
Nonstandard Analysis: a new way to compute

Sam Sanders1

Model Theory and Proof Theory of Arithmetic

A Memorial Conference in Honour of H. Kotlarski and Z. Ratajczyk

July 25, 2012

1This research is generously supported by the John Templeton Foundation.



Take-home message

In Nonstandard Analysis, an algorithm is any object whose definition is

independent of the choice of infinitesimal (Ω-invariance).

More technically, we define a translation between Constructive
Analysis (BISH) and Nonstandard Analysis (NSA):

(Proof and Algorithm) in BISH = (Transfer and Ω-invariance) in NSA

Most results from CRM (= RM based on BISH) translate to NSA under

a natural translation B.



Take-home message

In Nonstandard Analysis, an algorithm is any object whose definition is

independent of the choice of infinitesimal (Ω-invariance).

More technically, we define a translation between Constructive
Analysis (BISH) and Nonstandard Analysis (NSA):

(Proof and Algorithm) in BISH = (Transfer and Ω-invariance) in NSA

Most results from CRM (= RM based on BISH) translate to NSA under

a natural translation B.



Take-home message

In Nonstandard Analysis, an algorithm is any object whose definition is

independent of the choice of infinitesimal (Ω-invariance).

More technically, we define a translation between Constructive
Analysis (BISH) and Nonstandard Analysis (NSA):

(Proof and Algorithm) in BISH = (Transfer and Ω-invariance) in NSA

Most results from CRM (= RM based on BISH) translate to NSA under

a natural translation B.



Take-home message

In Nonstandard Analysis, an algorithm is any object whose definition is

independent of the choice of infinitesimal (Ω-invariance).

More technically, we define a translation between Constructive
Analysis (BISH) and Nonstandard Analysis (NSA):

(Proof and Algorithm) in BISH = (Transfer and Ω-invariance) in NSA

Most results from CRM (= RM based on BISH) translate to NSA under

a natural translation B.



Take-home message

In Nonstandard Analysis, an algorithm is any object whose definition is

independent of the choice of infinitesimal (Ω-invariance).

More technically, we define a translation between Constructive
Analysis (BISH) and Nonstandard Analysis (NSA):

(Proof and Algorithm) in BISH = (Transfer and Ω-invariance) in NSA

Most results from CRM (= RM based on BISH) translate to NSA under

a natural translation B.



Son of a. . .

INT

CLASS RUSS

BISH

LEM (P ∨ ¬P)

Classical Math. ≈

(proof by contradiction)

≈Brouwer’s Intuitionistic Math.

MP
(¬¬P → P)

CPF

CONT

FAN CONT′



Son of a. . .

INT

CLASS RUSS

BISH

≈Math. programmable on TM

LEM (P ∨ ¬P)

Classical Math. ≈

(proof by contradiction)

≈Brouwer’s Intuitionistic Math.

MP
(¬¬P → P)

CPF

CONT

FAN CONT′



Son of a. . .

INT

CLASS RUSS

BISH

≈Math. programmable on TM
LEM (P ∨ ¬P)

Classical Math. ≈

(proof by contradiction)

≈Brouwer’s Intuitionistic Math.

MP
(¬¬P → P)

CPF

CONT

FAN CONT′



Son of a. . .

INT

CLASS RUSS

BISH

≈Math. programmable on TM
LEM (P ∨ ¬P)

Classical Math. ≈

(proof by contradiction)

≈Brouwer’s Intuitionistic Math.

MP
(¬¬P → P)

CPF

CONT

FAN CONT′



Son of a. . .

INT

CLASS RUSS

BISH

≈Math. programmable on TM
LEM (P ∨ ¬P)

Classical Math. ≈

(proof by contradiction)

≈Brouwer’s Intuitionistic Math.

MP
(¬¬P → P)

CPF

CONT

FAN CONT′



Son of a. . .

INT

CLASS RUSS

BISH

≈Math. programmable on TM
LEM (P ∨ ¬P)

Classical Math. ≈

(proof by contradiction)

≈Brouwer’s Intuitionistic Math.

MP
(¬¬P → P)

CPF

CONT

FAN CONT′



Son of a. . .

INT

CLASS RUSS

BISH

≈Math. programmable on TM
LEM (P ∨ ¬P)

Classical Math. ≈

(proof by contradiction)

≈Brouwer’s Intuitionistic Math.

MP
(¬¬P → P)

CPF

CONT

FAN CONT′



Son of a. . .

INT

CLASS RUSS

BISH

≈Math. programmable on TM
LEM (P ∨ ¬P)

Classical Math. ≈

(proof by contradiction)

≈Brouwer’s Intuitionistic Math.

MP
(¬¬P → P)

CPF

CONT

FAN CONT′



Son of a. . .

INT

CLASS RUSS

BISH

≈Math. programmable on TM
LEM (P ∨ ¬P)

Classical Math. ≈

(proof by contradiction)

≈Brouwer’s Intuitionistic Math.

MP
(¬¬P → P)

CPF

CONT

FAN

CONT′



Son of a. . .

INT

CLASS RUSS

BISH

≈Math. programmable on TM
LEM (P ∨ ¬P)

Classical Math. ≈

(proof by contradiction)

≈Brouwer’s Intuitionistic Math.

MP
(¬¬P → P)

CPF

CONT

FAN CONT′



Son of a. . .

Errett Bishop’s Constructive Analysis (also ‘BISH’) is a constructive
redevelopment of Mathematics, consistent with CLASS, RUSS and INT.

INT

CLASS RUSS

BISH

≈Math. programmable on TM
LEM (P ∨ ¬P)

Classical Math. ≈

(proof by contradiction)

≈Brouwer’s Intuitionistic Math.

MP
(¬¬P → P)

CPF

CONT

FAN CONT′



Algorithm and Proof in Constructive Analysis

Errett Bishop’s Constructive Analysis (BISH) is a constructive

redevelopment of Mathematics, where algorithm and proof are central.

Definition (Logical connectives in BISH: BHK)

1 P ∨ Q: we have an algorithm that outputs either P or Q, together
with a proof of the chosen disjunct.

2 P ∧ Q: we have both a proof of P and a proof of Q.

3 P → Q: by means of an algorithm we can convert any proof of P
into a proof of Q.

4 ¬P ≡ P → (0 = 1).

5 (∃x)P(x): an algorithm computes an object x0 such that P(x0)

6 (∀x ∈ A)P(x): for all x , x ∈ A→ P(x).



Algorithm and Proof in Constructive Analysis

Errett Bishop’s Constructive Analysis (BISH) is a constructive

redevelopment of Mathematics, where algorithm and proof are central.

Definition (Logical connectives in BISH: BHK)

1 P ∨ Q: we have an algorithm that outputs either P or Q, together
with a proof of the chosen disjunct.

2 P ∧ Q: we have both a proof of P and a proof of Q.

3 P → Q: by means of an algorithm we can convert any proof of P
into a proof of Q.

4 ¬P ≡ P → (0 = 1).

5 (∃x)P(x): an algorithm computes an object x0 such that P(x0)

6 (∀x ∈ A)P(x): for all x , x ∈ A→ P(x).



Algorithm and Proof in Constructive Analysis

Errett Bishop’s Constructive Analysis (BISH) is a constructive

redevelopment of Mathematics, where algorithm and proof are central.

Definition (Logical connectives in BISH: BHK)

1 P ∨ Q: we have an algorithm that outputs either P or Q, together
with a proof of the chosen disjunct.

2 P ∧ Q: we have both a proof of P and a proof of Q.

3 P → Q: by means of an algorithm we can convert any proof of P
into a proof of Q.

4 ¬P ≡ P → (0 = 1).

5 (∃x)P(x): an algorithm computes an object x0 such that P(x0)

6 (∀x ∈ A)P(x): for all x , x ∈ A→ P(x).



Algorithm and Proof in Constructive Analysis

Errett Bishop’s Constructive Analysis (BISH) is a constructive

redevelopment of Mathematics, where algorithm and proof are central.

Definition (Logical connectives in BISH: BHK)

1 P ∨ Q: we have an algorithm that outputs either P or Q, together
with a proof of the chosen disjunct.

2 P ∧ Q: we have both a proof of P and a proof of Q.

3 P → Q: by means of an algorithm we can convert any proof of P
into a proof of Q.

4 ¬P ≡ P → (0 = 1).

5 (∃x)P(x): an algorithm computes an object x0 such that P(x0)

6 (∀x ∈ A)P(x): for all x , x ∈ A→ P(x).



Algorithm and Proof in Constructive Analysis

Errett Bishop’s Constructive Analysis (BISH) is a constructive

redevelopment of Mathematics, where algorithm and proof are central.

Definition (Logical connectives in BISH: BHK)

1 P ∨ Q: we have an algorithm that outputs either P or Q, together
with a proof of the chosen disjunct.

2 P ∧ Q: we have both a proof of P and a proof of Q.

3 P → Q: by means of an algorithm we can convert any proof of P
into a proof of Q.

4 ¬P ≡ P → (0 = 1).

5 (∃x)P(x): an algorithm computes an object x0 such that P(x0)

6 (∀x ∈ A)P(x): for all x , x ∈ A→ P(x).



Algorithm and Proof in Constructive Analysis

Errett Bishop’s Constructive Analysis (BISH) is a constructive

redevelopment of Mathematics, where algorithm and proof are central.

Definition (Logical connectives in BISH: BHK)

1 P ∨ Q: we have an algorithm that outputs either P or Q, together
with a proof of the chosen disjunct.

2 P ∧ Q: we have both a proof of P and a proof of Q.

3 P → Q: by means of an algorithm we can convert any proof of P
into a proof of Q.

4 ¬P ≡ P → (0 = 1).

5 (∃x)P(x): an algorithm computes an object x0 such that P(x0)

6 (∀x ∈ A)P(x): for all x , x ∈ A→ P(x).



Algorithm and Proof in Constructive Analysis

Errett Bishop’s Constructive Analysis (BISH) is a constructive

redevelopment of Mathematics, where algorithm and proof are central.

Definition (Logical connectives in BISH: BHK)

1 P ∨ Q: we have an algorithm that outputs either P or Q, together
with a proof of the chosen disjunct.

2 P ∧ Q: we have both a proof of P and a proof of Q.

3 P → Q: by means of an algorithm we can convert any proof of P
into a proof of Q.

4 ¬P ≡ P → (0 = 1).

5 (∃x)P(x): an algorithm computes an object x0 such that P(x0)

6 (∀x ∈ A)P(x): for all x , x ∈ A→ P(x).



Algorithm and Proof in Constructive Analysis

Errett Bishop’s Constructive Analysis (BISH) is a constructive

redevelopment of Mathematics, where algorithm and proof are central.

Definition (Logical connectives in BISH: BHK)

1 P ∨ Q: we have an algorithm that outputs either P or Q, together
with a proof of the chosen disjunct.

2 P ∧ Q: we have both a proof of P and a proof of Q.

3 P → Q: by means of an algorithm we can convert any proof of P
into a proof of Q.

4 ¬P ≡ P → (0 = 1).

5 (∃x)P(x): an algorithm computes an object x0 such that P(x0)

6 (∀x ∈ A)P(x): for all x , x ∈ A→ P(x).



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

From BISH to NSA

In BISH, proof and algorithm are central.

We define a system of Nonstandard Analyis NSA where Transfer (T) and

Ω-invariant procedure play the same role.

NSA is similar to ∗RCA0, a nonstandard version of RCA0 (Keisler &

Yokoyama).

Three important features:

1 No Transfer Principle, except for ∆0.

2 No ∆0
1-CA, but Ω-CA. (CA for Ω-invariant formulas)

3 Levels of infinity (Stratified NSA).



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

From BISH to NSA

In BISH, proof and algorithm are central.

We define a system of Nonstandard Analyis NSA where Transfer (T) and

Ω-invariant procedure play the same role.

NSA is similar to ∗RCA0, a nonstandard version of RCA0 (Keisler &

Yokoyama).

Three important features:

1 No Transfer Principle, except for ∆0.

2 No ∆0
1-CA, but Ω-CA. (CA for Ω-invariant formulas)

3 Levels of infinity (Stratified NSA).



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

From BISH to NSA

In BISH, proof and algorithm are central.

We define a system of Nonstandard Analyis NSA where Transfer (T) and

Ω-invariant procedure play the same role.

NSA is similar to ∗RCA0, a nonstandard version of RCA0 (Keisler &

Yokoyama).

Three important features:

1 No Transfer Principle, except for ∆0.

2 No ∆0
1-CA, but Ω-CA. (CA for Ω-invariant formulas)

3 Levels of infinity (Stratified NSA).



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

From BISH to NSA

In BISH, proof and algorithm are central.

We define a system of Nonstandard Analyis NSA where Transfer (T) and

Ω-invariant procedure play the same role.

NSA is similar to ∗RCA0, a nonstandard version of RCA0 (Keisler &

Yokoyama).

Three important features:

1 No Transfer Principle, except for ∆0.

2 No ∆0
1-CA, but Ω-CA. (CA for Ω-invariant formulas)

3 Levels of infinity (Stratified NSA).



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

From BISH to NSA

In BISH, proof and algorithm are central.

We define a system of Nonstandard Analyis NSA where Transfer (T) and

Ω-invariant procedure play the same role.

NSA is similar to ∗RCA0, a nonstandard version of RCA0 (Keisler &

Yokoyama).

Three important features:

1 No Transfer Principle, except for ∆0.

2 No ∆0
1-CA, but Ω-CA. (CA for Ω-invariant formulas)

3 Levels of infinity (Stratified NSA).



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

From BISH to NSA

In BISH, proof and algorithm are central.

We define a system of Nonstandard Analyis NSA where Transfer (T) and

Ω-invariant procedure play the same role.

