}) \wedge[A(\vec{x}) \in \mathbb{T}]] \\
\neg \psi(\vec{x}, \omega) & \rightarrow[B(\vec{x}) \wedge[B(\vec{x}) \in \mathbb{T}]]
\end{aligned}
$$

$A \Rightarrow B:[A \wedge[A \in \mathbb{T}]] \rightarrow[B \wedge[B \in \mathbb{T}]]$

The translation \mathbb{B} from BISH to NSA

BISH (based on BHK)

Central: algorithm and proof
$A \vee B:$
an algo yields a proof of A or of B
$A \rightarrow B$: an algo converts a proof of A to a proof of B $\neg A: A \rightarrow(0=1)$

NSA (based on CL)
Central: Ω-invariance and Transfer (\mathbb{T})
$A \vee B$: There is Ω-invariant $\psi(\vec{x}, \omega)$ s.t.

$$
\begin{aligned}
\psi(\vec{x}, \omega) & \rightarrow[A(\vec{x}) \wedge[A(\vec{x}) \in \mathbb{T}]] \\
\neg \psi(\vec{x}, \omega) & \rightarrow[B(\vec{x}) \wedge[B(\vec{x}) \in \mathbb{T}]]
\end{aligned}
$$

$A \Rightarrow B:[A \wedge[A \in \mathbb{T}]] \rightarrow[B \wedge[B \in \mathbb{T}]]$
$\sim A: A \Rightarrow(0=1)$

The translation \mathbb{B} from BISH to NSA

BISH (based on BHK)

Central: algorithm and proof
$A \vee B:$
an algo yields a proof of A or of B
$A \rightarrow B$: an algo converts a proof of A to a proof of B $\neg A: A \rightarrow(0=1)$
$(\exists x) A(x)$: an algo computes x_{0} such that $A\left(x_{0}\right)$

NSA (based on CL)
Central: Ω-invariance and Transfer (\mathbb{T})
$A \vee B$: There is Ω-invariant $\psi(\vec{x}, \omega)$ s.t.

$$
\begin{aligned}
\psi(\vec{x}, \omega) & \rightarrow[A(\vec{x}) \wedge[A(\vec{x}) \in \mathbb{T}]] \\
\neg \psi(\vec{x}, \omega) & \rightarrow[B(\vec{x}) \wedge[B(\vec{x}) \in \mathbb{T}]]
\end{aligned}
$$

$A \Rightarrow B:[A \wedge[A \in \mathbb{T}]] \rightarrow[B \wedge[B \in \mathbb{T}]]$
$\sim A: A \Rightarrow(0=1)$

The translation \mathbb{B} from BISH to NSA BISH (based on BHK)
 NSA (based on CL)

Central: algorithm and proof
$A \vee B:$
an algo yields a proof of A or of B
$A \rightarrow B$: an algo converts a proof of A to a proof of B $\neg A: A \rightarrow(0=1)$
$(\exists x) A(x)$: an algo computes x_{0}
such that $A\left(x_{0}\right)$

Central: Ω-invariance and Transfer (\mathbb{T})
$A \vee B$: There is Ω-invariant $\psi(\vec{x}, \omega)$ s.t.

$$
\begin{aligned}
\psi(\vec{x}, \omega) & \rightarrow[A(\vec{x}) \wedge[A(\vec{x}) \in \mathbb{T}]] \\
\neg \psi(\vec{x}, \omega) & \rightarrow[B(\vec{x}) \wedge[B(\vec{x}) \in \mathbb{T}]]
\end{aligned}
$$

$$
A \Rightarrow B:[A \wedge[A \in \mathbb{T}]] \rightarrow[B \wedge[B \in \mathbb{T}]]
$$

$$
\sim A: A \Rightarrow(0=1)
$$

$(\exists x) A(x)$: "an Ω-inv. proc. computes x_{0} such that $A\left(x_{0}\right)$ "

The translation \mathbb{B} from BISH to NSA BISH (based on BHK)
 NSA (based on CL)

Central: algorithm and proof
$A \vee B:$
an algo yields a proof of A or of B
$A \rightarrow B$: an algo converts a proof of A to a proof of B $\neg A: A \rightarrow(0=1)$
$(\exists x) A(x)$: an algo computes x_{0}
such that $A\left(x_{0}\right)$

Central: Ω-invariance and Transfer (\mathbb{T})
$A \vee B$: There is Ω-invariant $\psi(\vec{x}, \omega)$ s.t.

$$
\begin{aligned}
\psi(\vec{x}, \omega) & \rightarrow[A(\vec{x}) \wedge[A(\vec{x}) \in \mathbb{T}]] \\
\neg \psi(\vec{x}, \omega) & \rightarrow[B(\vec{x}) \wedge[B(\vec{x}) \in \mathbb{T}]]
\end{aligned}
$$

$$
A \Rightarrow B:[A \wedge[A \in \mathbb{T}]] \rightarrow[B \wedge[B \in \mathbb{T}]]
$$

$$
\sim A: A \Rightarrow(0=1)
$$

$(\exists x) A(x)$: "an Ω-inv. proc. computes x_{0} such that $A\left(x_{0}\right)$ "
$\sim[(\forall n \in \mathbb{N}) A(n)]$

The translation \mathbb{B} from BISH to NSA BISH (based on BHK)
 NSA (based on CL)

Central: algorithm and proof
$A \vee B:$
an algo yields a proof of A or of B
$A \rightarrow B$: an algo converts a proof of A to a proof of B
$\neg A: A \rightarrow(0=1)$
$(\exists x) A(x)$: an algo computes x_{0}
such that $A\left(x_{0}\right)$

Central: Ω-invariance and Transfer (\mathbb{T})
$A \vee B$: There is Ω-invariant $\psi(\vec{x}, \omega)$ s.t.

$$
\begin{aligned}
\psi(\vec{x}, \omega) & \rightarrow[A(\vec{x}) \wedge[A(\vec{x}) \in \mathbb{T}]] \\
\neg \psi(\vec{x}, \omega) & \rightarrow[B(\vec{x}) \wedge[B(\vec{x}) \in \mathbb{T}]]
\end{aligned}
$$

$$
A \Rightarrow B:[A \wedge[A \in \mathbb{T}]] \rightarrow[B \wedge[B \in \mathbb{T}]]
$$

$$
\sim A: A \Rightarrow(0=1)
$$

$(\exists x) A(x)$: "an Ω-inv. proc. computes x_{0} such that $A\left(x_{0}\right)$ "
$\sim[(\forall n \in \mathbb{N}) A(n)] \equiv\left(\exists n \in \mathbb{N}_{1}\right) \sim A(n)$
WEAKER than $(\exists n \in \mathbb{N}) \sim A(n)$.

The translation \mathbb{B} from BISH to NSA BISH (based on BHK)
 NSA (based on CL)

Central: algorithm and proof
$A \vee B:$
an algo yields a proof of A or of B
$A \rightarrow B$: an algo converts a proof of A to a proof of B
$\neg A: A \rightarrow(0=1)$
$(\exists x) A(x)$: an algo computes x_{0}
such that $A\left(x_{0}\right)$
$\neg[(\forall n \in \mathbb{N}) A(n)]$ is WEAKER than $(\exists n \in \mathbb{N}) \neg A(n)$.

Central: Ω-invariance and Transfer (\mathbb{T})
$A \vee B$: There is Ω-invariant $\psi(\vec{x}, \omega)$ s.t.

$$
\begin{aligned}
\psi(\vec{x}, \omega) & \rightarrow[A(\vec{x}) \wedge[A(\vec{x}) \in \mathbb{T}]] \\
\neg \psi(\vec{x}, \omega) & \rightarrow[B(\vec{x}) \wedge[B(\vec{x}) \in \mathbb{T}]]
\end{aligned}
$$

$$
A \Rightarrow B:[A \wedge[A \in \mathbb{T}]] \rightarrow[B \wedge[B \in \mathbb{T}]]
$$

$$
\sim A: A \Rightarrow(0=1)
$$

$(\exists x) A(x)$: "an Ω-inv. proc. computes x_{0} such that $A\left(x_{0}\right)^{\prime \prime}$
$\sim[(\forall n \in \mathbb{N}) A(n)] \equiv\left(\exists n \in \mathbb{N}_{1}\right) \sim A(n)$
WEAKER than $(\exists n \in \mathbb{N}) \sim A(n)$.