NSA is similar to ∗RCA0, a nonstandard version of RCA0 (Keisler &

Yokoyama).

Three important features:

1 No Transfer Principle, except for ∆0.

2 No ∆0
1-CA, but Ω-CA. (CA for Ω-invariant formulas)

3 Levels of infinity (Stratified NSA).



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

From BISH to NSA

In BISH, proof and algorithm are central.

We define a system of Nonstandard Analyis NSA where Transfer (T) and

Ω-invariant procedure play the same role.

NSA is similar to ∗RCA0, a nonstandard version of RCA0 (Keisler &

Yokoyama).

Three important features:

1 No Transfer Principle, except for ∆0.

2 No ∆0
1-CA, but Ω-CA. (CA for Ω-invariant formulas)

3 Levels of infinity (Stratified NSA).



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Feature 3: Stratified Nonstandard Analysis

The usual picture of ∗N:

∗N, the hypernatural numbers︷ ︸︸ ︷
. . . ω2 . . . ωk . . .

-
ω10 1 . . .

︸ ︷︷ ︸
N, the natural/finite numbers

︸ ︷︷ ︸
Ω = ∗N \ N, the infinite numbers

In NSA, the infinite numbers are split into ‘small’ and ‘large’.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Feature 3: Stratified Nonstandard Analysis

The usual picture of ∗N:

∗N, the hypernatural numbers︷ ︸︸ ︷
. . . ω2 . . . ωk . . .

-
ω10 1 . . .

︸ ︷︷ ︸
N, the natural/finite numbers

︸ ︷︷ ︸
Ω = ∗N \ N, the infinite numbers

In NSA, the infinite numbers are split into ‘small’ and ‘large’.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Feature 3: Stratified Nonstandard Analysis

The usual picture of ∗N:

∗N, the hypernatural numbers︷ ︸︸ ︷
. . . ω2 . . . ωk . . .

-
ω10 1 . . .

︸ ︷︷ ︸
N, the natural/finite numbers

︸ ︷︷ ︸
Ω = ∗N \ N, the infinite numbers

In NSA, the infinite numbers are split into ‘small’ and ‘large’.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Feature 3: Stratified Nonstandard Analysis

The usual picture of ∗N:

∗N, the hypernatural numbers︷ ︸︸ ︷
. . . ω2 . . . ωk . . .

-
ω10 1 . . .

︸ ︷︷ ︸
N, the natural/finite numbers

︸ ︷︷ ︸
Ω = ∗N \ N, the infinite numbers

In NSA, the infinite numbers are split into ‘small’ and ‘large’.

the small infinite numbers︷ ︸︸ ︷ the large infinite numbers︷ ︸︸ ︷



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Feature 3: Stratified Nonstandard Analysis

The usual picture of ∗N:

∗N, the hypernatural numbers︷ ︸︸ ︷
. . . ω2 . . . ωk . . .

-
ω10 1 . . .

︸ ︷︷ ︸
N, the natural/finite numbers

︸ ︷︷ ︸
Ω = ∗N \ N, the infinite numbers

In NSA, the infinite numbers are split into ‘small’ and ‘large’.

N1=N ∪ the small infinite numbers︷ ︸︸ ︷ Ω1=∗N\N1, the large infinite numbers︷ ︸︸ ︷



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Feature 2: Ω-invariance

Ω-invariance ≈ algorithm ≈ finite procedure

Definition (Ω-invariance)

For ψ(n,m) ∈ ∆0 and ω ∈ Ω, the formula ψ(n, ω) is Ω-invariant if

(∀n ∈ N)(∀ω′ ∈ Ω)[ψ(n, ω)↔ ψ(n, ω′)].

Note that ψ(n, ω) depends on ω ∈ Ω, but not on the choice of ω ∈ Ω.

NSA has Ω-CA instead of ∆1-CA.

Principle (Ω-CA)

For all Ω-invariant ψ(n, ω), we have

(∃X ⊂ N)(∀n ∈ N)(n ∈ X ↔ ψ(n, ω)).



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Feature 2: Ω-invariance

Ω-invariance ≈ algorithm ≈ finite procedure

Definition (Ω-invariance)

For ψ(n,m) ∈ ∆0 and ω ∈ Ω, the formula ψ(n, ω) is Ω-invariant if

(∀n ∈ N)(∀ω′ ∈ Ω)[ψ(n, ω)↔ ψ(n, ω′)].

Note that ψ(n, ω) depends on ω ∈ Ω, but not on the choice of ω ∈ Ω.

NSA has Ω-CA instead of ∆1-CA.

Principle (Ω-CA)

For all Ω-invariant ψ(n, ω), we have

(∃X ⊂ N)(∀n ∈ N)(n ∈ X ↔ ψ(n, ω)).



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Feature 2: Ω-invariance

Ω-invariance ≈ algorithm ≈ finite procedure

Definition (Ω-invariance)

For ψ(n,m) ∈ ∆0 and ω ∈ Ω, the formula ψ(n, ω) is Ω-invariant if

(∀n ∈ N)(∀ω′ ∈ Ω)[ψ(n, ω)↔ ψ(n, ω′)].

Note that ψ(n, ω) depends on ω ∈ Ω, but not on the choice of ω ∈ Ω.

NSA has Ω-CA instead of ∆1-CA.

Principle (Ω-CA)

For all Ω-invariant ψ(n, ω), we have

(∃X ⊂ N)(∀n ∈ N)(n ∈ X ↔ ψ(n, ω)).



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Feature 2: Ω-invariance

Ω-invariance ≈ algorithm ≈ finite procedure

Definition (Ω-invariance)

For ψ(n,m) ∈ ∆0 and ω ∈ Ω, the formula ψ(n, ω) is Ω-invariant if

(∀n ∈ N)(∀ω′ ∈ Ω)[ψ(n, ω)↔ ψ(n, ω′)].

Note that ψ(n, ω) depends on ω ∈ Ω, but not on the choice of ω ∈ Ω.

NSA has Ω-CA instead of ∆1-CA.

Principle (Ω-CA)

For all Ω-invariant ψ(n, ω), we have

(∃X ⊂ N)(∀n ∈ N)(n ∈ X ↔ ψ(n, ω)).



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Feature 2: Ω-invariance

Ω-invariance ≈ algorithm ≈ finite procedure

Definition (Ω-invariance)

For ψ(n,m) ∈ ∆0 and ω ∈ Ω, the formula ψ(n, ω) is Ω-invariant if

(∀n ∈ N)(∀ω′ ∈ Ω)[ψ(n, ω)↔ ψ(n, ω′)].

Note that ψ(n, ω) depends on ω ∈ Ω, but not on the choice of ω ∈ Ω.

NSA has Ω-CA instead of ∆1-CA.

Principle (Ω-CA)

For all Ω-invariant ψ(n, ω), we have

(∃X ⊂ N)(∀n ∈ N)(n ∈ X ↔ ψ(n, ω)).



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

The translation B from BISH to NSA

BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨ B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(~x , ω) s.t.

ψ(~x , ω)→ [A(~x) ∧ [A(~x) ∈ T]]
∧

¬ψ(~x , ω)→ [B(~x) ∧ [B(~x) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A V B:
[
A ∧ [A ∈ T]

]
→
[
B ∧ [B ∈ T]

]
¬A: A→ (0 = 1) ∼A: A V (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

We know: If BISH ` X then X 6→LPO, LLPO, MP, . . . (princ. rejected in BISH)

We show: If NSA ` Y then Y 6V LPO,LLPO,MP, . . . (e.g. LPO is B(LPO),
unprovable in NSA



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

The translation B from BISH to NSA
BISH (based on BHK)

NSA (based on CL)

Central: algorithm and proof

A ∨ B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(~x , ω) s.t.

ψ(~x , ω)→ [A(~x) ∧ [A(~x) ∈ T]]
∧

¬ψ(~x , ω)→ [B(~x) ∧ [B(~x) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A V B:
[
A ∧ [A ∈ T]

]
→
[
B ∧ [B ∈ T]

]
¬A: A→ (0 = 1) ∼A: A V (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

We know: If BISH ` X then X 6→LPO, LLPO, MP, . . . (princ. rejected in BISH)

We show: If NSA ` Y then Y 6V LPO,LLPO,MP, . . . (e.g. LPO is B(LPO),
unprovable in NSA



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

The translation B from BISH to NSA
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨ B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(~x , ω) s.t.

ψ(~x , ω)→ [A(~x) ∧ [A(~x) ∈ T]]
∧

¬ψ(~x , ω)→ [B(~x) ∧ [B(~x) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A V B:
[
A ∧ [A ∈ T]

]
→
[
B ∧ [B ∈ T]

]
¬A: A→ (0 = 1) ∼A: A V (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

We know: If BISH ` X then X 6→LPO, LLPO, MP, . . . (princ. rejected in BISH)

We show: If NSA ` Y then Y 6V LPO,LLPO,MP, . . . (e.g. LPO is B(LPO),
unprovable in NSA



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

The translation B from BISH to NSA
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨ B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(~x , ω) s.t.

ψ(~x , ω)→ [A(~x) ∧ [A(~x) ∈ T]]
∧

¬ψ(~x , ω)→ [B(~x) ∧ [B(~x) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A V B:
[
A ∧ [A ∈ T]

]
→
[
B ∧ [B ∈ T]

]
¬A: A→ (0 = 1) ∼A: A V (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

We know: If BISH ` X then X 6→LPO, LLPO, MP, . . . (princ. rejected in BISH)

We show: If NSA ` Y then Y 6V LPO,LLPO,MP, . . . (e.g. LPO is B(LPO),
unprovable in NSA



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

The translation B from BISH to NSA
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨ B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(~x , ω) s.t.

ψ(~x , ω)→ [A(~x) ∧ [A(~x) ∈ T]]
∧

¬ψ(~x , ω)→ [B(~x) ∧ [B(~x) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A V B:
[
A ∧ [A ∈ T]

]
→
[
B ∧ [B ∈ T]

]
¬A: A→ (0 = 1) ∼A: A V (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

We know: If BISH ` X then X 6→LPO, LLPO, MP, . . . (princ. rejected in BISH)

We show: If NSA ` Y then Y 6V LPO,LLPO,MP, . . . (e.g. LPO is B(LPO),
unprovable in NSA



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

The translation B from BISH to NSA
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨ B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(~x , ω) s.t.

ψ(~x , ω)→ [A(~x) ∧ [A(~x) ∈ T]]
∧

¬ψ(~x , ω)→ [B(~x) ∧ [B(~x) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A V B:
[
A ∧ [A ∈ T]

]
→
[
B ∧ [B ∈ T]

]
¬A: A→ (0 = 1) ∼A: A V (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

We know: If BISH ` X then X 6→LPO, LLPO, MP, . . . (princ. rejected in BISH)

We show: If NSA ` Y then Y 6V LPO,LLPO,MP, . . . (e.g. LPO is B(LPO),
unprovable in NSA



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

The translation B from BISH to NSA
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨ B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB:

There is Ω-invariant ψ(~x , ω) s.t.

ψ(~x , ω)→ [A(~x) ∧ [A(~x) ∈ T]]
∧

¬ψ(~x , ω)→ [B(~x) ∧ [B(~x) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A V B:
[
A ∧ [A ∈ T]

]
→
[
B ∧ [B ∈ T]

]
¬A: A→ (0 = 1) ∼A: A V (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

We know: If BISH ` X then X 6→LPO, LLPO, MP, . . . (princ. rejected in BISH)

We show: If NSA ` Y then Y 6V LPO,LLPO,MP, . . . (e.g. LPO is B(LPO),
unprovable in NSA



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

The translation B from BISH to NSA
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨ B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(~x , ω) s.t.

ψ(~x , ω)→ [A(~x) ∧ [A(~x) ∈ T]]
∧

¬ψ(~x , ω)→ [B(~x) ∧ [B(~x) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A V B:
[
A ∧ [A ∈ T]

]
→
[
B ∧ [B ∈ T]

]
¬A: A→ (0 = 1) ∼A: A V (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

We know: If BISH ` X then X 6→LPO, LLPO, MP, . . . (princ. rejected in BISH)

We show: If NSA ` Y then Y 6V LPO,LLPO,MP, . . . (e.g. LPO is B(LPO),
unprovable in NSA



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

The translation B from BISH to NSA
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨ B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(~x , ω) s.t.

ψ(~x , ω)→ [A(~x) ∧ [A(~x) ∈ T]]
∧

¬ψ(~x , ω)→ [B(~x) ∧ [B(~x) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A V B:
[
A ∧ [A ∈ T]

]
→
[
B ∧ [B ∈ T]

]
¬A: A→ (0 = 1) ∼A: A V (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

We know: If BISH ` X then X 6→LPO, LLPO, MP, . . . (princ. rejected in BISH)

We show: If NSA ` Y then Y 6V LPO,LLPO,MP, . . . (e.g. LPO is B(LPO),
unprovable in NSA



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

The translation B from BISH to NSA
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨ B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(~x , ω) s.t.

ψ(~x , ω)→ [A(~x) ∧ [A(~x) ∈ T]]
∧

¬ψ(~x , ω)→ [B(~x) ∧ [B(~x) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A V B:
[
A ∧ [A ∈ T]

]
→
[
B ∧ [B ∈ T]

]

¬A: A→ (0 = 1) ∼A: A V (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

We know: If BISH ` X then X 6→LPO, LLPO, MP, . . . (princ. rejected in BISH)

We show: If NSA ` Y then Y 6V LPO,LLPO,MP, . . . (e.g. LPO is B(LPO),
unprovable in NSA



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

The translation B from BISH to NSA
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨ B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(~x , ω) s.t.