The translation \mathbb{B} from BISH to NSA BISH (based on BHK)

Central: algorithm and proof
$A \vee B:$
an algo yields a proof of A or of B
$A \rightarrow B$: an algo converts a proof of A to a proof of B
$\neg A: A \rightarrow(0=1)$
$(\exists x) A(x)$: an algo computes x_{0}
such that $A\left(x_{0}\right)$

We know: If BISH $\vdash X$ then $X \nrightarrow \mathrm{LPO}$, LLPO, MP, ... (princ. rejected in BISH)

Central: Ω-invariance and Transfer (\mathbb{T})
$A \vee B$: There is Ω-invariant $\psi(\vec{x}, \omega)$ s.t.

$$
\begin{aligned}
\psi(\vec{x}, \omega) & \rightarrow[A(\vec{x}) \wedge[A(\vec{x}) \in \mathbb{T}]] \\
\neg \psi(\vec{x}, \omega) & \rightarrow[B(\vec{x}) \wedge[B(\vec{x}) \in \mathbb{T}]]
\end{aligned}
$$

$$
A \Rightarrow B:[A \wedge[A \in \mathbb{T}]] \rightarrow[B \wedge[B \in \mathbb{T}]]
$$

$$
\sim A: A \Rightarrow(0=1)
$$

$(\exists x) A(x)$: "an Ω-inv. proc. computes x_{0} such that $A\left(x_{0}\right)$ "

The translation \mathbb{B} from BISH to NSA BISH (based on BHK)

Central: algorithm and proof
$A \vee B:$
an algo yields a proof of A or of B
$A \rightarrow B$: an algo converts a proof of A to a proof of B
$\neg A: A \rightarrow(0=1)$
$(\exists x) A(x)$: an algo computes x_{0}
such that $A\left(x_{0}\right)$

We know: If $\mathrm{BISH} \vdash X$ then $X \nrightarrow \mathrm{LPO}$, We show: If $\mathbb{N S A} \vdash Y$ then $Y \nRightarrow \mathbb{Q P O}$,

Central: Ω-invariance and Transfer (\mathbb{T})
$A \vee B$: There is Ω-invariant $\psi(\vec{x}, \omega)$ s.t.

$$
\begin{aligned}
\psi(\vec{x}, \omega) & \rightarrow[A(\vec{x}) \wedge[A(\vec{x}) \in \mathbb{T}]] \\
\neg \psi(\vec{x}, \omega) & \rightarrow[B(\vec{x}) \wedge[B(\vec{x}) \in \mathbb{T}]]
\end{aligned}
$$

$$
A \Rightarrow B:[A \wedge[A \in \mathbb{T}]] \rightarrow[B \wedge[B \in \mathbb{T}]]
$$

$$
\sim A: A \Rightarrow(0=1)
$$

$(\exists x) A(x)$: "an Ω-inv. proc. computes x_{0} such that $A\left(x_{0}\right)$ "

LLPO, MP, ... (princ. rejected in BISH) \&RPD, MP, ...

The translation \mathbb{B} from BISH to NSA BISH (based on BHK)

Central: algorithm and proof
$A \vee B:$
an algo yields a proof of A or of B
$A \rightarrow B$: an algo converts a proof of A to a proof of B
$\neg A: A \rightarrow(0=1)$
$(\exists x) A(x)$: an algo computes x_{0}
such that $A\left(x_{0}\right)$

Central: Ω-invariance and Transfer (\mathbb{T})
$A \vee B$: There is Ω-invariant $\psi(\vec{x}, \omega)$ s.t.

$$
\begin{aligned}
\psi(\vec{x}, \omega) & \rightarrow[A(\vec{x}) \wedge[A(\vec{x}) \in \mathbb{T}]] \\
\neg \psi(\vec{x}, \omega) & \rightarrow[B(\vec{x}) \wedge[B(\vec{x}) \in \mathbb{T}]]
\end{aligned}
$$

$$
A \Rightarrow B:[A \wedge[A \in \mathbb{T}]] \rightarrow[B \wedge[B \in \mathbb{T}]]
$$

$$
\sim A: A \Rightarrow(0=1)
$$

$(\exists x) A(x)$: "an Ω-inv. proc. computes x_{0} such that $A\left(x_{0}\right)$ "

We know: If BISH $\vdash X$ then $X \nrightarrow$ LPO, LLPO, MP, ... (princ. rejected in BISH) We show: If $\mathbb{N S A} \vdash Y$ then $Y \not \equiv \mathbb{C P O}, \mathbb{C P P}, M P, \ldots$ (e.g. $\mathbb{C P O}$ is $\mathbb{B}(L P O)$, unprovable in NSA

Constructive Reverse Mathematics under \mathbb{B}

Constructive Reverse Mathematics under \mathbb{B}

 BISH (based on BHK)NSA (based on CL)
non-constructive/non-algorithmic

Constructive Reverse Mathematics under \mathbb{B}

 BISH (based on BHK)NSA (based on CL)

Constructive Reverse Mathematics under \mathbb{B}

 BISH (based on BHK)NSA (based on CL)

Constructive Reverse Mathematics under \mathbb{B} BISH (based on BHK)

NSA (based on CL)
non-constructive/non-algorithmic
LPO: For $P \in \Sigma_{1}, P \vee \neg P$
\downarrow
LPR: $(\forall x \in \mathbb{R})(x>0 \vee \neg(x>0))$ \downarrow
MCT: monotone convergence thm \downarrow

Constructive Reverse Mathematics under \mathbb{B} BISH (based on BHK)

NSA (based on CL)
non-constructive/non-algorithmic
LPO: For $P \in \Sigma_{1}, P \vee \neg P$
\downarrow
LPR: $(\forall x \in \mathbb{R})(x>0 \vee \neg(x>0))$
\uparrow
MCT: monotone convergence thm \downarrow
CIT: Cantor intersection thm

Constructive Reverse Mathematics under \mathbb{B} BISH (based on BHK)
non-constructive/non-algorithmic
LPO: For $P \in \Sigma_{1}, P \vee \neg P$
\downarrow
LPR: $(\forall x \in \mathbb{R})(x>0 \vee \neg(x>0))$ \downarrow
MCT: monotone convergence thm \downarrow
CIT: Cantor intersection thm

Constructive Reverse Mathematics under \mathbb{B}

BISH (based on BHK)
non-constructive/non-algorithmic
LPO: For $P \in \Sigma_{1}, P \vee \neg P$ \downarrow
LPR: $(\forall x \in \mathbb{R})(x>0 \vee \neg(x>0))$ \downarrow
MCT: monotone convergence thm \downarrow
CIT: Cantor intersection thm

NSA (based on CL) non- Ω-invariant
$\mathbb{Q P O}$: For $P \in \Sigma_{1}, P \vee \sim P$

Constructive Reverse Mathematics under \mathbb{B}

BISH (based on BHK)
non-constructive/non-algorithmic
LPO: For $P \in \Sigma_{1}, P \vee \neg P$
\downarrow
LPR: $(\forall x \in \mathbb{R})(x>0 \vee \neg(x>0))$
\downarrow
MCT: monotone convergence thm \downarrow
CIT: Cantor intersection thm

NSA (based on CL) non- Ω-invariant
$\mathbb{Q P O}$: For $P \in \Sigma_{1}, P \vee \sim P$ \Longleftrightarrow
$\mathbb{L P R}:(\forall x \in \mathbb{R})(x>0 \vee \sim(x>0))$ \Longleftrightarrow

Constructive Reverse Mathematics under \mathbb{B} BISH (based on BHK)
non-constructive/non-algorithmic
LPO: For $P \in \Sigma_{1}, P \vee \neg P$
\downarrow
LPR: $(\forall x \in \mathbb{R})(x>0 \vee \neg(x>0))$ \downarrow
MCT: monotone convergence thm \downarrow
CIT: Cantor intersection thm

NSA (based on CL) non- Ω-invariant
$\mathbb{L P O}:$ For $P \in \Sigma_{1}, P \vee \sim P$ \Longleftrightarrow
$\mathbb{L P R}:(\forall x \in \mathbb{R})(x>0 \vee \sim(x>0))$ \Longleftrightarrow

MCT: monotone convergence thm

Constructive Reverse Mathematics under \mathbb{B} BISH (based on BHK)
non-constructive/non-algorithmic
LPO: For $P \in \Sigma_{1}, P \vee \neg P$
\downarrow
LPR: $(\forall x \in \mathbb{R})(x>0 \vee \neg(x>0))$ \downarrow
MCT: monotone convergence thm \downarrow
CIT: Cantor intersection thm

NSA (based on CL)
non- Ω-invariant
$\mathbb{L P O}:$ For $P \in \Sigma_{1}, P \vee \sim P$ \Longleftrightarrow
$\mathbb{Q} \mathbb{P R}:(\forall x \in \mathbb{R})(x>0 \vee \sim(x>0))$ \Longleftrightarrow
$M C T$: monotone convergence thm
$\mathbb{C O T}:$ Cantor intersection thm

Constructive Reverse Mathematics under \mathbb{B} BISH (based on BHK)
non-constructive/non-algorithmic
LPO: For $P \in \Sigma_{1}, P \vee \neg P$ \downarrow
LPR: $(\forall x \in \mathbb{R})(x>0 \vee \neg(x>0))$ \downarrow
MCT: monotone convergence thm
\downarrow (limit computed by algo)
CIT: Cantor intersection thm

NSA (based on CL)
non- Ω-invariant
$\mathbb{L P O}:$ For $P \in \Sigma_{1}, P \vee \sim P$ \Longleftrightarrow
$\mathbb{Q} \mathbb{P R}:(\forall x \in \mathbb{R})(x>0 \vee \sim(x>0))$ \Longleftrightarrow
$M C T$: monotone convergence thm
$\mathbb{C O T}:$ Cantor intersection thm

Constructive Reverse Mathematics under \mathbb{B} BISH (based on BHK)
non-constructive/non-algorithmic
LPO: For $P \in \Sigma_{1}, P \vee \neg P$

\downarrow

LPR: $(\forall x \in \mathbb{R})(x>0 \vee \neg(x>0))$ \uparrow
MCT: monotone convergence thm
\downarrow (limit computed by algo)
CIT: Cantor intersection thm

NSA (based on CL) non- Ω-invariant
$\mathbb{L P O}:$ For $P \in \Sigma_{1}, P \vee \sim P$ \Longleftrightarrow
$\mathbb{Q} \mathbb{P R}:(\forall x \in \mathbb{R})(x>0 \vee \sim(x>0))$ \Longleftrightarrow
MCT: monotone convergence thm
(limit computed by Ω-inv. proc.)
$\mathbb{C O T}:$ Cantor intersection thm

Constructive Reverse Mathematics under \mathbb{B} BISH (based on BHK) NSA (based on CL)
non-constructive/non-algorithmic
LPO: For $P \in \Sigma_{1}, P \vee \neg P$
\uparrow
LPR: $(\forall x \in \mathbb{R})(x>0 \vee \neg(x>0))$ \downarrow
MCT: monotone convergence thm
\downarrow (limit computed by algo)
CIT: Cantor intersection thm (point in intersection computed by algp)
non- Ω-invariant
$\mathbb{L P O}:$ For $P \in \Sigma_{1}, P \vee \sim P$

$\mathbb{Q} \mathbb{P R}:(\forall x \in \mathbb{R})(x>0 \vee \sim(x>0))$

$M C T$: monotone convergence thm
(limit computed by Ω-inv. proc.)
$\mathbb{C O T}:$ Cantor intersection thm

Constructive Reverse Mathematics under \mathbb{B} BISH (based on BHK) NSA (based on CL)
non-constructive/non-algorithmic
LPO: For $P \in \Sigma_{1}, P \vee \neg P$
\uparrow
LPR: $(\forall x \in \mathbb{R})(x>0 \vee \neg(x>0))$ \downarrow
MCT: monotone convergence thm \downarrow (limit computed by algo)
CIT: Cantor intersection thm (point in intersection computed by algp)
(point in intersection computed by Ω-inv. proc.)