ψ(~x , ω)→ [A(~x) ∧ [A(~x) ∈ T]]
∧

¬ψ(~x , ω)→ [B(~x) ∧ [B(~x) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A V B:
[
A ∧ [A ∈ T]

]
→
[
B ∧ [B ∈ T]

]
‘A ∈ T’ means ‘A satisfies Transfer’.

¬A: A→ (0 = 1) ∼A: A V (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

We know: If BISH ` X then X 6→LPO, LLPO, MP, . . . (princ. rejected in BISH)

We show: If NSA ` Y then Y 6V LPO,LLPO,MP, . . . (e.g. LPO is B(LPO),
unprovable in NSA



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

The translation B from BISH to NSA
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨ B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(~x , ω) s.t.

ψ(~x , ω)→ [A(~x) ∧ [A(~x) ∈ T]]
∧

¬ψ(~x , ω)→ [B(~x) ∧ [B(~x) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A V B:
[
A ∧ [A ∈ T]

]
→
[
B ∧ [B ∈ T]

]
‘A ∈ T’ means ‘A satisfies Transfer’.

E.g. ‘(∀n ∈ N)ϕ(n) ∈ T’ is [(∀n ∈ N)ϕ(n)→ (∀n ∈ ∗N)ϕ(n)]

¬A: A→ (0 = 1) ∼A: A V (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

We know: If BISH ` X then X 6→LPO, LLPO, MP, . . . (princ. rejected in BISH)

We show: If NSA ` Y then Y 6V LPO,LLPO,MP, . . . (e.g. LPO is B(LPO),
unprovable in NSA



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

The translation B from BISH to NSA
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨ B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(~x , ω) s.t.

ψ(~x , ω)→ [A(~x) ∧ [A(~x) ∈ T]]
∧

¬ψ(~x , ω)→ [B(~x) ∧ [B(~x) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A V B:
[
A ∧ [A ∈ T]

]
→
[
B ∧ [B ∈ T]

]
‘A ∈ T’ means ‘A satisfies Transfer’.

E.g. ‘(∀n ∈ N)ϕ(n) ∈ T’ is [(∀n ∈ N)ϕ(n)→ (∀n ∈ ∗N)ϕ(n)]

E.g. ‘(∃n ∈ ∗N)ϕ(n) ∈ T’ is [(∃n ∈ ∗N)ϕ(n)→ (∃n ∈ N1)ϕ(n)]

¬A: A→ (0 = 1) ∼A: A V (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

We know: If BISH ` X then X 6→LPO, LLPO, MP, . . . (princ. rejected in BISH)

We show: If NSA ` Y then Y 6V LPO,LLPO,MP, . . . (e.g. LPO is B(LPO),
unprovable in NSA



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

The translation B from BISH to NSA
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨ B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(~x , ω) s.t.

ψ(~x , ω)→ [A(~x) ∧ [A(~x) ∈ T]]
∧

¬ψ(~x , ω)→ [B(~x) ∧ [B(~x) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A V B:
[
A ∧ [A ∈ T]

]
→
[
B ∧ [B ∈ T]

]
¬A: A→ (0 = 1)

∼A: A V (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

We know: If BISH ` X then X 6→LPO, LLPO, MP, . . . (princ. rejected in BISH)

We show: If NSA ` Y then Y 6V LPO,LLPO,MP, . . . (e.g. LPO is B(LPO),
unprovable in NSA



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

The translation B from BISH to NSA
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨ B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(~x , ω) s.t.

ψ(~x , ω)→ [A(~x) ∧ [A(~x) ∈ T]]
∧

¬ψ(~x , ω)→ [B(~x) ∧ [B(~x) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A V B:
[
A ∧ [A ∈ T]

]
→
[
B ∧ [B ∈ T]

]
¬A: A→ (0 = 1) ∼A: A V (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

We know: If BISH ` X then X 6→LPO, LLPO, MP, . . . (princ. rejected in BISH)

We show: If NSA ` Y then Y 6V LPO,LLPO,MP, . . . (e.g. LPO is B(LPO),
unprovable in NSA



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

The translation B from BISH to NSA
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨ B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(~x , ω) s.t.

ψ(~x , ω)→ [A(~x) ∧ [A(~x) ∈ T]]
∧

¬ψ(~x , ω)→ [B(~x) ∧ [B(~x) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A V B:
[
A ∧ [A ∈ T]

]
→
[
B ∧ [B ∈ T]

]
¬A: A→ (0 = 1) ∼A: A V (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)

(∃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

We know: If BISH ` X then X 6→LPO, LLPO, MP, . . . (princ. rejected in BISH)

We show: If NSA ` Y then Y 6V LPO,LLPO,MP, . . . (e.g. LPO is B(LPO),
unprovable in NSA



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

The translation B from BISH to NSA
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨ B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(~x , ω) s.t.

ψ(~x , ω)→ [A(~x) ∧ [A(~x) ∈ T]]
∧

¬ψ(~x , ω)→ [B(~x) ∧ [B(~x) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A V B:
[
A ∧ [A ∈ T]

]
→
[
B ∧ [B ∈ T]

]
¬A: A→ (0 = 1) ∼A: A V (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

We know: If BISH ` X then X 6→LPO, LLPO, MP, . . . (princ. rejected in BISH)

We show: If NSA ` Y then Y 6V LPO,LLPO,MP, . . . (e.g. LPO is B(LPO),
unprovable in NSA



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

The translation B from BISH to NSA
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨ B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(~x , ω) s.t.

ψ(~x , ω)→ [A(~x) ∧ [A(~x) ∈ T]]
∧

¬ψ(~x , ω)→ [B(~x) ∧ [B(~x) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A V B:
[
A ∧ [A ∈ T]

]
→
[
B ∧ [B ∈ T]

]
¬A: A→ (0 = 1) ∼A: A V (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

∼[(∀n ∈ N)A(n)]

≡ (∃n ∈ N1)∼A(n)

WEAKER than (∃n ∈ N)∼A(n).

We know: If BISH ` X then X 6→LPO, LLPO, MP, . . . (princ. rejected in BISH)

We show: If NSA ` Y then Y 6V LPO,LLPO,MP, . . . (e.g. LPO is B(LPO),
unprovable in NSA



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

The translation B from BISH to NSA
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨ B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(~x , ω) s.t.

ψ(~x , ω)→ [A(~x) ∧ [A(~x) ∈ T]]
∧

¬ψ(~x , ω)→ [B(~x) ∧ [B(~x) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A V B:
[
A ∧ [A ∈ T]

]
→
[
B ∧ [B ∈ T]

]
¬A: A→ (0 = 1) ∼A: A V (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

∼[(∀n ∈ N)A(n)] ≡ (∃n ∈ N1)∼A(n)

WEAKER than (∃n ∈ N)∼A(n).

We know: If BISH ` X then X 6→LPO, LLPO, MP, . . . (princ. rejected in BISH)

We show: If NSA ` Y then Y 6V LPO,LLPO,MP, . . . (e.g. LPO is B(LPO),
unprovable in NSA



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

The translation B from BISH to NSA
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨ B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(~x , ω) s.t.

ψ(~x , ω)→ [A(~x) ∧ [A(~x) ∈ T]]
∧

¬ψ(~x , ω)→ [B(~x) ∧ [B(~x) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A V B:
[
A ∧ [A ∈ T]

]
→
[
B ∧ [B ∈ T]

]
¬A: A→ (0 = 1) ∼A: A V (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

∼[(∀n ∈ N)A(n)] ≡ (∃n ∈ N1)∼A(n)

WEAKER than (∃n ∈ N)∼A(n).

¬[(∀n ∈ N)A(n)] is WEAKER

than (∃n ∈ N)¬A(n).

We know: If BISH ` X then X 6→LPO, LLPO, MP, . . . (princ. rejected in BISH)

We show: If NSA ` Y then Y 6V LPO,LLPO,MP, . . . (e.g. LPO is B(LPO),
unprovable in NSA



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

The translation B from BISH to NSA
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨ B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(~x , ω) s.t.

ψ(~x , ω)→ [A(~x) ∧ [A(~x) ∈ T]]
∧

¬ψ(~x , ω)→ [B(~x) ∧ [B(~x) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A V B:
[
A ∧ [A ∈ T]

]
→
[
B ∧ [B ∈ T]

]
¬A: A→ (0 = 1) ∼A: A V (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

We know: If BISH ` X then X 6→LPO, LLPO, MP, . . . (princ. rejected in BISH)

We show: If NSA ` Y then Y 6V LPO,LLPO,MP, . . . (e.g. LPO is B(LPO),
unprovable in NSA



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

The translation B from BISH to NSA
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨ B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(~x , ω) s.t.

ψ(~x , ω)→ [A(~x) ∧ [A(~x) ∈ T]]
∧

¬ψ(~x , ω)→ [B(~x) ∧ [B(~x) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A V B:
[
A ∧ [A ∈ T]

]
→
[
B ∧ [B ∈ T]

]
¬A: A→ (0 = 1) ∼A: A V (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

We know: If BISH ` X then X 6→LPO, LLPO, MP, . . . (princ. rejected in BISH)

We show: If NSA ` Y then Y 6V LPO,LLPO,MP, . . .

(e.g. LPO is B(LPO),
unprovable in NSA



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

The translation B from BISH to NSA
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨ B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(~x , ω) s.t.

ψ(~x , ω)→ [A(~x) ∧ [A(~x) ∈ T]]
∧

¬ψ(~x , ω)→ [B(~x) ∧ [B(~x) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A V B:
[
A ∧ [A ∈ T]

]
→
[
B ∧ [B ∈ T]

]
¬A: A→ (0 = 1) ∼A: A V (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

We know: If BISH ` X then X 6→LPO, LLPO, MP, . . . (princ. rejected in BISH)

We show: If NSA ` Y then Y 6V LPO,LLPO,MP, . . . (e.g. LPO is B(LPO),
unprovable in NSA



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B

BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LPO: For P ∈ Σ1, P ∨ ¬P
l

LPR: (∀x ∈ R)(x > 0 ∨ ¬(x > 0))

l
MCT: monotone convergence thm

l
CIT: Cantor intersection thm

non-Ω-invariant

LPO: For P ∈ Σ1, P V∼P
WV

LPR: (∀x ∈ R)(x > 0V∼(x > 0))

WV
MCT: monotone convergence thm

WV
CIT: Cantor intersection thm

(limit computed by algo) (limit computed by Ω-inv. proc.)

WV
Universal Transfer: For all ϕ ∈ ∆0

(∀n ∈ N)ϕ(n)→ (∀n ∈ ∗N)ϕ(n)

NSA does prove (∀δ ∈ R)
[
δ > 0 V (x > 0)V(x < δ)

]
.

BISH does prove (∀δ ∈ R)
[
δ > 0→ (x > 0) ∨ (x < δ)

]
.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LPO: For P ∈ Σ1, P ∨ ¬P
l

LPR: (∀x ∈ R)(x > 0 ∨ ¬(x > 0))

l
MCT: monotone convergence thm

l
CIT: Cantor intersection thm

non-Ω-invariant

LPO: For P ∈ Σ1, P V∼P
WV

LPR: (∀x ∈ R)(x > 0V∼(x > 0))

WV
MCT: monotone convergence thm

WV
CIT: Cantor intersection thm

(limit computed by algo) (limit computed by Ω-inv. proc.)

WV
Universal Transfer: For all ϕ ∈ ∆0

(∀n ∈ N)ϕ(n)→ (∀n ∈ ∗N)ϕ(n)

NSA does prove (∀δ ∈ R)
[
δ > 0 V (x > 0)V(x < δ)

]
.

BISH does prove (∀δ ∈ R)
[
δ > 0→ (x > 0) ∨ (x < δ)

]
.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LPO: For P ∈ Σ1, P ∨ ¬P
l

LPR: (∀x ∈ R)(x > 0 ∨ ¬(x > 0))

l
MCT: monotone convergence thm

l
CIT: Cantor intersection thm

non-Ω-invariant

LPO: For P ∈ Σ1, P V∼P
WV

LPR: (∀x ∈ R)(x > 0V∼(x > 0))

WV
MCT: monotone convergence thm

WV
CIT: Cantor intersection thm

(limit computed by algo) (limit computed by Ω-inv. proc.)

WV
Universal Transfer: For all ϕ ∈ ∆0

(∀n ∈ N)ϕ(n)→ (∀n ∈ ∗N)ϕ(n)

NSA does prove (∀δ ∈ R)
[
δ > 0 V (x > 0)V(x < δ)

]
.

BISH does prove (∀δ ∈ R)
[
δ > 0→ (x > 0) ∨ (x < δ)

]
.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LPO: For P ∈ Σ1, P ∨ ¬P
l

LPR: (∀x ∈ R)(x > 0 ∨ ¬(x > 0))

l

MCT: monotone convergence thm

l
CIT: Cantor intersection thm

non-Ω-invariant

LPO: For P ∈ Σ1, P V∼P
WV

LPR: (∀x ∈ R)(x > 0V∼(x > 0))

WV
MCT: monotone convergence thm

WV
CIT: Cantor intersection thm

(limit computed by algo) (limit computed by Ω-inv. proc.)

WV
Universal Transfer: For all ϕ ∈ ∆0

(∀n ∈ N)ϕ(n)→ (∀n ∈ ∗N)ϕ(n)

NSA does prove (∀δ ∈ R)
[
δ > 0 V (x > 0)V(x < δ)

]
.

BISH does prove (∀δ ∈ R)
[
δ > 0→ (x > 0) ∨ (x < δ)

]
.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LPO: For P ∈ Σ1, P ∨ ¬P
l

LPR: (∀x ∈ R)(x > 0 ∨ ¬(x > 0))

l
MCT: monotone convergence thm

l

CIT: Cantor intersection thm

non-Ω-invariant

LPO: For P ∈ Σ1, P V∼P
WV

LPR: (∀x ∈ R)(x > 0V∼(x > 0))

WV
MCT: monotone convergence thm

WV
CIT: Cantor intersection thm

(limit computed by algo) (limit computed by Ω-inv. proc.)