Constructive Reverse Mathematics under \mathbb{B} BISH (based on BHK)
non-constructive/non-algorithmic
LPO: For $P \in \Sigma_{1}, P \vee \neg P$
\uparrow
LPR: $(\forall x \in \mathbb{R})(x>0 \vee \neg(x>0))$ \downarrow
MCT: monotone convergence thm
\downarrow (limit computed by algo)
CIT: Cantor intersection thm

NSA (based on CL) non- Ω-invariant
$\mathbb{L P O}:$ For $P \in \Sigma_{1}, P \vee \sim P$

$\mathbb{Q} \mathbb{P R}:(\forall x \in \mathbb{R})(x>0 \vee \sim(x>0))$ \Longleftrightarrow
MCT: monotone convergence thm
(limit computed by Ω-inv. proc.)
$\mathbb{C O T}:$ Cantor intersection thm

Universal Transfer: For all $\varphi \in \Delta_{0}$
$(\forall n \in \mathbb{N}) \varphi(n) \rightarrow\left(\forall n \in{ }^{*} \mathbb{N}\right) \varphi(n)$

Constructive Reverse Mathematics under \mathbb{B} BISH (based on BHK)
non-constructive/non-algorithmic
LPO: For $P \in \Sigma_{1}, P \vee \neg P$
\downarrow
LPR: $(\forall x \in \mathbb{R})(x>0 \vee \neg(x>0))$ \downarrow
MCT: monotone convergence thm
\downarrow (limit computed by algo)
CIT: Cantor intersection thm

NSA does prove $(\forall \delta \in \mathbb{R})[\delta>0 \Rightarrow(x>0) \vee(x<\delta)]$.
BISH does prove $(\forall \delta \notin \mathbb{R})[\delta>0 \rightarrow(x>0) \vee(x<\delta)]$.

Constructive Reverse Mathematics under B II

Constructive Reverse Mathematics under \mathbb{B} II BISH (based on BHK)

NSA (based on CL) non-constructive/non-algorithmic

Constructive Reverse Mathematics under \mathbb{B} II BISH (based on BHK)

NSA (based on CL)

For $P, Q \in \Sigma_{1}, \neg(P \wedge Q) \rightarrow \neg P \vee \neg Q$ \downarrow

Constructive Reverse Mathematics under \mathbb{B} II BISH (based on BHK)

NSA (based on CL)

For $P, Q \in \Sigma_{1}, \neg(P \wedge Q) \rightarrow \neg P \vee \neg Q$
\downarrow
LLPR: $(\forall x \in \mathbb{R})(x \geq 0 \vee x \leq 0)$ \downarrow

Constructive Reverse Mathematics under \mathbb{B} II BISH (based on BHK) non-constructive/non-algorithmic

LLPO
For $P, Q \in \Sigma_{1}, \neg(P \wedge Q) \rightarrow \neg P \vee \neg Q$

LLPR: $(\forall x \in \mathbb{R})(x \geq 0 \vee x \leq 0)$ \downarrow
NIL
$(\forall x, y \in \mathbb{R})(x y=0 \rightarrow x=0 \vee y=0)$ \downarrow

Constructive Reverse Mathematics under \mathbb{B} II BISH (based on BHK) non-constructive/non-algorithmic

LLPO
For $P, Q \in \Sigma_{1}, \neg(P \wedge Q) \rightarrow \neg P \vee \neg Q$

LLPR: $(\forall x \in \mathbb{R})(x \geq 0 \vee x \leq 0)$ \downarrow
NIL
$(\forall x, y \in \mathbb{R})(x y=0 \rightarrow x=0 \vee y=0)$
\downarrow
IVT: Intermediate value theorem

Constructive Reverse Mathematics under \mathbb{B} II

BISH (based on BHK) non-constructive/non-algorithmic

NSA (based on CL) non- Ω-invariant

Constructive Reverse Mathematics under \mathbb{B} II

BISH (based on BHK)

 non-constructive/non-algorithmicLLPO
For $P, Q \in \Sigma_{1}, \neg(P \wedge Q) \rightarrow \neg P \vee \neg Q$ \downarrow
LLPR: $(\forall x \in \mathbb{R})(x \geq 0 \vee x \leq 0)$ \downarrow
NIL
$(\forall x, y \in \mathbb{R})(x y=0 \rightarrow x=0 \vee y=0)$ \downarrow
IVT: Intermediate value theorem

NSA (based on CL) non- Ω-invariant

For $P, Q \in \Sigma_{1}, \sim(P \wedge Q) \Rightarrow \sim P \vee \sim Q$ \Longleftrightarrow

Constructive Reverse Mathematics under \mathbb{B} II

BISH (based on BHK)

 non-constructive/non-algorithmicLLPO
For $P, Q \in \Sigma_{1}, \neg(P \wedge Q) \rightarrow \neg P \vee \neg Q$

LLPR: $(\forall x \in \mathbb{R})(x \geq 0 \vee x \leq 0)$ \downarrow
NIL
$(\forall x, y \in \mathbb{R})(x y=0 \rightarrow x=0 \vee y=0)$ \downarrow
IVT: Intermediate value theorem

NSA (based on CL) non- Ω-invariant

For $P, Q \in \Sigma_{1}, \sim(P \wedge Q) \Rightarrow \sim P \vee \sim Q$ \Longleftrightarrow
$\mathbb{L} \mathbb{P R}:(\forall x \in \mathbb{R})(x \geq 0 \vee x \leq 0)$ \Longleftrightarrow

Constructive Reverse Mathematics under \mathbb{B} II

BISH (based on BHK)

 non-constructive/non-algorithmicLLPO
For $P, Q \in \Sigma_{1}, \neg(P \wedge Q) \rightarrow \neg P \vee \neg Q$

LLPR: $(\forall x \in \mathbb{R})(x \geq 0 \vee x \leq 0)$
NIL
$(\forall x, y \in \mathbb{R})(x y=0 \rightarrow x=0 \vee y=0)$ \downarrow
IVT: Intermediate value theorem

NSA (based on CL) non- Ω-invariant

RLPO

For $P, Q \in \Sigma_{1}, \sim(P \wedge Q) \Rightarrow \sim P \vee \sim Q$气
LLPR: $(\forall x \in \mathbb{R})(x \geq 0 \vee x \leq 0)$ \Longleftrightarrow
$(\forall x, y \in \mathbb{R})(x y=0 \Rightarrow x=0 \vee y=0)$

Constructive Reverse Mathematics under \mathbb{B} II

BISH (based on BHK) non-constructive/non-algorithmic

LLPO
For $P, Q \in \Sigma_{1}, \neg(P \wedge Q) \rightarrow \neg P \vee \neg Q$

LLPR: $(\forall x \in \mathbb{R})(x \geq 0 \vee x \leq 0)$
NIL
$(\forall x, y \in \mathbb{R})(x y=0 \rightarrow x=0 \vee y=0)$ \downarrow
IVT: Intermediate value theorem

NSA (based on CL) non- Ω-invariant

RLPO

For $P, Q \in \Sigma_{1}, \sim(P \wedge Q) \Rightarrow \sim P \vee \sim Q$,
LLPR: $(\forall x \in \mathbb{R})(x \geq 0 \vee x \leq 0)$ \Longleftrightarrow

N0ㄴ

$(\forall x, y \in \mathbb{R})(x y=0 \Rightarrow x=0 \vee y=0)$

DVT: Intermediate value theorem

Constructive Reverse Mathematics under \mathbb{B} II

BISH (based on BHK)

 non-constructive/non-algorithmicLLPO
For $P, Q \in \Sigma_{1}, \neg(P \wedge Q) \rightarrow \neg P \vee \neg Q$

LLPR: $(\forall x \in \mathbb{R})(x \geq 0 \vee x \leq 0)$

NIL
$(\forall x, y \in \mathbb{R})(x y=0 \rightarrow x=0 \vee y=0)$ \downarrow
IVT: Intermediate value theorem (int. value computed by algo)

NSA (based on CL) non- Ω-invariant

ロロPO

For $P, Q \in \Sigma_{1}, \sim(P \wedge Q) \Rightarrow \sim P \vee \sim Q$ \Longleftrightarrow
$\mathbb{L} \mathbb{P R}:(\forall x \in \mathbb{R})(x \geq 0 \vee x \leq 0)$ \Longleftrightarrow
Nal
$(\forall x, y \in \mathbb{R})(x y=0 \Rightarrow x=0 \vee y=0)$

IVT: Intermediate value theorem

Constructive Reverse Mathematics under \mathbb{B} II

BISH (based on BHK)

 non-constructive/non-algorithmicLLPO
For $P, Q \in \Sigma_{1}, \neg(P \wedge Q) \rightarrow \neg P \vee \neg Q$

LLPR: $(\forall x \in \mathbb{R})(x \geq 0 \vee x \leq 0)$

NIL
$(\forall x, y \in \mathbb{R})(x y=0 \rightarrow x=0 \vee y=0)$ \downarrow
IVT: Intermediate value theorem (int. value computed by algo)

NSA (based on CL) non- Ω-invariant

RLPO

For $P, Q \in \Sigma_{1}, \sim(P \wedge Q) \Rightarrow \sim P \vee \sim Q$ \Longleftrightarrow
$\mathbb{Q} \mathbb{P R}:(\forall x \in \mathbb{R})(x \geq 0 \vee x \leq 0)$ \Longleftrightarrow
$(\forall x, y \in \mathbb{R})(x y=0 \Rightarrow x=0 \vee y=0)$

IVT: Intermediate value theorem (int. value computed by Ω-inv. proc.)

Constructive Reverse Mathematics under \mathbb{B} II

BISH (based on BHK)

 non-constructive/non-algorithmicLLPO
For $P, Q \in \Sigma_{1}, \neg(P \wedge Q) \rightarrow \neg P \vee \neg Q$

LLPR: $(\forall x \in \mathbb{R})(x \geq 0 \vee x \leq 0)$

NIL
$(\forall x, y \in \mathbb{R})(x y=0 \rightarrow x=0 \vee y=0)$
\downarrow
IVT: Intermediate value theorem \downarrow (int. value computed by algo) WKL

NSA (based on CL) non- Ω-invariant

ロロPO

For $P, Q \in \Sigma_{1}, \sim(P \wedge Q) \Rightarrow \sim P \vee \sim Q$ \Longleftrightarrow
$\mathbb{L} \mathbb{P R}:(\forall x \in \mathbb{R})(x \geq 0 \vee x \leq 0)$ \Longleftrightarrow

Nal
$(\forall x, y \in \mathbb{R})(x y=0 \Rightarrow x=0 \vee y=0)$

IVT: Intermediate value theorem (int. value computed by Ω-inv. proc.)
$\Longleftrightarrow \mathbb{W} \mathbb{K} \mathbb{L}$

Constructive Reverse Mathematics under B II

BISH (based on BHK)

 non-constructive/non-algorithmicLLPO
For $P, Q \in \Sigma_{1}, \neg(P \wedge Q) \rightarrow \neg P \vee \neg Q$

LLPR: $(\forall x \in \mathbb{R})(x \geq 0 \vee x \leq 0)$

NIL
$(\forall x, y \in \mathbb{R})(x y=0 \rightarrow x=0 \vee y=0)$

\downarrow

IVT: Intermediate value theorem \downarrow (int. value computed by algo) WKL

NSA (based on CL) non- Ω-invariant

ロロPO

For $P, Q \in \Sigma_{1}, \sim(P \wedge Q) \Rightarrow \sim P \vee \sim Q$ \Longleftrightarrow
$\mathbb{Q} \mathbb{P R}:(\forall x \in \mathbb{R})(x \geq 0 \vee x \leq 0)$ \Longleftrightarrow

N0L

$(\forall x, y \in \mathbb{R})(x y=0 \Rightarrow x=0 \vee y=0)$

IVT: Intermediate value theorem (int. value computed by Ω-inv. proc.)
$\Longleftrightarrow W \mathbb{K L} \Longleftrightarrow \vee$-Transfer

Constructive Reverse Mathematics under \mathbb{B} II

BISH (based on BHK) non-constructive/non-algorithmic

LLPO
For $P, Q \in \Sigma_{1}, \neg(P \wedge Q) \rightarrow \neg P \vee \neg Q$

LLPR: $(\forall x \in \mathbb{R})(x \geq 0 \vee x \leq 0)$
NIL
$(\forall x, y \in \mathbb{R})(x y=0 \rightarrow x=0 \vee y=0)$ \downarrow
IVT: Intermediate value theorem \downarrow (int. value computed by algo) WKL

Axioms of $\mathbb{R}: \neg(x>0 \wedge x<0)$

NSA (based on CL) non- Ω-invariant

RLPO

For $P, Q \in \Sigma_{1}, \sim(P \wedge Q) \Rightarrow \sim P \vee \sim Q$ e
LLPR: $(\forall x \in \mathbb{R})(x \geq 0 \vee x \leq 0)$ \Longleftrightarrow

NOLI
$(\forall x, y \in \mathbb{R})(x y=0 \Rightarrow x=0 \mathbb{V} y=0)$

IVT: Intermediate value theorem (int. value computed by Ω-inv. proc.)
$\Longleftrightarrow \mathbb{W} \mathbb{K} \mathbb{L} \Longleftrightarrow \vee$-Transfer

Constructive Reverse Mathematics under \mathbb{B} II

BISH (based on BHK) non-constructive/non-algorithmic

LLPO
For $P, Q \in \Sigma_{1}, \neg(P \wedge Q) \rightarrow \neg P \vee \neg Q$

LLPR: $(\forall x \in \mathbb{R})(x \geq 0 \vee x \leq 0)$
NIL
$(\forall x, y \in \mathbb{R})(x y=0 \rightarrow x=0 \vee y=0)$ \downarrow
IVT: Intermediate value theorem \downarrow (int. value computed by algo) WKL

Axioms of $\mathbb{R}: \neg(x>0 \wedge x<0)$

NSA (based on CL) non- Ω-invariant

RLPO

For $P, Q \in \Sigma_{1}, \sim(P \wedge Q) \Rightarrow \sim P \vee \sim Q$ \Longleftrightarrow
LLPR: $(\forall x \in \mathbb{R})(x \geq 0 \vee x \leq 0)$ \Longleftrightarrow

NIIL

$(\forall x, y \in \mathbb{R})(x y=0 \Rightarrow x=0 \mathbb{V} y=0)$

IVT: Intermediate value theorem (int. value computed by Ω-inv. proc.)

Axioms of $\mathbb{R}: \sim(x>0 \wedge x<0)$

Constructive Reverse Mathematics under B III

Constructive Reverse Mathematics under \mathbb{B} III BISH (based on BHK) NSA (based on CL) non-constructive/non-algorithmic

Constructive Reverse Mathematics under B III BISH (based on BHK)

NSA (based on CL)

MP: For $P \in \Sigma_{1}, \neg \neg P \rightarrow P$
\downarrow

Constructive Reverse Mathematics under B III BISH (based on BHK)

NSA (based on CL)

MP: For $P \in \Sigma_{1}, \neg \neg P \rightarrow P$

MPR: $(\forall x \in \mathbb{R})(\neg \neg(x>0) \rightarrow x>0)$ \downarrow

Constructive Reverse Mathematics under B III BISH (based on BHK) NSA (based on CL) non-constructive/non-algorithmic

MP: For $P \in \Sigma_{1}, \neg \neg P \rightarrow P$

MPR: $(\forall x \in \mathbb{R})(\neg \neg(x>0) \rightarrow x>0)$
\downarrow
EXT: the extensionality theorem

Constructive Reverse Mathematics under B III BISH (based on BHK) NSA (based on CL) non-constructive/non-algorithmic non- Ω-invariant

MP: For $P \in \Sigma_{1}, \neg \neg P \rightarrow P$

MPR: $(\forall x \in \mathbb{R})(\neg \neg(x>0) \rightarrow x>0)$
\downarrow
EXT: the extensionality theorem

Constructive Reverse Mathematics under B III BISH (based on BHK) NSA (based on CL) non-constructive/non-algorithmic non- Ω-invariant

MP: For $P \in \Sigma_{1, ~}, \neg P \rightarrow P$
MPR: $(\forall x \in \mathbb{R})(\neg \neg(x>0) \rightarrow x>0)$ \downarrow
EXT: the extensionality theorem

Constructive Reverse Mathematics under B III BISH (based on BHK) NSA (based on CL) non-constructive/non-algorithmic non- Ω-invariant

MP: For $P \in \Sigma_{1}, \neg \neg P \rightarrow P$
\downarrow
MPR:
$(\forall x \in \mathbb{R})(\neg \neg(x>0) \rightarrow x>0)$
$\operatorname{MPR}:(\forall x \in \mathbb{R})(\sim \sim(x>0) \Rightarrow x>0)$ \downarrow

MP: For $P \in \Sigma_{1}, \sim \sim P \Rightarrow P$
\Longleftrightarrow

EXT: the extensionality theorem

Constructive Reverse Mathematics under B III BISH (based on BHK) NSA (based on CL) non-constructive/non-algorithmic non- Ω-invariant

MP: For $P \in \Sigma_{1}, \neg \neg P \rightarrow P$
$\stackrel{\downarrow}{\text { MPR: }}(\forall x \in \mathbb{R})(\neg \neg(x>0) \rightarrow x>0)$ \downarrow
EXT: the extensionality theorem
$\operatorname{MPR}:(\forall x \in \mathbb{R})(\sim \sim(x>0) \Rightarrow x>0)$

EXT: the extensionality theorem

Constructive Reverse Mathematics under \mathbb{B} III BISH (based on BHK) NSA (based on CL) non-constructive/non-algorithmic non- Ω-invariant