WV
Universal Transfer: For all ϕ ∈ ∆0

(∀n ∈ N)ϕ(n)→ (∀n ∈ ∗N)ϕ(n)

NSA does prove (∀δ ∈ R)
[
δ > 0 V (x > 0)V(x < δ)

]
.

BISH does prove (∀δ ∈ R)
[
δ > 0→ (x > 0) ∨ (x < δ)

]
.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LPO: For P ∈ Σ1, P ∨ ¬P
l

LPR: (∀x ∈ R)(x > 0 ∨ ¬(x > 0))

l
MCT: monotone convergence thm

l
CIT: Cantor intersection thm

non-Ω-invariant

LPO: For P ∈ Σ1, P V∼P
WV

LPR: (∀x ∈ R)(x > 0V∼(x > 0))

WV
MCT: monotone convergence thm

WV
CIT: Cantor intersection thm

(limit computed by algo) (limit computed by Ω-inv. proc.)

WV
Universal Transfer: For all ϕ ∈ ∆0

(∀n ∈ N)ϕ(n)→ (∀n ∈ ∗N)ϕ(n)

NSA does prove (∀δ ∈ R)
[
δ > 0 V (x > 0)V(x < δ)

]
.

BISH does prove (∀δ ∈ R)
[
δ > 0→ (x > 0) ∨ (x < δ)

]
.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LPO: For P ∈ Σ1, P ∨ ¬P
l

LPR: (∀x ∈ R)(x > 0 ∨ ¬(x > 0))

l
MCT: monotone convergence thm

l
CIT: Cantor intersection thm

non-Ω-invariant

LPO: For P ∈ Σ1, P V∼P
WV

LPR: (∀x ∈ R)(x > 0V∼(x > 0))

WV
MCT: monotone convergence thm

WV
CIT: Cantor intersection thm

(limit computed by algo) (limit computed by Ω-inv. proc.)

WV
Universal Transfer: For all ϕ ∈ ∆0

(∀n ∈ N)ϕ(n)→ (∀n ∈ ∗N)ϕ(n)

NSA does prove (∀δ ∈ R)
[
δ > 0 V (x > 0)V(x < δ)

]
.

BISH does prove (∀δ ∈ R)
[
δ > 0→ (x > 0) ∨ (x < δ)

]
.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LPO: For P ∈ Σ1, P ∨ ¬P
l

LPR: (∀x ∈ R)(x > 0 ∨ ¬(x > 0))

l
MCT: monotone convergence thm

l
CIT: Cantor intersection thm

non-Ω-invariant

LPO: For P ∈ Σ1, P V∼P
WV

LPR: (∀x ∈ R)(x > 0V∼(x > 0))

WV
MCT: monotone convergence thm

WV
CIT: Cantor intersection thm

(limit computed by algo) (limit computed by Ω-inv. proc.)

WV
Universal Transfer: For all ϕ ∈ ∆0

(∀n ∈ N)ϕ(n)→ (∀n ∈ ∗N)ϕ(n)

NSA does prove (∀δ ∈ R)
[
δ > 0 V (x > 0)V(x < δ)

]
.

BISH does prove (∀δ ∈ R)
[
δ > 0→ (x > 0) ∨ (x < δ)

]
.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LPO: For P ∈ Σ1, P ∨ ¬P
l

LPR: (∀x ∈ R)(x > 0 ∨ ¬(x > 0))

l
MCT: monotone convergence thm

l
CIT: Cantor intersection thm

non-Ω-invariant

LPO: For P ∈ Σ1, P V∼P
WV

LPR: (∀x ∈ R)(x > 0V∼(x > 0))

WV

MCT: monotone convergence thm

WV
CIT: Cantor intersection thm

(limit computed by algo) (limit computed by Ω-inv. proc.)

WV
Universal Transfer: For all ϕ ∈ ∆0

(∀n ∈ N)ϕ(n)→ (∀n ∈ ∗N)ϕ(n)

NSA does prove (∀δ ∈ R)
[
δ > 0 V (x > 0)V(x < δ)

]
.

BISH does prove (∀δ ∈ R)
[
δ > 0→ (x > 0) ∨ (x < δ)

]
.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LPO: For P ∈ Σ1, P ∨ ¬P
l

LPR: (∀x ∈ R)(x > 0 ∨ ¬(x > 0))

l
MCT: monotone convergence thm

l
CIT: Cantor intersection thm

non-Ω-invariant

LPO: For P ∈ Σ1, P V∼P
WV

LPR: (∀x ∈ R)(x > 0V∼(x > 0))

WV
MCT: monotone convergence thm

WV

CIT: Cantor intersection thm

(limit computed by algo) (limit computed by Ω-inv. proc.)

WV
Universal Transfer: For all ϕ ∈ ∆0

(∀n ∈ N)ϕ(n)→ (∀n ∈ ∗N)ϕ(n)

NSA does prove (∀δ ∈ R)
[
δ > 0 V (x > 0)V(x < δ)

]
.

BISH does prove (∀δ ∈ R)
[
δ > 0→ (x > 0) ∨ (x < δ)

]
.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LPO: For P ∈ Σ1, P ∨ ¬P
l

LPR: (∀x ∈ R)(x > 0 ∨ ¬(x > 0))

l
MCT: monotone convergence thm

l
CIT: Cantor intersection thm

non-Ω-invariant

LPO: For P ∈ Σ1, P V∼P
WV

LPR: (∀x ∈ R)(x > 0V∼(x > 0))

WV
MCT: monotone convergence thm

WV
CIT: Cantor intersection thm

(limit computed by algo) (limit computed by Ω-inv. proc.)

WV
Universal Transfer: For all ϕ ∈ ∆0

(∀n ∈ N)ϕ(n)→ (∀n ∈ ∗N)ϕ(n)

NSA does prove (∀δ ∈ R)
[
δ > 0 V (x > 0)V(x < δ)

]
.

BISH does prove (∀δ ∈ R)
[
δ > 0→ (x > 0) ∨ (x < δ)

]
.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LPO: For P ∈ Σ1, P ∨ ¬P
l

LPR: (∀x ∈ R)(x > 0 ∨ ¬(x > 0))

l
MCT: monotone convergence thm

l
CIT: Cantor intersection thm

non-Ω-invariant

LPO: For P ∈ Σ1, P V∼P
WV

LPR: (∀x ∈ R)(x > 0V∼(x > 0))

WV
MCT: monotone convergence thm

WV
CIT: Cantor intersection thm

(limit computed by algo)

(limit computed by Ω-inv. proc.)

WV
Universal Transfer: For all ϕ ∈ ∆0

(∀n ∈ N)ϕ(n)→ (∀n ∈ ∗N)ϕ(n)

NSA does prove (∀δ ∈ R)
[
δ > 0 V (x > 0)V(x < δ)

]
.

BISH does prove (∀δ ∈ R)
[
δ > 0→ (x > 0) ∨ (x < δ)

]
.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LPO: For P ∈ Σ1, P ∨ ¬P
l

LPR: (∀x ∈ R)(x > 0 ∨ ¬(x > 0))

l
MCT: monotone convergence thm

l
CIT: Cantor intersection thm

non-Ω-invariant

LPO: For P ∈ Σ1, P V∼P
WV

LPR: (∀x ∈ R)(x > 0V∼(x > 0))

WV
MCT: monotone convergence thm

WV
CIT: Cantor intersection thm

(limit computed by algo) (limit computed by Ω-inv. proc.)

WV
Universal Transfer: For all ϕ ∈ ∆0

(∀n ∈ N)ϕ(n)→ (∀n ∈ ∗N)ϕ(n)

NSA does prove (∀δ ∈ R)
[
δ > 0 V (x > 0)V(x < δ)

]
.

BISH does prove (∀δ ∈ R)
[
δ > 0→ (x > 0) ∨ (x < δ)

]
.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LPO: For P ∈ Σ1, P ∨ ¬P
l

LPR: (∀x ∈ R)(x > 0 ∨ ¬(x > 0))

l
MCT: monotone convergence thm

l
CIT: Cantor intersection thm

non-Ω-invariant

LPO: For P ∈ Σ1, P V∼P
WV

LPR: (∀x ∈ R)(x > 0V∼(x > 0))

WV
MCT: monotone convergence thm

WV
CIT: Cantor intersection thm

(limit computed by algo) (limit computed by Ω-inv. proc.)

(point in intersection computed by algo)

(point in intersection computed by Ω-inv. proc.)

WV
Universal Transfer: For all ϕ ∈ ∆0

(∀n ∈ N)ϕ(n)→ (∀n ∈ ∗N)ϕ(n)

NSA does prove (∀δ ∈ R)
[
δ > 0 V (x > 0)V(x < δ)

]
.

BISH does prove (∀δ ∈ R)
[
δ > 0→ (x > 0) ∨ (x < δ)

]
.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LPO: For P ∈ Σ1, P ∨ ¬P
l

LPR: (∀x ∈ R)(x > 0 ∨ ¬(x > 0))

l
MCT: monotone convergence thm

l
CIT: Cantor intersection thm

non-Ω-invariant

LPO: For P ∈ Σ1, P V∼P
WV

LPR: (∀x ∈ R)(x > 0V∼(x > 0))

WV
MCT: monotone convergence thm

WV
CIT: Cantor intersection thm

(limit computed by algo) (limit computed by Ω-inv. proc.)

(point in intersection computed by algo)

(point in intersection computed by Ω-inv. proc.)

WV
Universal Transfer: For all ϕ ∈ ∆0

(∀n ∈ N)ϕ(n)→ (∀n ∈ ∗N)ϕ(n)

NSA does prove (∀δ ∈ R)
[
δ > 0 V (x > 0)V(x < δ)

]
.

BISH does prove (∀δ ∈ R)
[
δ > 0→ (x > 0) ∨ (x < δ)

]
.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LPO: For P ∈ Σ1, P ∨ ¬P
l

LPR: (∀x ∈ R)(x > 0 ∨ ¬(x > 0))

l
MCT: monotone convergence thm

l
CIT: Cantor intersection thm

non-Ω-invariant

LPO: For P ∈ Σ1, P V∼P
WV

LPR: (∀x ∈ R)(x > 0V∼(x > 0))

WV
MCT: monotone convergence thm

WV
CIT: Cantor intersection thm

(limit computed by algo) (limit computed by Ω-inv. proc.)

WV
Universal Transfer: For all ϕ ∈ ∆0

(∀n ∈ N)ϕ(n)→ (∀n ∈ ∗N)ϕ(n)

NSA does prove (∀δ ∈ R)
[
δ > 0 V (x > 0)V(x < δ)

]
.

BISH does prove (∀δ ∈ R)
[
δ > 0→ (x > 0) ∨ (x < δ)

]
.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LPO: For P ∈ Σ1, P ∨ ¬P
l

LPR: (∀x ∈ R)(x > 0 ∨ ¬(x > 0))

l
MCT: monotone convergence thm

l
CIT: Cantor intersection thm

non-Ω-invariant

LPO: For P ∈ Σ1, P V∼P
WV

LPR: (∀x ∈ R)(x > 0V∼(x > 0))

WV
MCT: monotone convergence thm

WV
CIT: Cantor intersection thm

(limit computed by algo) (limit computed by Ω-inv. proc.)

WV
Universal Transfer: For all ϕ ∈ ∆0

(∀n ∈ N)ϕ(n)→ (∀n ∈ ∗N)ϕ(n)

NSA does prove (∀δ ∈ R)
[
δ > 0 V (x > 0)V(x < δ)

]
.

BISH does prove (∀δ ∈ R)
[
δ > 0→ (x > 0) ∨ (x < δ)

]
.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B II

BISH (based on BHK) NSA (based on CL)
non-constructive/non-algorithmic

LLPO

For P,Q ∈ Σ1, ¬(P ∧ Q)→ ¬P ∨ ¬Q
l

LLPR: (∀x ∈ R)(x ≥ 0 ∨ x ≤ 0)

l
NIL

(∀x , y ∈ R)(xy = 0→ x = 0 ∨ y = 0)

l
IVT: Intermediate value theorem

non-Ω-invariant

LLPO
For P,Q ∈ Σ1, ∼(P ∧ Q) V ∼P V∼Q

WV
LLPR: (∀x ∈ R)(x ≥ 0V x ≤ 0)

WV
NIL
(∀x , y ∈ R)(xy = 0 V x = 0V y = 0)

WV
IVT: Intermediate value theorem

(int. value computed by algo) (int. value computed by Ω-inv. proc.)l
WKL WV WKL WV ∨-Transfer

Axioms of R: ¬(x > 0 ∧ x < 0) Axioms of R: ∼(x > 0 ∧ x < 0)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B II
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LLPO

For P,Q ∈ Σ1, ¬(P ∧ Q)→ ¬P ∨ ¬Q
l

LLPR: (∀x ∈ R)(x ≥ 0 ∨ x ≤ 0)

l
NIL

(∀x , y ∈ R)(xy = 0→ x = 0 ∨ y = 0)

l
IVT: Intermediate value theorem

non-Ω-invariant

LLPO
For P,Q ∈ Σ1, ∼(P ∧ Q) V ∼P V∼Q

WV
LLPR: (∀x ∈ R)(x ≥ 0V x ≤ 0)

WV
NIL
(∀x , y ∈ R)(xy = 0 V x = 0V y = 0)

WV
IVT: Intermediate value theorem

(int. value computed by algo) (int. value computed by Ω-inv. proc.)l
WKL WV WKL WV ∨-Transfer

Axioms of R: ¬(x > 0 ∧ x < 0) Axioms of R: ∼(x > 0 ∧ x < 0)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B II
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LLPO

For P,Q ∈ Σ1, ¬(P ∧ Q)→ ¬P ∨ ¬Q
l

LLPR: (∀x ∈ R)(x ≥ 0 ∨ x ≤ 0)

l
NIL

(∀x , y ∈ R)(xy = 0→ x = 0 ∨ y = 0)

l
IVT: Intermediate value theorem

non-Ω-invariant

LLPO
For P,Q ∈ Σ1, ∼(P ∧ Q) V ∼P V∼Q

WV
LLPR: (∀x ∈ R)(x ≥ 0V x ≤ 0)

WV
NIL
(∀x , y ∈ R)(xy = 0 V x = 0V y = 0)

WV
IVT: Intermediate value theorem

(int. value computed by algo) (int. value computed by Ω-inv. proc.)l
WKL WV WKL WV ∨-Transfer

Axioms of R: ¬(x > 0 ∧ x < 0) Axioms of R: ∼(x > 0 ∧ x < 0)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B II
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LLPO

For P,Q ∈ Σ1, ¬(P ∧ Q)→ ¬P ∨ ¬Q
l

LLPR: (∀x ∈ R)(x ≥ 0 ∨ x ≤ 0)

l

NIL

(∀x , y ∈ R)(xy = 0→ x = 0 ∨ y = 0)

l
IVT: Intermediate value theorem

non-Ω-invariant

LLPO
For P,Q ∈ Σ1, ∼(P ∧ Q) V ∼P V∼Q

WV
LLPR: (∀x ∈ R)(x ≥ 0V x ≤ 0)

WV
NIL
(∀x , y ∈ R)(xy = 0 V x = 0V y = 0)

WV
IVT: Intermediate value theorem

(int. value computed by algo) (int. value computed by Ω-inv. proc.)l
WKL WV WKL WV ∨-Transfer

Axioms of R: ¬(x > 0 ∧ x < 0) Axioms of R: ∼(x > 0 ∧ x < 0)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B II
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LLPO

For P,Q ∈ Σ1, ¬(P ∧ Q)→ ¬P ∨ ¬Q
l

LLPR: (∀x ∈ R)(x ≥ 0 ∨ x ≤ 0)

l
NIL

(∀x , y ∈ R)(xy = 0→ x = 0 ∨ y = 0)

l

IVT: Intermediate value theorem

non-Ω-invariant

LLPO
For P,Q ∈ Σ1, ∼(P ∧ Q) V ∼P V∼Q

WV
LLPR: (∀x ∈ R)(x ≥ 0V x ≤ 0)

WV
NIL
(∀x , y ∈ R)(xy = 0 V x = 0V y = 0)

WV
IVT: Intermediate value theorem

(int. value computed by algo) (int. value computed by Ω-inv. proc.)l
WKL WV WKL WV ∨-Transfer

Axioms of R: ¬(x > 0 ∧ x < 0) Axioms of R: ∼(x > 0 ∧ x < 0)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B II
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LLPO

For P,Q ∈ Σ1, ¬(P ∧ Q)→ ¬P ∨ ¬Q
l

LLPR: (∀x ∈ R)(x ≥ 0 ∨ x ≤ 0)

l
NIL

(∀x , y ∈ R)(xy = 0→ x = 0 ∨ y = 0)

l
IVT: Intermediate value theorem

non-Ω-invariant

LLPO
For P,Q ∈ Σ1, ∼(P ∧ Q) V ∼P V∼Q

WV
LLPR: (∀x ∈ R)(x ≥ 0V x ≤ 0)

WV
NIL
(∀x , y ∈ R)(xy = 0 V x = 0V y = 0)

WV
IVT: Intermediate value theorem

(int. value computed by algo) (int. value computed by Ω-inv. proc.)l
WKL WV WKL WV ∨-Transfer

Axioms of R: ¬(x > 0 ∧ x < 0) Axioms of R: ∼(x > 0 ∧ x < 0)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B II
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LLPO

For P,Q ∈ Σ1, ¬(P ∧ Q)→ ¬P ∨ ¬Q
l

LLPR: (∀x ∈ R)(x ≥ 0 ∨ x ≤ 0)

l
NIL

(∀x , y ∈ R)(xy = 0→ x = 0 ∨ y = 0)

l
IVT: Intermediate value theorem

non-Ω-invariant

LLPO
For P,Q ∈ Σ1, ∼(P ∧ Q) V ∼P V∼Q

WV
LLPR: (∀x ∈ R)(x ≥ 0V x ≤ 0)

WV
NIL
(∀x , y ∈ R)(xy = 0 V x = 0V y = 0)

WV
IVT: Intermediate value theorem

(int. value computed by algo) (int. value computed by Ω-inv. proc.)l
WKL WV WKL WV ∨-Transfer

Axioms of R: ¬(x > 0 ∧ x < 0) Axioms of R: ∼(x > 0 ∧ x < 0)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B II
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LLPO

For P,Q ∈ Σ1, ¬(P ∧ Q)→ ¬P ∨ ¬Q
l

LLPR: (∀x ∈ R)(x ≥ 0 ∨ x ≤ 0)

l
NIL

(∀x , y ∈ R)(xy = 0→ x = 0 ∨ y = 0)

l
IVT: Intermediate value theorem

non-Ω-invariant

LLPO
For P,Q ∈ Σ1, ∼(P ∧ Q) V ∼P V∼Q

WV

LLPR: (∀x ∈ R)(x ≥ 0V x ≤ 0)

WV
NIL
(∀x , y ∈ R)(xy = 0 V x = 0V y = 0)

WV
IVT: Intermediate value theorem

(int. value computed by algo) (int. value computed by Ω-inv. proc.)l
WKL WV WKL WV ∨-Transfer

Axioms of R: ¬(x > 0 ∧ x < 0) Axioms of R: ∼(x > 0 ∧ x < 0)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B II
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LLPO

For P,Q ∈ Σ1, ¬(P ∧ Q)→ ¬P ∨ ¬Q
l

LLPR: (∀x ∈ R)(x ≥ 0 ∨ x ≤ 0)

l
NIL

(∀x , y ∈ R)(xy = 0→ x = 0 ∨ y = 0)

l
IVT: Intermediate value theorem

non-Ω-invariant

LLPO
For P,Q ∈ Σ1, ∼(P ∧ Q) V ∼P V∼Q

WV
LLPR: (∀x ∈ R)(x ≥ 0V x ≤ 0)

WV

NIL
(∀x , y ∈ R)(xy = 0 V x = 0V y = 0)

WV
IVT: Intermediate value theorem

(int. value computed by algo) (int. value computed by Ω-inv. proc.)l
WKL WV WKL WV ∨-Transfer

Axioms of R: ¬(x > 0 ∧ x < 0) Axioms of R: ∼(x > 0 ∧ x < 0)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B II
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LLPO

For P,Q ∈ Σ1, ¬(P ∧ Q)→ ¬P ∨ ¬Q
l

LLPR: (∀x ∈ R)(x ≥ 0 ∨ x ≤ 0)

l
NIL

(∀x , y ∈ R)(xy = 0→ x = 0 ∨ y = 0)

l
IVT: Intermediate value theorem

non-Ω-invariant

LLPO
For P,Q ∈ Σ1, ∼(P ∧ Q) V ∼P V∼Q

WV
LLPR: (∀x ∈ R)(x ≥ 0V x ≤ 0)

WV
NIL
(∀x , y ∈ R)(xy = 0 V x = 0V y = 0)

WV

IVT: Intermediate value theorem
(int. value computed by algo) (int. value computed by Ω-inv. proc.)l

WKL WV WKL WV ∨-Transfer

Axioms of R: ¬(x > 0 ∧ x < 0) Axioms of R: ∼(x > 0 ∧ x < 0)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B II
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LLPO

For P,Q ∈ Σ1, ¬(P ∧ Q)→ ¬P ∨ ¬Q
l

LLPR: (∀x ∈ R)(x ≥ 0 ∨ x ≤ 0)

l
NIL

(∀x , y ∈ R)(xy = 0→ x = 0 ∨ y = 0)

l
IVT: Intermediate value theorem

non-Ω-invariant

LLPO
For P,Q ∈ Σ1, ∼(P ∧ Q) V ∼P V∼Q

WV
LLPR: (∀x ∈ R)(x ≥ 0V x ≤ 0)

WV
NIL
(∀x , y ∈ R)(xy = 0 V x = 0V y = 0)

WV
IVT: Intermediate value theorem

(int. value computed by algo) (int. value computed by Ω-inv. proc.)l
WKL WV WKL WV ∨-Transfer

Axioms of R: ¬(x > 0 ∧ x < 0) Axioms of R: ∼(x > 0 ∧ x < 0)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B II
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LLPO

For P,Q ∈ Σ1, ¬(P ∧ Q)→ ¬P ∨ ¬Q
l

LLPR: (∀x ∈ R)(x ≥ 0 ∨ x ≤ 0)

l
NIL

(∀x , y ∈ R)(xy = 0→ x = 0 ∨ y = 0)

l
IVT: Intermediate value theorem

non-Ω-invariant

LLPO
For P,Q ∈ Σ1, ∼(P ∧ Q) V ∼P V∼Q

WV
LLPR: (∀x ∈ R)(x ≥ 0V x ≤ 0)

WV
NIL
(∀x , y ∈ R)(xy = 0 V x = 0V y = 0)

WV
IVT: Intermediate value theorem

(int. value computed by algo)

(int. value computed by Ω-inv. proc.)l
WKL WV WKL WV ∨-Transfer

Axioms of R: ¬(x > 0 ∧ x < 0) Axioms of R: ∼(x > 0 ∧ x < 0)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B II
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LLPO

For P,Q ∈ Σ1, ¬(P ∧ Q)→ ¬P ∨ ¬Q
l

LLPR: (∀x ∈ R)(x ≥ 0 ∨ x ≤ 0)

l
NIL

(∀x , y ∈ R)(xy = 0→ x = 0 ∨ y = 0)

l
IVT: Intermediate value theorem

non-Ω-invariant

LLPO
For P,Q ∈ Σ1, ∼(P ∧ Q) V ∼P V∼Q

WV
LLPR: (∀x ∈ R)(x ≥ 0V x ≤ 0)

WV
NIL
(∀x , y ∈ R)(xy = 0 V x = 0V y = 0)

WV
IVT: Intermediate value theorem

(int. value computed by algo) (int. value computed by Ω-inv. proc.)

l
WKL WV WKL WV ∨-Transfer

Axioms of R: ¬(x > 0 ∧ x < 0) Axioms of R: ∼(x > 0 ∧ x < 0)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B II
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LLPO

For P,Q ∈ Σ1, ¬(P ∧ Q)→ ¬P ∨ ¬Q
l

LLPR: (∀x ∈ R)(x ≥ 0 ∨ x ≤ 0)

l
NIL

(∀x , y ∈ R)(xy = 0→ x = 0 ∨ y = 0)

l
IVT: Intermediate value theorem

non-Ω-invariant

LLPO
For P,Q ∈ Σ1, ∼(P ∧ Q) V ∼P V∼Q

WV
LLPR: (∀x ∈ R)(x ≥ 0V x ≤ 0)

WV
NIL
(∀x , y ∈ R)(xy = 0 V x = 0V y = 0)

WV
IVT: Intermediate value theorem

(int. value computed by algo) (int. value computed by Ω-inv. proc.)l
WKL WV WKL

WV ∨-Transfer

Axioms of R: ¬(x > 0 ∧ x < 0) Axioms of R: ∼(x > 0 ∧ x < 0)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B II
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LLPO

For P,Q ∈ Σ1, ¬(P ∧ Q)→ ¬P ∨ ¬Q
l

LLPR: (∀x ∈ R)(x ≥ 0 ∨ x ≤ 0)

l
NIL

(∀x , y ∈ R)(xy = 0→ x = 0 ∨ y = 0)

l
IVT: Intermediate value theorem

non-Ω-invariant

LLPO
For P,Q ∈ Σ1, ∼(P ∧ Q) V ∼P V∼Q

WV
LLPR: (∀x ∈ R)(x ≥ 0V x ≤ 0)

WV
NIL
(∀x , y ∈ R)(xy = 0 V x = 0V y = 0)

WV
IVT: Intermediate value theorem

(int. value computed by algo) (int. value computed by Ω-inv. proc.)l
WKL WV WKL WV ∨-Transfer

Axioms of R: ¬(x > 0 ∧ x < 0) Axioms of R: ∼(x > 0 ∧ x < 0)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B II
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LLPO

For P,Q ∈ Σ1, ¬(P ∧ Q)→ ¬P ∨ ¬Q
l

LLPR: (∀x ∈ R)(x ≥ 0 ∨ x ≤ 0)

l
NIL

(∀x , y ∈ R)(xy = 0→ x = 0 ∨ y = 0)

l
IVT: Intermediate value theorem

non-Ω-invariant

LLPO
For P,Q ∈ Σ1, ∼(P ∧ Q) V ∼P V∼Q

WV
LLPR: (∀x ∈ R)(x ≥ 0V x ≤ 0)

WV
NIL
(∀x , y ∈ R)(xy = 0 V x = 0V y = 0)

WV
IVT: Intermediate value theorem

(int. value computed by algo) (int. value computed by Ω-inv. proc.)l
WKL WV WKL WV ∨-Transfer

Axioms of R: ¬(x > 0 ∧ x < 0)

Axioms of R: ∼(x > 0 ∧ x < 0)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B II
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LLPO

For P,Q ∈ Σ1, ¬(P ∧ Q)→ ¬P ∨ ¬Q
l

LLPR: (∀x ∈ R)(x ≥ 0 ∨ x ≤ 0)

l
NIL

(∀x , y ∈ R)(xy = 0→ x = 0 ∨ y = 0)

l
IVT: Intermediate value theorem

non-Ω-invariant

LLPO
For P,Q ∈ Σ1, ∼(P ∧ Q) V ∼P V∼Q

WV
LLPR: (∀x ∈ R)(x ≥ 0V x ≤ 0)

WV
NIL
(∀x , y ∈ R)(xy = 0 V x = 0V y = 0)

WV
IVT: Intermediate value theorem

(int. value computed by algo) (int. value computed by Ω-inv. proc.)l
WKL WV WKL WV ∨-Transfer

Axioms of R: ¬(x > 0 ∧ x < 0) Axioms of R: ∼(x > 0 ∧ x < 0)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B III

BISH (based on BHK) NSA (based on CL)
non-constructive/non-algorithmic

MP: For P ∈ Σ1, ¬¬P → P

l
MPR: (∀x ∈ R)(¬¬(x > 0)→ x > 0)

l
EXT: the extensionality theorem

non-Ω-invariant

MP: For P ∈ Σ1, ∼∼P V P

WV
MPR: (∀x ∈ R)(∼∼(x > 0) V x > 0)

WV
EXT: the extensionality theorem

WLPO: For P ∈ Σ1, ¬¬P ∨ ¬P
l

WLPR: (∀x ∈ R)
[
¬¬(x > 0) ∨ ¬(x > 0)

]
l

DISC:

A discontinuous 2N → N-function exists.