MP: For $P \in \Sigma_{1}, \neg \neg P \rightarrow P$

MPR: $(\forall x \in \mathbb{R})(\neg \neg(x>0) \rightarrow x>0)$ \downarrow
EXT: the extensionality theorem

MP: For $P \in \Sigma_{1}, \sim \sim P \Rightarrow P$

$\mathbb{M P R}:(\forall x \in \mathbb{R})(\sim \sim(x>0) \Rightarrow x>0)$

EXT: the extensionality theorem

WLPO: For $P \in \Sigma_{1}, \neg \neg P \vee \neg P$ \downarrow

Constructive Reverse Mathematics under \mathbb{B} III BISH (based on BHK) NSA (based on CL) non-constructive/non-algorithmic non- Ω-invariant

MP: For $P \in \Sigma_{1}, \neg \neg P \rightarrow P$ \downarrow
MPR: $(\forall x \in \mathbb{R})(\neg \neg(x>0) \rightarrow x>0)$ \downarrow
EXT: the extensionality theorem

MP: For $P \in \Sigma_{1}, \sim \sim P \Rightarrow P$

$\mathbb{M P R}:(\forall x \in \mathbb{R})(\sim \sim(x>0) \Rightarrow x>0)$

EXT: the extensionality theorem

WLPO: For $P \in \Sigma_{1}, \neg \neg P \vee \neg P$
\downarrow
WLPR: $(\forall x \in \mathbb{R})[\neg \neg(x>0) \vee \neg(x>0)]$ \downarrow

Constructive Reverse Mathematics under B III

 BISH (based on BHK) NSA (based on CL) non-constructive/non-algorithmic non- Ω-invariantMP: For $P \in \Sigma_{1}, \neg \neg P \rightarrow P$ \downarrow
MPR: $(\forall x \in \mathbb{R})(\neg \neg(x>0) \rightarrow x>0)$ \downarrow
EXT: the extensionality theorem

MP: For $P \in \Sigma_{1}, \sim \sim P \Rightarrow P$

$\mathbb{M P R}:(\forall x \in \mathbb{R})(\sim \sim(x>0) \Rightarrow x>0)$ \Longleftrightarrow
EXT: the extensionality theorem

WLPO: For $P \in \Sigma_{1}, \neg \neg P \vee \neg P$
\downarrow
WLPR: $(\forall x \in \mathbb{R})[\neg \neg(x>0) \vee \neg(x>0)]$ \downarrow
DISC:
A discontinuous $2^{\mathbb{N}} \rightarrow \mathbb{N}$-function exists.

Constructive Reverse Mathematics under \mathbb{B} III

 BISH (based on BHK) NSA (based on CL) non-constructive/non-algorithmic non- Ω-invariantMP: For $P \in \Sigma_{1}, \neg \neg P \rightarrow P$ \downarrow
MPR: $(\forall x \in \mathbb{R})(\neg \neg(x>0) \rightarrow x>0)$ \downarrow
EXT: the extensionality theorem
WLPO: For $P \in \Sigma_{1}, \neg \neg P \vee \neg P$
$\operatorname{MPR}:(\forall x \in \mathbb{R})(\sim \sim(x>0) \Rightarrow x>0)$
\Longleftrightarrow
EXT: the extensionality theorem WLPD: For $P \in \Sigma_{1}, \sim \sim P \vee \sim P$

WLPR: $(\forall x \in \mathbb{R})[\neg \neg(x>0) \vee \neg(x>0)]$ \downarrow
DISC:
A discontinuous $2^{\mathbb{N}} \rightarrow \mathbb{N}$-function exists.

Constructive Reverse Mathematics under \mathbb{B} III

 BISH (based on BHK) NSA (based on CL) non-constructive/non-algorithmic non- Ω-invariantMP: For $P \in \Sigma_{1}, \neg \neg P \rightarrow P$ \downarrow
$\mathbb{M P}:$ For $P \in \Sigma_{1}, \sim \sim P \Rightarrow P$

MPR: $(\forall x \in \mathbb{R})(\neg \neg(x>0) \rightarrow x>0)$ \downarrow
EXT: the extensionality theorem
WLPO: For $P \in \Sigma_{1}, \neg \neg P \vee \neg P$
$\mathbb{M P R}:(\forall x \in \mathbb{R})(\sim \sim(x>0) \Rightarrow x>0)$ \Longleftrightarrow
EXT: the extensionality theorem WLPD: For $P \in \Sigma_{1}, \sim \sim P \vee \sim P$

DISC:
A discontinuous $2^{\mathbb{N}} \rightarrow \mathbb{N}$-function exists.

Constructive Reverse Mathematics under B III

 BISH (based on BHK) NSA (based on CL) non-constructive/non-algorithmic non- Ω-invariantMP: For $P \in \Sigma_{1}, \neg \neg P \rightarrow P$ \downarrow

MP: For $P \in \Sigma_{1}, \sim \sim P \Rightarrow P$
\Longleftrightarrow
MPR: $(\forall x \in \mathbb{R})(\neg \neg(x>0) \rightarrow x>0)$ \downarrow
EXT: the extensionality theorem
WLPO: For $P \in \Sigma_{1}, \neg \neg P \vee \neg P$
$\mathbb{M P R}:(\forall x \in \mathbb{R})(\sim \sim(x>0) \Rightarrow x>0)$
\Longleftrightarrow
EXT: the extensionality theorem
W\&PD: For $P \in \Sigma_{1}, \sim \sim P \vee \sim P$

WLPR: $\begin{gathered}(\forall x \in \mathbb{R})[\neg \neg(x>0) \vee \neg(x>0)] \\ \downarrow\end{gathered} \underline{W \mathbb{P} \mathbb{R}:(\forall x \in \mathbb{R})[\sim \sim(x>0) \vee \sim(x>0)]} \underset{ }{\Longleftrightarrow}$

DISC:
A discontinuous $2^{\mathbb{N}} \rightarrow \mathbb{N}$-function exists.

DISC: A discontinuous $2^{\mathbb{N}} \rightarrow \mathbb{N}$-function exists.

Constructive Reverse Mathematics under \mathbb{B} III

 BISH (based on BHK) NSA (based on CL) non-constructive/non-algorithmic non- Ω-invariantMP: For $P \in \Sigma_{1}, \neg \neg P \rightarrow P$ \uparrow

MP: For $P \in \Sigma_{1}, \sim \sim P \Rightarrow P$
\Longleftrightarrow
MPR: $(\forall x \in \mathbb{R})(\neg \neg(x>0) \rightarrow x>0)$ \downarrow
EXT: the extensionality theorem
WLPO: For $P \in \Sigma_{1}, \neg \neg P \vee \neg P$
$\mathbb{M P R}:(\forall x \in \mathbb{R})(\sim \sim(x>0) \Rightarrow x>0)$
\Longleftrightarrow
EXT: the extensionality theorem
W\&PD: For $P \in \Sigma_{1}, \sim \sim P \vee \sim P$

DISC:
A discontinuous $2^{\mathbb{N}} \rightarrow \mathbb{N}$-function exists.

DISC: A discontinuous $2^{\mathbb{N}} \rightarrow \mathbb{N}$-function exists.
(Four Remarks)

Ω-invariance is weaker than Recursive

Ω-invariance is weaker than Recursive

Markov's principle MP can be reformulated as If it is impossible that a TM runs forever, then it must halt.

Ω-invariance is weaker than Recursive

Markov's principle MP can be reformulated as If it is impossible that a TM runs forever, then it must halt.

As no algorithmic upper bound on the halting time of the TM is given, MP is rejected in BISH.

Ω-invariance is weaker than Recursive

Markov's principle MP can be reformulated as If it is impossible that a TM runs forever, then it must halt.

As no algorithmic upper bound on the halting time of the TM is given, MP is rejected in BISH. The notion of algorithm in BISH is not identical to 'recursive'.

Ω-invariance is weaker than Recursive

Markov's principle MP can be reformulated as If it is impossible that a TM runs forever, then it must halt.

As no algorithmic upper bound on the halting time of the TM is given, MP is rejected in BISH. The notion of algorithm in BISH is not identical to 'recursive'.

Definition ($\ln \mathbb{N S A}$)
A formula ψ is \triangle_{1} if $\psi \Longleftrightarrow(\exists n \in \mathbb{N}) \varphi_{1}(n) \Longleftrightarrow(\forall m \in \mathbb{N}) \varphi_{2}(m)$.

Ω-invariance is weaker than Recursive

Markov's principle MP can be reformulated as If it is impossible that a TM runs forever, then it must halt.

As no algorithmic upper bound on the halting time of the TM is given, MP is rejected in BISH. The notion of algorithm in BISH is not identical to 'recursive'.

Definition ($\ln \mathbb{N S A}$)

A formula ψ is Δ_{1} if $\psi \Longleftrightarrow(\exists n \in \mathbb{N}) \varphi_{1}(n) \Longleftrightarrow(\forall m \in \mathbb{N}) \varphi_{2}(m)$.

Theorem (In NSA)

Only given MP, every Δ_{1}-formula is decidable.

Ω-invariance is weaker than Recursive

Markov's principle MP can be reformulated as If it is impossible that a TM runs forever, then it must halt.

As no algorithmic upper bound on the halting time of the TM is given, MP is rejected in BISH. The notion of algorithm in BISH is not identical to 'recursive'.

Definition (\ln NSA)

A formula ψ is Δ_{1} if $\psi \Longleftrightarrow(\exists n \in \mathbb{N}) \varphi_{1}(n) \Longleftrightarrow(\forall m \in \mathbb{N}) \varphi_{2}(m)$.