WLPO: For P ∈ Σ1, ∼∼P V∼P
WV

WLPR: (∀x ∈ R)
[
∼∼(x > 0)V∼(x > 0)

]
WV

DISC: A discontinuous

2N → N-function exists.

(Four Remarks)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B III
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

MP: For P ∈ Σ1, ¬¬P → P

l
MPR: (∀x ∈ R)(¬¬(x > 0)→ x > 0)

l
EXT: the extensionality theorem

non-Ω-invariant

MP: For P ∈ Σ1, ∼∼P V P

WV
MPR: (∀x ∈ R)(∼∼(x > 0) V x > 0)

WV
EXT: the extensionality theorem

WLPO: For P ∈ Σ1, ¬¬P ∨ ¬P
l

WLPR: (∀x ∈ R)
[
¬¬(x > 0) ∨ ¬(x > 0)

]
l

DISC:

A discontinuous 2N → N-function exists.

WLPO: For P ∈ Σ1, ∼∼P V∼P
WV

WLPR: (∀x ∈ R)
[
∼∼(x > 0)V∼(x > 0)

]
WV

DISC: A discontinuous

2N → N-function exists.

(Four Remarks)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B III
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

MP: For P ∈ Σ1, ¬¬P → P

l

MPR: (∀x ∈ R)(¬¬(x > 0)→ x > 0)

l
EXT: the extensionality theorem

non-Ω-invariant

MP: For P ∈ Σ1, ∼∼P V P

WV
MPR: (∀x ∈ R)(∼∼(x > 0) V x > 0)

WV
EXT: the extensionality theorem

WLPO: For P ∈ Σ1, ¬¬P ∨ ¬P
l

WLPR: (∀x ∈ R)
[
¬¬(x > 0) ∨ ¬(x > 0)

]
l

DISC:

A discontinuous 2N → N-function exists.

WLPO: For P ∈ Σ1, ∼∼P V∼P
WV

WLPR: (∀x ∈ R)
[
∼∼(x > 0)V∼(x > 0)

]
WV

DISC: A discontinuous

2N → N-function exists.

(Four Remarks)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B III
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

MP: For P ∈ Σ1, ¬¬P → P

l
MPR: (∀x ∈ R)(¬¬(x > 0)→ x > 0)

l

EXT: the extensionality theorem

non-Ω-invariant

MP: For P ∈ Σ1, ∼∼P V P

WV
MPR: (∀x ∈ R)(∼∼(x > 0) V x > 0)

WV
EXT: the extensionality theorem

WLPO: For P ∈ Σ1, ¬¬P ∨ ¬P
l

WLPR: (∀x ∈ R)
[
¬¬(x > 0) ∨ ¬(x > 0)

]
l

DISC:

A discontinuous 2N → N-function exists.

WLPO: For P ∈ Σ1, ∼∼P V∼P
WV

WLPR: (∀x ∈ R)
[
∼∼(x > 0)V∼(x > 0)

]
WV

DISC: A discontinuous

2N → N-function exists.

(Four Remarks)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B III
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

MP: For P ∈ Σ1, ¬¬P → P

l
MPR: (∀x ∈ R)(¬¬(x > 0)→ x > 0)

l
EXT: the extensionality theorem

non-Ω-invariant

MP: For P ∈ Σ1, ∼∼P V P

WV
MPR: (∀x ∈ R)(∼∼(x > 0) V x > 0)

WV
EXT: the extensionality theorem

WLPO: For P ∈ Σ1, ¬¬P ∨ ¬P
l

WLPR: (∀x ∈ R)
[
¬¬(x > 0) ∨ ¬(x > 0)

]
l

DISC:

A discontinuous 2N → N-function exists.

WLPO: For P ∈ Σ1, ∼∼P V∼P
WV

WLPR: (∀x ∈ R)
[
∼∼(x > 0)V∼(x > 0)

]
WV

DISC: A discontinuous

2N → N-function exists.

(Four Remarks)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B III
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

MP: For P ∈ Σ1, ¬¬P → P

l
MPR: (∀x ∈ R)(¬¬(x > 0)→ x > 0)

l
EXT: the extensionality theorem

non-Ω-invariant

MP: For P ∈ Σ1, ∼∼P V P

WV
MPR: (∀x ∈ R)(∼∼(x > 0) V x > 0)

WV
EXT: the extensionality theorem

WLPO: For P ∈ Σ1, ¬¬P ∨ ¬P
l

WLPR: (∀x ∈ R)
[
¬¬(x > 0) ∨ ¬(x > 0)

]
l

DISC:

A discontinuous 2N → N-function exists.

WLPO: For P ∈ Σ1, ∼∼P V∼P
WV

WLPR: (∀x ∈ R)
[
∼∼(x > 0)V∼(x > 0)

]
WV

DISC: A discontinuous

2N → N-function exists.

(Four Remarks)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B III
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

MP: For P ∈ Σ1, ¬¬P → P

l
MPR: (∀x ∈ R)(¬¬(x > 0)→ x > 0)

l
EXT: the extensionality theorem

non-Ω-invariant

MP: For P ∈ Σ1, ∼∼P V P

WV

MPR: (∀x ∈ R)(∼∼(x > 0) V x > 0)

WV
EXT: the extensionality theorem

WLPO: For P ∈ Σ1, ¬¬P ∨ ¬P
l

WLPR: (∀x ∈ R)
[
¬¬(x > 0) ∨ ¬(x > 0)

]
l

DISC:

A discontinuous 2N → N-function exists.

WLPO: For P ∈ Σ1, ∼∼P V∼P
WV

WLPR: (∀x ∈ R)
[
∼∼(x > 0)V∼(x > 0)

]
WV

DISC: A discontinuous

2N → N-function exists.

(Four Remarks)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B III
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

MP: For P ∈ Σ1, ¬¬P → P

l
MPR: (∀x ∈ R)(¬¬(x > 0)→ x > 0)

l
EXT: the extensionality theorem

non-Ω-invariant

MP: For P ∈ Σ1, ∼∼P V P

WV
MPR: (∀x ∈ R)(∼∼(x > 0) V x > 0)

WV

EXT: the extensionality theorem

WLPO: For P ∈ Σ1, ¬¬P ∨ ¬P
l

WLPR: (∀x ∈ R)
[
¬¬(x > 0) ∨ ¬(x > 0)

]
l

DISC:

A discontinuous 2N → N-function exists.

WLPO: For P ∈ Σ1, ∼∼P V∼P
WV

WLPR: (∀x ∈ R)
[
∼∼(x > 0)V∼(x > 0)

]
WV

DISC: A discontinuous

2N → N-function exists.

(Four Remarks)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B III
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

MP: For P ∈ Σ1, ¬¬P → P

l
MPR: (∀x ∈ R)(¬¬(x > 0)→ x > 0)

l
EXT: the extensionality theorem

non-Ω-invariant

MP: For P ∈ Σ1, ∼∼P V P

WV
MPR: (∀x ∈ R)(∼∼(x > 0) V x > 0)

WV
EXT: the extensionality theorem

WLPO: For P ∈ Σ1, ¬¬P ∨ ¬P
l

WLPR: (∀x ∈ R)
[
¬¬(x > 0) ∨ ¬(x > 0)

]
l

DISC:

A discontinuous 2N → N-function exists.

WLPO: For P ∈ Σ1, ∼∼P V∼P
WV

WLPR: (∀x ∈ R)
[
∼∼(x > 0)V∼(x > 0)

]
WV

DISC: A discontinuous

2N → N-function exists.

(Four Remarks)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B III
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

MP: For P ∈ Σ1, ¬¬P → P

l
MPR: (∀x ∈ R)(¬¬(x > 0)→ x > 0)

l
EXT: the extensionality theorem

non-Ω-invariant

MP: For P ∈ Σ1, ∼∼P V P

WV
MPR: (∀x ∈ R)(∼∼(x > 0) V x > 0)

WV
EXT: the extensionality theorem

WLPO: For P ∈ Σ1, ¬¬P ∨ ¬P
l

WLPR: (∀x ∈ R)
[
¬¬(x > 0) ∨ ¬(x > 0)

]
l

DISC:

A discontinuous 2N → N-function exists.

WLPO: For P ∈ Σ1, ∼∼P V∼P
WV

WLPR: (∀x ∈ R)
[
∼∼(x > 0)V∼(x > 0)

]
WV

DISC: A discontinuous

2N → N-function exists.

(Four Remarks)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B III
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

MP: For P ∈ Σ1, ¬¬P → P

l
MPR: (∀x ∈ R)(¬¬(x > 0)→ x > 0)

l
EXT: the extensionality theorem

non-Ω-invariant

MP: For P ∈ Σ1, ∼∼P V P

WV
MPR: (∀x ∈ R)(∼∼(x > 0) V x > 0)

WV
EXT: the extensionality theorem

WLPO: For P ∈ Σ1, ¬¬P ∨ ¬P
l

WLPR: (∀x ∈ R)
[
¬¬(x > 0) ∨ ¬(x > 0)

]
l

DISC:

A discontinuous 2N → N-function exists.

WLPO: For P ∈ Σ1, ∼∼P V∼P
WV

WLPR: (∀x ∈ R)
[
∼∼(x > 0)V∼(x > 0)

]
WV

DISC: A discontinuous

2N → N-function exists.

(Four Remarks)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B III
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

MP: For P ∈ Σ1, ¬¬P → P

l
MPR: (∀x ∈ R)(¬¬(x > 0)→ x > 0)

l
EXT: the extensionality theorem

non-Ω-invariant

MP: For P ∈ Σ1, ∼∼P V P

WV
MPR: (∀x ∈ R)(∼∼(x > 0) V x > 0)

WV
EXT: the extensionality theorem

WLPO: For P ∈ Σ1, ¬¬P ∨ ¬P
l

WLPR: (∀x ∈ R)
[
¬¬(x > 0) ∨ ¬(x > 0)

]
l

DISC:

A discontinuous 2N → N-function exists.

WLPO: For P ∈ Σ1, ∼∼P V∼P
WV

WLPR: (∀x ∈ R)
[
∼∼(x > 0)V∼(x > 0)

]
WV

DISC: A discontinuous

2N → N-function exists.

(Four Remarks)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B III
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

MP: For P ∈ Σ1, ¬¬P → P

l
MPR: (∀x ∈ R)(¬¬(x > 0)→ x > 0)

l
EXT: the extensionality theorem

non-Ω-invariant

MP: For P ∈ Σ1, ∼∼P V P

WV
MPR: (∀x ∈ R)(∼∼(x > 0) V x > 0)

WV
EXT: the extensionality theorem

WLPO: For P ∈ Σ1, ¬¬P ∨ ¬P
l

WLPR: (∀x ∈ R)
[
¬¬(x > 0) ∨ ¬(x > 0)

]
l

DISC:

A discontinuous 2N → N-function exists.

WLPO: For P ∈ Σ1, ∼∼P V∼P
WV

WLPR: (∀x ∈ R)
[
∼∼(x > 0)V∼(x > 0)

]
WV

DISC: A discontinuous

2N → N-function exists.

(Four Remarks)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B III
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

MP: For P ∈ Σ1, ¬¬P → P

l
MPR: (∀x ∈ R)(¬¬(x > 0)→ x > 0)

l
EXT: the extensionality theorem

non-Ω-invariant

MP: For P ∈ Σ1, ∼∼P V P

WV
MPR: (∀x ∈ R)(∼∼(x > 0) V x > 0)

WV
EXT: the extensionality theorem

WLPO: For P ∈ Σ1, ¬¬P ∨ ¬P
l

WLPR: (∀x ∈ R)
[
¬¬(x > 0) ∨ ¬(x > 0)

]
l

DISC:

A discontinuous 2N → N-function exists.

WLPO: For P ∈ Σ1, ∼∼P V∼P
WV

WLPR: (∀x ∈ R)
[
∼∼(x > 0)V∼(x > 0)

]
WV

DISC: A discontinuous

2N → N-function exists.