Theorem (In NSA)

Only given MP, every Δ_{1}-formula is decidable.
But MP is not available in NSA!

Fannying about: FAN_{Δ} vs WKL

FAN_{Δ} (Every detachable bar is uniform) is accepted in INT.

Fannying about: FAN_{Δ} vs WKL

FAN_{Δ} (Every detachable bar is uniform) is accepted in INT.
WKL (Every infinite tree $T \subset 2^{\mathbb{N}}$ has a path)

Fannying about: FAN_{Δ} vs WKL

FAN_{Δ} (Every detachable bar is uniform) is accepted in INT.
WKL (Every infinite tree $T \subset 2^{\mathbb{N}}$ has a path) is the classical contraposition of FAN_{Δ} and rejected in INT.

Fannying about: FAN_{Δ} vs WKL

FAN_{Δ} (Every detachable bar is uniform) is accepted in INT.
WKL (Every infinite tree $T \subset 2^{\mathbb{N}}$ has a path) is the classical contraposition of FAN_{Δ} and rejected in INT.

In BISH, we have WKL $\rightarrow \mathrm{FAN}_{\Delta}$, and both are rejected.

Fannying about: FAN_{Δ} vs WKL

FAN_{Δ} (Every detachable bar is uniform) is accepted in INT.
WKL (Every infinite tree $T \subset 2^{\mathbb{N}}$ has a path) is the classical contraposition of FAN_{Δ} and rejected in INT.

In BISH, we have WKL $\rightarrow \mathrm{FAN}_{\Delta}$, and both are rejected.
What happens in NSA?

Fannying about: FAN_{Δ} vs WKL

FAN_{Δ} (Every detachable bar is uniform) is accepted in INT.
WKL (Every infinite tree $T \subset 2^{\mathbb{N}}$ has a path) is the classical contraposition of FAN_{Δ} and rejected in INT.

In BISH, we have WKL $\rightarrow \mathrm{FAN}_{\Delta}$, and both are rejected.
What happens in NSA?
$\mathbb{W} \mathbb{K} \mathbb{L}(\forall n \in \mathbb{N})\left(\exists \alpha \in 2^{\mathbb{N}}\right)(\bar{\alpha} n \in T) \Rightarrow\left(\exists \alpha \in 2^{\mathbb{N}}\right)(\forall n \in \mathbb{N})(\bar{\alpha} n \in T)$

Fannying about: FAN_{Δ} vs WKL

FAN_{Δ} (Every detachable bar is uniform) is accepted in INT.
WKL (Every infinite tree $T \subset 2^{\mathbb{N}}$ has a path) is the classical contraposition of FAN_{Δ} and rejected in INT.

In BISH, we have WKL $\rightarrow \mathrm{FAN}_{\Delta}$, and both are rejected.
What happens in NSA?
$\mathbb{W} \mathbb{K} \mathbb{L}(\forall n \in \mathbb{N})\left(\exists \alpha \in 2^{\mathbb{N}}\right)(\bar{\alpha} n \in T) \Rightarrow\left(\exists \alpha \in 2^{\mathbb{N}}\right)(\forall n \in \mathbb{N})(\bar{\alpha} n \in T)$
$\approx \mathrm{If}$ the trees T and ${ }^{*} T$ are (hyper)infinite, they share a path.

Fannying about: FAN_{Δ} vs WKL

FAN_{Δ} (Every detachable bar is uniform) is accepted in INT.
WKL (Every infinite tree $T \subset 2^{\mathbb{N}}$ has a path) is the classical contraposition of FAN_{Δ} and rejected in INT.

In BISH, we have WKL $\rightarrow \mathrm{FAN}_{\Delta}$, and both are rejected.
What happens in NSA?
$\mathbb{W} \mathbb{K} \mathbb{L}(\forall n \in \mathbb{N})\left(\exists \alpha \in 2^{\mathbb{N}}\right)(\bar{\alpha} n \in T) \Rightarrow\left(\exists \alpha \in 2^{\mathbb{N}}\right)(\forall n \in \mathbb{N})(\bar{\alpha} n \in T)$
\approx If the trees T and ${ }^{*} T$ are (hyper)infinite, they share a path.
$\operatorname{FAN}_{\Delta}$
$\left(\forall \alpha \in 2^{\mathbb{N}}\right)(\exists n \in \mathbb{N})(\bar{\alpha} n \in B) \Rightarrow(\exists k \in \mathbb{N})\left(\forall \alpha \in 2^{\mathbb{N}}\right)(\exists n \leq k)(\bar{\alpha} n \in B)$

Fannying about: FAN_{Δ} vs WKL

FAN_{Δ} (Every detachable bar is uniform) is accepted in INT.
WKL (Every infinite tree $T \subset 2^{\mathbb{N}}$ has a path) is the classical contraposition of FAN_{Δ} and rejected in INT.

In BISH, we have WKL $\rightarrow \mathrm{FAN}_{\Delta}$, and both are rejected.
What happens in NSA?
$\mathbb{W} \mathbb{K} \mathbb{L}(\forall n \in \mathbb{N})\left(\exists \alpha \in 2^{\mathbb{N}}\right)(\bar{\alpha} n \in T) \Rightarrow\left(\exists \alpha \in 2^{\mathbb{N}}\right)(\forall n \in \mathbb{N})(\bar{\alpha} n \in T)$
\approx If the trees T and ${ }^{*} T$ are (hyper)infinite, they share a path.
$\operatorname{FAN}_{\Delta}$
$\left(\forall \alpha \in 2^{\mathbb{N}}\right)(\exists n \in \mathbb{N})(\bar{\alpha} n \in B) \Rightarrow(\exists k \in \mathbb{N})\left(\forall \alpha \in 2^{\mathbb{N}}\right)(\exists n \leq k)(\bar{\alpha} n \in B)$
\approx If a tree T is infinite, it has a path (${ }^{*} T$ can be hyperfinite).

Fannying about: FAN_{Δ} vs WKL

FAN_{Δ} (Every detachable bar is uniform) is accepted in INT.
WKL (Every infinite tree $T \subset 2^{\mathbb{N}}$ has a path) is the classical contraposition of FAN_{Δ} and rejected in INT.

In BISH, we have WKL $\rightarrow \mathrm{FAN}_{\Delta}$, and both are rejected.
What happens in NSA?
$\mathbb{W} \mathbb{K} \mathbb{L}(\forall n \in \mathbb{N})\left(\exists \alpha \in 2^{\mathbb{N}}\right)(\bar{\alpha} n \in T) \Rightarrow\left(\exists \alpha \in 2^{\mathbb{N}}\right)(\forall n \in \mathbb{N})(\bar{\alpha} n \in T)$
\approx If the trees T and ${ }^{*} T$ are (hyper)infinite, they share a path.
$\operatorname{FAN}_{\Delta}$
$\left(\forall \alpha \in 2^{\mathbb{N}}\right)(\exists n \in \mathbb{N})(\bar{\alpha} n \in B) \Rightarrow(\exists k \in \mathbb{N})\left(\forall \alpha \in 2^{\mathbb{N}}\right)(\exists n \leq k)(\bar{\alpha} n \in B)$
\approx If a tree T is infinite, it has a path (${ }^{*} T$ can be hyperfinite).
In $\mathbb{N S A}$, we have $\mathbb{W} \mathbb{K L} \Rightarrow \mathbb{F A N}_{\Delta}$.

A note on Coding and Assymetry

Recall that ' $A \in \mathbb{T}$ ' means ' A satisfies Transfer'.

A note on Coding and Assymetry

Recall that ' $A \in \mathbb{T}$ ' means ' A satisfies Transfer'.
E.g. ' $(\forall n \in \mathbb{N}) \varphi(n) \in \mathbb{T}^{\prime}$ ' is $[(\forall n \in \mathbb{N}) \varphi(n) \rightarrow(\forall n \in * \mathbb{N}) \varphi(n)]$

A note on Coding and Assymetry

Recall that ' $A \in \mathbb{T}$ ' means ' A satisfies Transfer'.

$$
\begin{aligned}
& \text { E.g. ' }(\forall n \in \mathbb{N}) \varphi(n) \in \mathbb{T}^{\prime} \text { is }[(\forall n \in \mathbb{N}) \varphi(n) \rightarrow(\forall n \in * \mathbb{N}) \varphi(n)] \\
& \text { E.g. ' }\left(\exists n \in{ }^{*} \mathbb{N}\right) \varphi(n) \in \mathbb{T}^{\prime} \text { is }\left[\left(\exists n \in{ }^{*} \mathbb{N}\right) \varphi(n) \rightarrow\left(\exists n \in \mathbb{N}_{1}\right) \varphi(n)\right]
\end{aligned}
$$

A note on Coding and Assymetry

Recall that ' $A \in \mathbb{T}$ ' means ' A satisfies Transfer'.
E.g. ' $(\forall n \in \mathbb{N}) \varphi(n) \in \mathbb{T}^{\prime}$ is $\left[(\forall n \in \mathbb{N}) \varphi(n) \rightarrow\left(\forall n \in{ }^{*} \mathbb{N}\right) \varphi(n)\right]$
E.g. ' $\left(\exists n \in{ }^{*} \mathbb{N}\right) \varphi(n) \in \mathbb{T}^{\prime}$ is $\left[\left(\exists n \in{ }^{*} \mathbb{N}\right) \varphi(n) \rightarrow\left(\exists n \in \mathbb{N}_{1}\right) \varphi(n)\right]$

Transfer is clearly asymmetric.