(Four Remarks)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B III
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

MP: For P ∈ Σ1, ¬¬P → P

l
MPR: (∀x ∈ R)(¬¬(x > 0)→ x > 0)

l
EXT: the extensionality theorem

non-Ω-invariant

MP: For P ∈ Σ1, ∼∼P V P

WV
MPR: (∀x ∈ R)(∼∼(x > 0) V x > 0)

WV
EXT: the extensionality theorem

WLPO: For P ∈ Σ1, ¬¬P ∨ ¬P
l

WLPR: (∀x ∈ R)
[
¬¬(x > 0) ∨ ¬(x > 0)

]
l

DISC:

A discontinuous 2N → N-function exists.

WLPO: For P ∈ Σ1, ∼∼P V∼P
WV

WLPR: (∀x ∈ R)
[
∼∼(x > 0)V∼(x > 0)

]
WV

DISC: A discontinuous

2N → N-function exists.

(Four Remarks)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B III
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

MP: For P ∈ Σ1, ¬¬P → P

l
MPR: (∀x ∈ R)(¬¬(x > 0)→ x > 0)

l
EXT: the extensionality theorem

non-Ω-invariant

MP: For P ∈ Σ1, ∼∼P V P

WV
MPR: (∀x ∈ R)(∼∼(x > 0) V x > 0)

WV
EXT: the extensionality theorem

WLPO: For P ∈ Σ1, ¬¬P ∨ ¬P
l

WLPR: (∀x ∈ R)
[
¬¬(x > 0) ∨ ¬(x > 0)

]
l

DISC:

A discontinuous 2N → N-function exists.

WLPO: For P ∈ Σ1, ∼∼P V∼P
WV

WLPR: (∀x ∈ R)
[
∼∼(x > 0)V∼(x > 0)

]
WV

DISC: A discontinuous

2N → N-function exists.

(Four Remarks)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Ω-invariance is weaker than Recursive

Markov’s principle MP can be reformulated as If it is impossible that a
TM runs forever, then it must halt.

As no algorithmic upper bound on the halting time of the TM is given,

MP is rejected in BISH. The notion of algorithm in BISH is not identical

to ‘recursive’.

Definition (In NSA)

A formula ψ is �1 if ψ WV (∃n ∈ N)ϕ1(n) WV (∀m ∈ N)ϕ2(m).

Theorem (In NSA)

Only given MP, every �1-formula is decidable.

But MP is not available in NSA!



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Ω-invariance is weaker than Recursive

Markov’s principle MP can be reformulated as If it is impossible that a
TM runs forever, then it must halt.

As no algorithmic upper bound on the halting time of the TM is given,

MP is rejected in BISH. The notion of algorithm in BISH is not identical

to ‘recursive’.

Definition (In NSA)

A formula ψ is �1 if ψ WV (∃n ∈ N)ϕ1(n) WV (∀m ∈ N)ϕ2(m).

Theorem (In NSA)

Only given MP, every �1-formula is decidable.

But MP is not available in NSA!



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Ω-invariance is weaker than Recursive

Markov’s principle MP can be reformulated as If it is impossible that a
TM runs forever, then it must halt.

As no algorithmic upper bound on the halting time of the TM is given,

MP is rejected in BISH.

The notion of algorithm in BISH is not identical

to ‘recursive’.

Definition (In NSA)

A formula ψ is �1 if ψ WV (∃n ∈ N)ϕ1(n) WV (∀m ∈ N)ϕ2(m).

Theorem (In NSA)

Only given MP, every �1-formula is decidable.

But MP is not available in NSA!



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Ω-invariance is weaker than Recursive

Markov’s principle MP can be reformulated as If it is impossible that a
TM runs forever, then it must halt.

As no algorithmic upper bound on the halting time of the TM is given,

MP is rejected in BISH. The notion of algorithm in BISH is not identical

to ‘recursive’.

Definition (In NSA)

A formula ψ is �1 if ψ WV (∃n ∈ N)ϕ1(n) WV (∀m ∈ N)ϕ2(m).

Theorem (In NSA)

Only given MP, every �1-formula is decidable.

But MP is not available in NSA!



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Ω-invariance is weaker than Recursive

Markov’s principle MP can be reformulated as If it is impossible that a
TM runs forever, then it must halt.

As no algorithmic upper bound on the halting time of the TM is given,

MP is rejected in BISH. The notion of algorithm in BISH is not identical

to ‘recursive’.

Definition (In NSA)

A formula ψ is �1 if ψ WV (∃n ∈ N)ϕ1(n) WV (∀m ∈ N)ϕ2(m).

Theorem (In NSA)

Only given MP, every �1-formula is decidable.

But MP is not available in NSA!



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Ω-invariance is weaker than Recursive

Markov’s principle MP can be reformulated as If it is impossible that a
TM runs forever, then it must halt.

As no algorithmic upper bound on the halting time of the TM is given,

MP is rejected in BISH. The notion of algorithm in BISH is not identical

to ‘recursive’.

Definition (In NSA)

A formula ψ is �1 if ψ WV (∃n ∈ N)ϕ1(n) WV (∀m ∈ N)ϕ2(m).

Theorem (In NSA)

Only given MP, every �1-formula is decidable.

But MP is not available in NSA!



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Ω-invariance is weaker than Recursive

Markov’s principle MP can be reformulated as If it is impossible that a
TM runs forever, then it must halt.

As no algorithmic upper bound on the halting time of the TM is given,

MP is rejected in BISH. The notion of algorithm in BISH is not identical

to ‘recursive’.

Definition (In NSA)

A formula ψ is �1 if ψ WV (∃n ∈ N)ϕ1(n) WV (∀m ∈ N)ϕ2(m).

Theorem (In NSA)

Only given MP, every �1-formula is decidable.

But MP is not available in NSA!



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Fannying about: FAN∆ vs WKL

FAN∆ (Every detachable bar is uniform) is accepted in INT.

WKL (Every infinite tree T ⊂ 2N has a path) is the classical
contraposition of FAN∆ and rejected in INT.

In BISH, we have WKL → FAN∆, and both are rejected.

What happens in NSA?

WKL(∀n ∈N)(∃α ∈2N)(αn ∈T ) V (∃α ∈2N)(∀n ∈N)(αn ∈ T )

≈ If the trees T and ∗T are (hyper)infinite, they share a path.

FAN∆

(∀α ∈2N)(∃n ∈N)(αn ∈B)V(∃k ∈N)(∀α ∈2N)(∃n ≤ k)(αn∈B)

≈ If a tree T is infinite, it has a path (∗T can be hyperfinite).

In NSA, we have WKL V FAN∆.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Fannying about: FAN∆ vs WKL

FAN∆ (Every detachable bar is uniform) is accepted in INT.

WKL (Every infinite tree T ⊂ 2N has a path)

is the classical
contraposition of FAN∆ and rejected in INT.

In BISH, we have WKL → FAN∆, and both are rejected.

What happens in NSA?

WKL(∀n ∈N)(∃α ∈2N)(αn ∈T ) V (∃α ∈2N)(∀n ∈N)(αn ∈ T )

≈ If the trees T and ∗T are (hyper)infinite, they share a path.

FAN∆

(∀α ∈2N)(∃n ∈N)(αn ∈B)V(∃k ∈N)(∀α ∈2N)(∃n ≤ k)(αn∈B)

≈ If a tree T is infinite, it has a path (∗T can be hyperfinite).

In NSA, we have WKL V FAN∆.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Fannying about: FAN∆ vs WKL

FAN∆ (Every detachable bar is uniform) is accepted in INT.

WKL (Every infinite tree T ⊂ 2N has a path) is the classical
contraposition of FAN∆ and rejected in INT.

In BISH, we have WKL → FAN∆, and both are rejected.

What happens in NSA?

WKL(∀n ∈N)(∃α ∈2N)(αn ∈T ) V (∃α ∈2N)(∀n ∈N)(αn ∈ T )

≈ If the trees T and ∗T are (hyper)infinite, they share a path.

FAN∆

(∀α ∈2N)(∃n ∈N)(αn ∈B)V(∃k ∈N)(∀α ∈2N)(∃n ≤ k)(αn∈B)

≈ If a tree T is infinite, it has a path (∗T can be hyperfinite).

In NSA, we have WKL V FAN∆.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Fannying about: FAN∆ vs WKL

FAN∆ (Every detachable bar is uniform) is accepted in INT.

WKL (Every infinite tree T ⊂ 2N has a path) is the classical
contraposition of FAN∆ and rejected in INT.

In BISH, we have WKL → FAN∆, and both are rejected.

What happens in NSA?

WKL(∀n ∈N)(∃α ∈2N)(αn ∈T ) V (∃α ∈2N)(∀n ∈N)(αn ∈ T )

≈ If the trees T and ∗T are (hyper)infinite, they share a path.

FAN∆

(∀α ∈2N)(∃n ∈N)(αn ∈B)V(∃k ∈N)(∀α ∈2N)(∃n ≤ k)(αn∈B)

≈ If a tree T is infinite, it has a path (∗T can be hyperfinite).

In NSA, we have WKL V FAN∆.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Fannying about: FAN∆ vs WKL

FAN∆ (Every detachable bar is uniform) is accepted in INT.

WKL (Every infinite tree T ⊂ 2N has a path) is the classical
contraposition of FAN∆ and rejected in INT.

In BISH, we have WKL → FAN∆, and both are rejected.

What happens in NSA?

WKL(∀n ∈N)(∃α ∈2N)(αn ∈T ) V (∃α ∈2N)(∀n ∈N)(αn ∈ T )

≈ If the trees T and ∗T are (hyper)infinite, they share a path.

FAN∆

(∀α ∈2N)(∃n ∈N)(αn ∈B)V(∃k ∈N)(∀α ∈2N)(∃n ≤ k)(αn∈B)

≈ If a tree T is infinite, it has a path (∗T can be hyperfinite).

In NSA, we have WKL V FAN∆.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Fannying about: FAN∆ vs WKL

FAN∆ (Every detachable bar is uniform) is accepted in INT.

WKL (Every infinite tree T ⊂ 2N has a path) is the classical
contraposition of FAN∆ and rejected in INT.

In BISH, we have WKL → FAN∆, and both are rejected.

What happens in NSA?

WKL(∀n ∈N)(∃α ∈2N)(αn ∈T ) V (∃α ∈2N)(∀n ∈N)(αn ∈ T )

≈ If the trees T and ∗T are (hyper)infinite, they share a path.

FAN∆

(∀α ∈2N)(∃n ∈N)(αn ∈B)V(∃k ∈N)(∀α ∈2N)(∃n ≤ k)(αn∈B)

≈ If a tree T is infinite, it has a path (∗T can be hyperfinite).

In NSA, we have WKL V FAN∆.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Fannying about: FAN∆ vs WKL

FAN∆ (Every detachable bar is uniform) is accepted in INT.

WKL (Every infinite tree T ⊂ 2N has a path) is the classical
contraposition of FAN∆ and rejected in INT.

In BISH, we have WKL → FAN∆, and both are rejected.

What happens in NSA?

WKL(∀n ∈N)(∃α ∈2N)(αn ∈T ) V (∃α ∈2N)(∀n ∈N)(αn ∈ T )

≈ If the trees T and ∗T are (hyper)infinite, they share a path.

FAN∆

(∀α ∈2N)(∃n ∈N)(αn ∈B)V(∃k ∈N)(∀α ∈2N)(∃n ≤ k)(αn∈B)

≈ If a tree T is infinite, it has a path (∗T can be hyperfinite).

In NSA, we have WKL V FAN∆.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Fannying about: FAN∆ vs WKL

FAN∆ (Every detachable bar is uniform) is accepted in INT.

WKL (Every infinite tree T ⊂ 2N has a path) is the classical
contraposition of FAN∆ and rejected in INT.

In BISH, we have WKL → FAN∆, and both are rejected.

What happens in NSA?

WKL(∀n ∈N)(∃α ∈2N)(αn ∈T ) V (∃α ∈2N)(∀n ∈N)(αn ∈ T )

≈ If the trees T and ∗T are (hyper)infinite, they share a path.

FAN∆

(∀α ∈2N)(∃n ∈N)(αn ∈B)V(∃k ∈N)(∀α ∈2N)(∃n ≤ k)(αn∈B)

≈ If a tree T is infinite, it has a path (∗T can be hyperfinite).

In NSA, we have WKL V FAN∆.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Fannying about: FAN∆ vs WKL

FAN∆ (Every detachable bar is uniform) is accepted in INT.

WKL (Every infinite tree T ⊂ 2N has a path) is the classical
contraposition of FAN∆ and rejected in INT.

In BISH, we have WKL → FAN∆, and both are rejected.

What happens in NSA?

WKL(∀n ∈N)(∃α ∈2N)(αn ∈T ) V (∃α ∈2N)(∀n ∈N)(αn ∈ T )

≈ If the trees T and ∗T are (hyper)infinite, they share a path.

FAN∆

(∀α ∈2N)(∃n ∈N)(αn ∈B)V(∃k ∈N)(∀α ∈2N)(∃n ≤ k)(αn∈B)

≈ If a tree T is infinite, it has a path (∗T can be hyperfinite).

In NSA, we have WKL V FAN∆.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Fannying about: FAN∆ vs WKL

FAN∆ (Every detachable bar is uniform) is accepted in INT.

WKL (Every infinite tree T ⊂ 2N has a path) is the classical
contraposition of FAN∆ and rejected in INT.

In BISH, we have WKL → FAN∆, and both are rejected.

What happens in NSA?

WKL(∀n ∈N)(∃α ∈2N)(αn ∈T ) V (∃α ∈2N)(∀n ∈N)(αn ∈ T )

≈ If the trees T and ∗T are (hyper)infinite, they share a path.

FAN∆

(∀α ∈2N)(∃n ∈N)(αn ∈B)V(∃k ∈N)(∀α ∈2N)(∃n ≤ k)(αn∈B)

≈ If a tree T is infinite, it has a path (∗T can be hyperfinite).