A note on Coding and Assymetry

Recall that ' $A \in \mathbb{T}$ ' means ' A satisfies Transfer'.
E.g. ' $(\forall n \in \mathbb{N}) \varphi(n) \in \mathbb{T}^{\prime}$ ' is $\left[(\forall n \in \mathbb{N}) \varphi(n) \rightarrow\left(\forall n \in{ }^{*} \mathbb{N}\right) \varphi(n)\right]$
E.g. ' $\left(\exists n \in{ }^{*} \mathbb{N}\right) \varphi(n) \in \mathbb{T}^{\prime}$ is $\left[\left(\exists n \in{ }^{*} \mathbb{N}\right) \varphi(n) \rightarrow\left(\exists n \in \mathbb{N}_{1}\right) \varphi(n)\right]$

Transfer is clearly asymmetric.
First, to make hypernegation ' \sim ' work like intuitionistic negation.

A note on Coding and Assymetry

Recall that ' $A \in \mathbb{T}$ ' means ' A satisfies Transfer'.
E.g. ' $(\forall n \in \mathbb{N}) \varphi(n) \in \mathbb{T}^{\prime}$ ' is $\left[(\forall n \in \mathbb{N}) \varphi(n) \rightarrow\left(\forall n \in{ }^{*} \mathbb{N}\right) \varphi(n)\right]$
E.g. ' $\left(\exists n \in{ }^{*} \mathbb{N}\right) \varphi(n) \in \mathbb{T}^{\prime}$ is $\left[(\exists n \in * \mathbb{N}) \varphi(n) \rightarrow\left(\exists n \in \mathbb{N}_{1}\right) \varphi(n)\right]$

Transfer is clearly asymmetric.
First, to make hypernegation ' \sim ' work like intuitionistic negation.
Secondly, for fundamental reasons:

A note on Coding and Assymetry

Recall that ' $A \in \mathbb{T}$ ' means ' A satisfies Transfer'.
E.g. ' $(\forall n \in \mathbb{N}) \varphi(n) \in \mathbb{T}^{\prime}$ is $\left[(\forall n \in \mathbb{N}) \varphi(n) \rightarrow\left(\forall n \in{ }^{*} \mathbb{N}\right) \varphi(n)\right]$
E.g. ' $\left(\exists n \in{ }^{*} \mathbb{N}\right) \varphi(n) \in \mathbb{T}^{\prime}$ is $\left[\left(\exists n \in{ }^{*} \mathbb{N}\right) \varphi(n) \rightarrow\left(\exists n \in \mathbb{N}_{1}\right) \varphi(n)\right]$

Transfer is clearly asymmetric.
First, to make hypernegation ' \sim ' work like intuitionistic negation.
Secondly, for fundamental reasons:
In ' $\left(\exists n_{0} \in{ }^{*} \mathbb{N}\right) \varphi\left(n_{0}\right)$ ', the number n_{0} could be a code for some $f: \mathbb{N} \rightarrow \mathbb{N}$ (Keisler).

A note on Coding and Assymetry

Recall that ' $A \in \mathbb{T}$ ' means ' A satisfies Transfer'.
E.g. ' $(\forall n \in \mathbb{N}) \varphi(n) \in \mathbb{T}^{\prime}$ is $\left[(\forall n \in \mathbb{N}) \varphi(n) \rightarrow\left(\forall n \in{ }^{*} \mathbb{N}\right) \varphi(n)\right]$
E.g. ' $\left(\exists n \in{ }^{*} \mathbb{N}\right) \varphi(n) \in \mathbb{T}^{\prime}$ is $\left[(\exists n \in * \mathbb{N}) \varphi(n) \rightarrow\left(\exists n \in \mathbb{N}_{1}\right) \varphi(n)\right]$

Transfer is clearly asymmetric.
First, to make hypernegation ' \sim ' work like intuitionistic negation.
Secondly, for fundamental reasons:
In ' $\left(\exists n_{0} \in{ }^{*} \mathbb{N}\right) \varphi\left(n_{0}\right)$ ', the number n_{0} could be a code for some $f: \mathbb{N} \rightarrow \mathbb{N}$ (Keisler). If ' $\left(\exists n_{0} \in{ }^{*} \mathbb{N}\right) \varphi\left(n_{0}\right)$ ' implies ' $\left(\exists n_{1} \in \mathbb{N}\right) \varphi\left(n_{1}\right)$ ', then f has a finite code $n_{1} \in \mathbb{N}$, making its graph Δ_{0}.

Constructive Reverse Mathematics under B IV

Constructive Reverse Mathematics under B IV

Same for WMP, FAN ${ }_{\Delta}, B D-N$, and MPV .

Constructive Reverse Mathematics under B IV

Same for WMP, FAN ${ }_{\Delta}, B D-N$, and $M P \vee$.
Same for 'mixed' theorems:

Constructive Reverse Mathematics under B IV

Same for WMP, FAN ${ }_{\Delta}, B D-N$, and $M P \vee$.
Same for 'mixed' theorems:

BISH (based on BHK)

Constructive Reverse Mathematics under B IV

Same for WMP, FAN ${ }_{\Delta}, B D-N$, and $M P \vee$. Same for 'mixed' theorems:

BISH (based on BHK)

Constructive Reverse Mathematics under B IV

Same for WMP, FAN ${ }_{\Delta}, B D-N$, and $M P \vee$. Same for 'mixed' theorems:

BISH (based on BHK)
LPO $\leftrightarrow \mathrm{MP}+\mathrm{WLPO}$
$\mathrm{MP} \leftrightarrow \mathrm{WMP}+\mathrm{MP}^{\vee}$

Constructive Reverse Mathematics under B IV

Same for WMP, FAN ${ }_{\Delta}, B D-N$, and $M P \vee$.
Same for 'mixed' theorems:

$$
\begin{aligned}
& \mathrm{BISH} \text { (based on BHK) } \\
& \mathrm{LPO} \leftrightarrow \mathrm{MP}+\mathrm{WLPO} \\
& \mathrm{MP} \leftrightarrow \mathrm{WMP}+\mathrm{MP}^{\vee} \\
& \mathrm{WLPO} \rightarrow \mathrm{LLPO}
\end{aligned}
$$

Constructive Reverse Mathematics under B IV

Same for WMP, FAN ${ }_{\Delta}, B D-N$, and $M P \vee$. Same for 'mixed' theorems:

$$
\begin{aligned}
& \mathrm{BISH} \text { (based on } \mathrm{BHK} \text {) } \\
& \mathrm{LPO} \leftrightarrow \mathrm{MP}+\mathrm{WLPO} \\
& \mathrm{MP} \leftrightarrow \mathrm{WMP}+\mathrm{MP}^{\vee} \\
& \mathrm{WLPO} \rightarrow \mathrm{LLPO} \\
& \mathrm{LLPO} \rightarrow \mathrm{MP}^{\vee}
\end{aligned}
$$

Constructive Reverse Mathematics under B IV

Same for WMP, FAN ${ }_{\Delta}, B D-N$, and $M P \vee$.
Same for 'mixed' theorems:

$$
\begin{aligned}
& \mathrm{BISH} \text { (based on } \mathrm{BHK} \text {) } \\
& \mathrm{LPO} \leftrightarrow \mathrm{MP}+\mathrm{WLPO} \\
& \mathrm{MP} \leftrightarrow \mathrm{WMP}+\mathrm{MP}^{\vee} \\
& \mathrm{WLPO} \rightarrow \mathrm{LLPO} \\
& \mathrm{LLPO} \rightarrow \mathrm{MP}^{\vee} \\
& \mathrm{LPO} \rightarrow \mathrm{BD}-\mathrm{N}
\end{aligned}
$$

Constructive Reverse Mathematics under B IV

Same for WMP, FAN ${ }_{\Delta}, B D-N$, and $M P \vee$.
Same for 'mixed' theorems:

$$
\begin{aligned}
& \text { BISH (based on BHK) } \\
& \mathrm{LPO} \leftrightarrow \mathrm{MP}+\mathrm{WLPO}^{2} \\
& \mathrm{MP} \leftrightarrow \mathrm{WMP}+\mathrm{MP}^{\vee} \\
& \mathrm{WLPO} \rightarrow \mathrm{LLPO} \\
& \mathrm{LLPO} \rightarrow \mathrm{MP}^{\vee} \\
& \mathrm{LPO} \rightarrow \mathrm{BD}^{2} \\
& \mathrm{LLPO} \rightarrow \mathrm{FAN}_{\Delta}
\end{aligned}
$$

Constructive Reverse Mathematics under B IV

Same for WMP, FAN ${ }_{\Delta}, B D-N$, and $M P \vee$.
Same for 'mixed' theorems:

$$
\begin{aligned}
& \mathrm{BISH}(\text { based on } \mathrm{BHK}) \\
& \mathrm{LPO} \leftrightarrow \mathrm{MP}+\mathrm{WLPO}^{2} \\
& \mathrm{MP} \leftrightarrow \mathrm{WMP}+\mathrm{MP}^{\vee} \\
& \mathrm{WLPO} \rightarrow \mathrm{LLPO} \\
& \mathrm{LLPO} \rightarrow \mathrm{MP}^{\vee} \\
& \mathrm{LPO} \rightarrow \mathrm{BD}^{2} \mathrm{~N} \\
& \mathrm{LLPO} \rightarrow \mathrm{FAN}_{\Delta} \\
& \mathrm{LLPO} \leftrightarrow \mathrm{WKL}^{2}
\end{aligned}
$$

Constructive Reverse Mathematics under B IV

Same for WMP, FAN ${ }_{\Delta}, B D-N$, and $M P \vee$.
Same for 'mixed' theorems:

$$
\begin{aligned}
& \text { BISH (based on BHK) } \\
& \text { LPO } \leftrightarrow \mathrm{MP}+\mathrm{WLPO} \\
& \mathrm{MP} \leftrightarrow \mathrm{WMP}+\mathrm{MP} \\
& \mathrm{WLPO} \rightarrow \mathrm{LLPO} \\
& \mathrm{LLPO} \rightarrow \mathrm{MP} \\
& \mathrm{LPO} \rightarrow \mathrm{BD}-\mathrm{N} \\
& \mathrm{LLPO} \rightarrow \mathrm{FAN} \\
& \mathrm{LLPO} \leftrightarrow \mathrm{WKL}
\end{aligned}
$$

NSA (based on CL)

$$
\begin{aligned}
& \mathbb{L P O} \Longleftrightarrow M P+W \mathbb{P} D \\
& M P \Longleftrightarrow W M P+M P^{V} \\
& \text { WLPD } \Rightarrow \mathbb{L} \mathbb{L P O} \\
& \mathbb{L L P O} \Rightarrow \mathrm{MP}^{\vee} \\
& \mathbb{L P O} \Rightarrow \mathbb{B D}-\mathbb{N} \\
& \mathbb{L L P O} \Rightarrow \mathbb{F A N}_{\Delta} \\
& \text { セLPD } \Longleftrightarrow \text { WKL }
\end{aligned}
$$

Conclusion: NSA \approx BISH

Conclusion: NSA $\approx \mathrm{BISH}$

If $\mathrm{BISH} \vdash X$ then $X \nrightarrow$ LPO, LLPO, MP, \ldots (princ. rejected in BISH)

Conclusion: NSA $\approx \mathrm{BISH}$

If $\mathrm{BISH} \vdash X$ then $X \nrightarrow$ LPO, LLPO, MP, \ldots (princ. rejected in BISH) If $\mathbb{N S A} \vdash Y$ then $Y \nRightarrow \mathbb{Q P O}, \mathbb{Q P D}, M P, \ldots$ (not provable in $\mathbb{N S A}$)

Reuniting the antipodes (Palmgren \& Moerdijk).

Conclusion: NSA $\approx \mathrm{BISH}$

If $\mathrm{BISH} \vdash X$ then $X \nrightarrow$ LPO, LLPO, MP, \ldots (princ. rejected in BISH) If $\mathbb{N S A} \vdash Y$ then $Y \nRightarrow \mathbb{Q P O}, \mathbb{Q P D}, M P, \ldots$ (not provable in $\mathbb{N S A}$)

> Reuniting the antipodes (Palmgren \& Moerdijk).

Reverse-engineering Reverse Mathematics (Fuchino-sensei)

Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.

Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.
Can Ω-invariance help capture e.g. Type Theory?

Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.
Can Ω-invariance help capture e.g. Type Theory?
Homotopy:

Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.
Can Ω-invariance help capture e.g. Type Theory?
Homotopy: continuous transformation h_{t} of f to $g(t \in[0,1])$.

Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.
Can Ω-invariance help capture e.g. Type Theory?
Homotopy: continuous transformation h_{t} of f to $g(t \in[0,1])$.

Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.
Can Ω-invariance help capture e.g. Type Theory?
Homotopy:

Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.
Can Ω-invariance help capture e.g. Type Theory?
Homotopy:

Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.
Can Ω-invariance help capture e.g. Type Theory?
Homotopy:

Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.
Can Ω-invariance help capture e.g. Type Theory?
Homotopy:

Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.
Can Ω-invariance help capture e.g. Type Theory?
Homotopy:

Independent of the choice of ω

Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.
Can Ω-invariance help capture e.g. Type Theory?
Homotopy: $\approx \Omega$-invariant broken-line transformation $h_{\omega, t}$ of f to g.

Independent of the choice of ω

Philosophy of Physics

Philosophy of Physics

Why is Mathematics in Physics so constructive/computable?

Philosophy of Physics

Why is Mathematics in Physics so constructive/computable?
Indeed, most of Physics can be formalized in BISH (e.g. Gleason's theorem).

Philosophy of Physics

Why is Mathematics in Physics so constructive/computable?
Indeed, most of Physics can be formalized in BISH (e.g. Gleason's theorem).

Yet, in Physics, an informal version of NSA is used to date.

Philosophy of Physics

Why is Mathematics in Physics so constructive/computable?
Indeed, most of Physics can be formalized in BISH (e.g. Gleason's theorem).

Yet, in Physics, an informal version of NSA is used to date. (Weierstraß' notorious ' $\varepsilon-\delta$ ' method was never adopted, neither was BISH).

Philosophy of Physics

Why is Mathematics in Physics so constructive/computable?
Indeed, most of Physics can be formalized in BISH (e.g. Gleason's theorem).

Yet, in Physics, an informal version of NSA is used to date. (Weierstraß' notorious ' $\varepsilon-\delta$ ' method was never adopted, neither was BISH).

Now, in Physics, the end result of a calculation should have physical meaning (modeling of reality).

Philosophy of Physics

Why is Mathematics in Physics so constructive/computable?
Indeed, most of Physics can be formalized in BISH (e.g. Gleason's theorem).

Yet, in Physics, an informal version of NSA is used to date. (Weierstraß' notorious ' $\varepsilon-\delta$ ' method was never adopted, neither was BISH).

Now, in Physics, the end result of a calculation should have physical meaning (modeling of reality).

A mathematical result with physical meaning will not depend on the choice of infinite number/infinitesimal used, i.e. it is
Ω-invariant. (Alain Connes)

Philosophy of Mathematics: Whither Structuralism?

Philosophy of Mathematics: Whither Structuralism?

Structuralism \approx Mathematics is about a single structure.

Philosophy of Mathematics: Whither Structuralism?

Structuralism \approx Mathematics is about a single structure.
E.g. first-order arithmetic is about (models isomorphic to) the standard model \mathbb{N}.

Philosophy of Mathematics: Whither Structuralism?

Structuralism \approx Mathematics is about a single structure.
E.g. first-order arithmetic is about (models isomorphic to) the standard model \mathbb{N}.

Problem: How to exclude the nonstandard models of arithmetic? (Second-order?, Tennenbaum's Theorem?)

Philosophy of Mathematics: Whither Structuralism?

Structuralism \approx Mathematics is about a single structure.
E.g. first-order arithmetic is about (models isomorphic to) the standard model \mathbb{N}.

Problem: How to exclude the nonstandard models of arithmetic? (Second-order?, Tennenbaum's Theorem?)

When life gives you lemons... you make Ω-invariance:

Philosophy of Mathematics: Whither Structuralism?

Structuralism \approx Mathematics is about a single structure.
E.g. first-order arithmetic is about (models isomorphic to) the standard model \mathbb{N}.

Problem: How to exclude the nonstandard models of arithmetic? (Second-order?, Tennenbaum's Theorem?)

When life gives you lemons... you make Ω-invariance:
Arithmetic is about a computationally robust variety of structures.

Philosophy of Mathematics: Whither Structuralism?

Structuralism \approx Mathematics is about a single structure.
E.g. first-order arithmetic is about (models isomorphic to) the standard model \mathbb{N}.

Problem: How to exclude the nonstandard models of arithmetic? (Second-order?, Tennenbaum's Theorem?)

When life gives you lemons... you make Ω-invariance:
Arithmetic is about a computationally robust variety of structures.
Despite Tennenbaum's Theorem, one can define computability/constructivity via Ω-invariance in each nonstandard model of arithmetic.

Final Thoughts

Final Thoughts

And what are these [infinitesimals]? [...] They are neither finite
Quantities nor Quantities infinitely small, nor yet nothing. May we not call them the ghosts of departed quantities?

George Berkeley, The Analyst

Final Thoughts

And what are these [infinitesimals]? [...] They are neither finite
Quantities nor Quantities infinitely small, nor yet nothing. May we not call them the ghosts of departed quantities? George Berkeley, The Analyst
...there are good reasons to believe that Nonstandard Analysis, in some version or other, will be the analysis of the future.

Final Thoughts

And what are these [infinitesimals]? [...] They are neither finite
Quantities nor Quantities infinitely small, nor yet nothing. May we not call them the ghosts of departed quantities? George Berkeley, The Analyst
...there are good reasons to believe that Nonstandard Analysis, in some version or other, will be the analysis of the future. Kurt Gödel

We thank the John Templeton Foundation for its generous support!

Final Thoughts

And what are these [infinitesimals]? [...] They are neither finite
Quantities nor Quantities infinitely small, nor yet nothing. May we not call them the ghosts of departed quantities? George Berkeley, The Analyst
...there are good reasons to believe that Nonstandard Analysis, in some version or other, will be the analysis of the future. Kurt Gödel

We thank the John Templeton Foundation for its generous support!

Thank you for your attention!

Final Thoughts

And what are these [infinitesimals]? [...] They are neither finite
Quantities nor Quantities infinitely small, nor yet nothing. May we not call them the ghosts of departed quantities? George Berkeley, The Analyst
...there are good reasons to believe that Nonstandard Analysis, in some version or other, will be the analysis of the future. Kurt Gödel

We thank the John Templeton Foundation for its generous support!

Thank you for your attention! Any questions?

Take-home message

In Nonstandard Analysis, an algorithm is any object whose definition is independent of the choice of infinitesimal (Ω-invariance).

More technically, we define a translation between Constructive Analysis (BISH) and Nonstandard Analysis (NSA):
(Proof and Algorithm) in BISH $=$ (Transfer and Ω-invariance) in NSA
Most results from CRM (= RM based on BISH) translate to NSA via a natural translation \mathbb{B}.