In NSA, we have WKL V FAN∆.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

A note on Coding and Assymetry

Recall that ‘A ∈ T’ means ‘A satisfies Transfer’.

E.g. ‘(∀n ∈ N)ϕ(n) ∈ T’ is [(∀n ∈ N)ϕ(n)→ (∀n ∈ ∗N)ϕ(n)]
E.g. ‘(∃n ∈ ∗N)ϕ(n) ∈ T’ is [(∃n ∈ ∗N)ϕ(n)→ (∃n ∈ N1)ϕ(n)]

Transfer is clearly asymmetric.

First, to make hypernegation ‘∼’ work like intuitionistic negation.

Secondly, for fundamental reasons:

In ‘(∃n0 ∈ ∗N)ϕ(n0)’, the number n0 could be a code for some

f : N→ N (Keisler). If ‘(∃n0 ∈ ∗N)ϕ(n0)’ implies ‘(∃n1 ∈ N)ϕ(n1)’, then

f has a finite code n1 ∈ N, making its graph ∆0.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

A note on Coding and Assymetry

Recall that ‘A ∈ T’ means ‘A satisfies Transfer’.

E.g. ‘(∀n ∈ N)ϕ(n) ∈ T’ is [(∀n ∈ N)ϕ(n)→ (∀n ∈ ∗N)ϕ(n)]

E.g. ‘(∃n ∈ ∗N)ϕ(n) ∈ T’ is [(∃n ∈ ∗N)ϕ(n)→ (∃n ∈ N1)ϕ(n)]

Transfer is clearly asymmetric.

First, to make hypernegation ‘∼’ work like intuitionistic negation.

Secondly, for fundamental reasons:

In ‘(∃n0 ∈ ∗N)ϕ(n0)’, the number n0 could be a code for some

f : N→ N (Keisler). If ‘(∃n0 ∈ ∗N)ϕ(n0)’ implies ‘(∃n1 ∈ N)ϕ(n1)’, then

f has a finite code n1 ∈ N, making its graph ∆0.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

A note on Coding and Assymetry

Recall that ‘A ∈ T’ means ‘A satisfies Transfer’.

E.g. ‘(∀n ∈ N)ϕ(n) ∈ T’ is [(∀n ∈ N)ϕ(n)→ (∀n ∈ ∗N)ϕ(n)]
E.g. ‘(∃n ∈ ∗N)ϕ(n) ∈ T’ is [(∃n ∈ ∗N)ϕ(n)→ (∃n ∈ N1)ϕ(n)]

Transfer is clearly asymmetric.

First, to make hypernegation ‘∼’ work like intuitionistic negation.

Secondly, for fundamental reasons:

In ‘(∃n0 ∈ ∗N)ϕ(n0)’, the number n0 could be a code for some

f : N→ N (Keisler). If ‘(∃n0 ∈ ∗N)ϕ(n0)’ implies ‘(∃n1 ∈ N)ϕ(n1)’, then

f has a finite code n1 ∈ N, making its graph ∆0.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

A note on Coding and Assymetry

Recall that ‘A ∈ T’ means ‘A satisfies Transfer’.

E.g. ‘(∀n ∈ N)ϕ(n) ∈ T’ is [(∀n ∈ N)ϕ(n)→ (∀n ∈ ∗N)ϕ(n)]
E.g. ‘(∃n ∈ ∗N)ϕ(n) ∈ T’ is [(∃n ∈ ∗N)ϕ(n)→ (∃n ∈ N1)ϕ(n)]

Transfer is clearly asymmetric.

First, to make hypernegation ‘∼’ work like intuitionistic negation.

Secondly, for fundamental reasons:

In ‘(∃n0 ∈ ∗N)ϕ(n0)’, the number n0 could be a code for some

f : N→ N (Keisler). If ‘(∃n0 ∈ ∗N)ϕ(n0)’ implies ‘(∃n1 ∈ N)ϕ(n1)’, then

f has a finite code n1 ∈ N, making its graph ∆0.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

A note on Coding and Assymetry

Recall that ‘A ∈ T’ means ‘A satisfies Transfer’.

E.g. ‘(∀n ∈ N)ϕ(n) ∈ T’ is [(∀n ∈ N)ϕ(n)→ (∀n ∈ ∗N)ϕ(n)]
E.g. ‘(∃n ∈ ∗N)ϕ(n) ∈ T’ is [(∃n ∈ ∗N)ϕ(n)→ (∃n ∈ N1)ϕ(n)]

Transfer is clearly asymmetric.

First, to make hypernegation ‘∼’ work like intuitionistic negation.

Secondly, for fundamental reasons:

In ‘(∃n0 ∈ ∗N)ϕ(n0)’, the number n0 could be a code for some

f : N→ N (Keisler). If ‘(∃n0 ∈ ∗N)ϕ(n0)’ implies ‘(∃n1 ∈ N)ϕ(n1)’, then

f has a finite code n1 ∈ N, making its graph ∆0.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

A note on Coding and Assymetry

Recall that ‘A ∈ T’ means ‘A satisfies Transfer’.

E.g. ‘(∀n ∈ N)ϕ(n) ∈ T’ is [(∀n ∈ N)ϕ(n)→ (∀n ∈ ∗N)ϕ(n)]
E.g. ‘(∃n ∈ ∗N)ϕ(n) ∈ T’ is [(∃n ∈ ∗N)ϕ(n)→ (∃n ∈ N1)ϕ(n)]

Transfer is clearly asymmetric.

First, to make hypernegation ‘∼’ work like intuitionistic negation.

Secondly, for fundamental reasons:

In ‘(∃n0 ∈ ∗N)ϕ(n0)’, the number n0 could be a code for some

f : N→ N (Keisler). If ‘(∃n0 ∈ ∗N)ϕ(n0)’ implies ‘(∃n1 ∈ N)ϕ(n1)’, then

f has a finite code n1 ∈ N, making its graph ∆0.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

A note on Coding and Assymetry

Recall that ‘A ∈ T’ means ‘A satisfies Transfer’.

E.g. ‘(∀n ∈ N)ϕ(n) ∈ T’ is [(∀n ∈ N)ϕ(n)→ (∀n ∈ ∗N)ϕ(n)]
E.g. ‘(∃n ∈ ∗N)ϕ(n) ∈ T’ is [(∃n ∈ ∗N)ϕ(n)→ (∃n ∈ N1)ϕ(n)]

Transfer is clearly asymmetric.

First, to make hypernegation ‘∼’ work like intuitionistic negation.

Secondly, for fundamental reasons:

In ‘(∃n0 ∈ ∗N)ϕ(n0)’, the number n0 could be a code for some

f : N→ N (Keisler).

If ‘(∃n0 ∈ ∗N)ϕ(n0)’ implies ‘(∃n1 ∈ N)ϕ(n1)’, then

f has a finite code n1 ∈ N, making its graph ∆0.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

A note on Coding and Assymetry

Recall that ‘A ∈ T’ means ‘A satisfies Transfer’.

E.g. ‘(∀n ∈ N)ϕ(n) ∈ T’ is [(∀n ∈ N)ϕ(n)→ (∀n ∈ ∗N)ϕ(n)]
E.g. ‘(∃n ∈ ∗N)ϕ(n) ∈ T’ is [(∃n ∈ ∗N)ϕ(n)→ (∃n ∈ N1)ϕ(n)]

Transfer is clearly asymmetric.

First, to make hypernegation ‘∼’ work like intuitionistic negation.

Secondly, for fundamental reasons:

In ‘(∃n0 ∈ ∗N)ϕ(n0)’, the number n0 could be a code for some

f : N→ N (Keisler). If ‘(∃n0 ∈ ∗N)ϕ(n0)’ implies ‘(∃n1 ∈ N)ϕ(n1)’, then

f has a finite code n1 ∈ N, making its graph ∆0.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B IV

Same for WMP, FAN∆, BD-N, and MP∨.
Same for ‘mixed’ theorems:

BISH (based on BHK) NSA (based on CL)

LPO ↔ MP+WLPO

MP ↔ WMP + MP∨

WLPO → LLPO

LLPO → MP∨

LPO → BD-N

LLPO → FAN∆

LLPO ↔ WKL

LPO WV MP + WLPO
MP WV WMP + MP∨

WLPO V LLPO
LLPO V MP∨

LPO V BD-N
LLPO V FAN∆

LLPO WV WKL



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B IV

Same for WMP, FAN∆, BD-N, and MP∨.

Same for ‘mixed’ theorems:

BISH (based on BHK) NSA (based on CL)

LPO ↔ MP+WLPO

MP ↔ WMP + MP∨

WLPO → LLPO

LLPO → MP∨

LPO → BD-N

LLPO → FAN∆

LLPO ↔ WKL

LPO WV MP + WLPO
MP WV WMP + MP∨

WLPO V LLPO
LLPO V MP∨

LPO V BD-N
LLPO V FAN∆

LLPO WV WKL



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B IV

Same for WMP, FAN∆, BD-N, and MP∨.
Same for ‘mixed’ theorems:

BISH (based on BHK) NSA (based on CL)

LPO ↔ MP+WLPO

MP ↔ WMP + MP∨

WLPO → LLPO

LLPO → MP∨

LPO → BD-N

LLPO → FAN∆

LLPO ↔ WKL

LPO WV MP + WLPO
MP WV WMP + MP∨

WLPO V LLPO
LLPO V MP∨

LPO V BD-N
LLPO V FAN∆

LLPO WV WKL



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B IV

Same for WMP, FAN∆, BD-N, and MP∨.
Same for ‘mixed’ theorems:

BISH (based on BHK) NSA (based on CL)

LPO ↔ MP+WLPO

MP ↔ WMP + MP∨

WLPO → LLPO

LLPO → MP∨

LPO → BD-N

LLPO → FAN∆

LLPO ↔ WKL

LPO WV MP + WLPO
MP WV WMP + MP∨

WLPO V LLPO
LLPO V MP∨

LPO V BD-N
LLPO V FAN∆

LLPO WV WKL



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B IV

Same for WMP, FAN∆, BD-N, and MP∨.
Same for ‘mixed’ theorems:

BISH (based on BHK) NSA (based on CL)

LPO ↔ MP+WLPO

MP ↔ WMP + MP∨

WLPO → LLPO

LLPO → MP∨

LPO → BD-N

LLPO → FAN∆

LLPO ↔ WKL

LPO WV MP + WLPO
MP WV WMP + MP∨

WLPO V LLPO
LLPO V MP∨

LPO V BD-N
LLPO V FAN∆

LLPO WV WKL



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B IV

Same for WMP, FAN∆, BD-N, and MP∨.
Same for ‘mixed’ theorems:

BISH (based on BHK) NSA (based on CL)

LPO ↔ MP+WLPO

MP ↔ WMP + MP∨

WLPO → LLPO

LLPO → MP∨

LPO → BD-N

LLPO → FAN∆

LLPO ↔ WKL

LPO WV MP + WLPO
MP WV WMP + MP∨

WLPO V LLPO
LLPO V MP∨

LPO V BD-N
LLPO V FAN∆

LLPO WV WKL



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B IV

Same for WMP, FAN∆, BD-N, and MP∨.
Same for ‘mixed’ theorems:

BISH (based on BHK) NSA (based on CL)

LPO ↔ MP+WLPO

MP ↔ WMP + MP∨

WLPO → LLPO

LLPO → MP∨

LPO → BD-N

LLPO → FAN∆

LLPO ↔ WKL

LPO WV MP + WLPO
MP WV WMP + MP∨

WLPO V LLPO
LLPO V MP∨

LPO V BD-N
LLPO V FAN∆

LLPO WV WKL



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B IV

Same for WMP, FAN∆, BD-N, and MP∨.
Same for ‘mixed’ theorems:

BISH (based on BHK) NSA (based on CL)

LPO ↔ MP+WLPO

MP ↔ WMP + MP∨

WLPO → LLPO

LLPO → MP∨

LPO → BD-N

LLPO → FAN∆

LLPO ↔ WKL

LPO WV MP + WLPO
MP WV WMP + MP∨

WLPO V LLPO
LLPO V MP∨

LPO V BD-N
LLPO V FAN∆

LLPO WV WKL



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B IV

Same for WMP, FAN∆, BD-N, and MP∨.
Same for ‘mixed’ theorems:

BISH (based on BHK) NSA (based on CL)

LPO ↔ MP+WLPO

MP ↔ WMP + MP∨

WLPO → LLPO

LLPO → MP∨

LPO → BD-N

LLPO → FAN∆

LLPO ↔ WKL

LPO WV MP + WLPO
MP WV WMP + MP∨

WLPO V LLPO
LLPO V MP∨

LPO V BD-N
LLPO V FAN∆

LLPO WV WKL



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B IV

Same for WMP, FAN∆, BD-N, and MP∨.
Same for ‘mixed’ theorems:

BISH (based on BHK) NSA (based on CL)

LPO ↔ MP+WLPO

MP ↔ WMP + MP∨

WLPO → LLPO

LLPO → MP∨

LPO → BD-N

LLPO → FAN∆

LLPO ↔ WKL

LPO WV MP + WLPO
MP WV WMP + MP∨

WLPO V LLPO
LLPO V MP∨

LPO V BD-N
LLPO V FAN∆

LLPO WV WKL



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B IV

Same for WMP, FAN∆, BD-N, and MP∨.
Same for ‘mixed’ theorems:

BISH (based on BHK) NSA (based on CL)

LPO ↔ MP+WLPO

MP ↔ WMP + MP∨

WLPO → LLPO

LLPO → MP∨

LPO → BD-N

LLPO → FAN∆

LLPO ↔ WKL

LPO WV MP + WLPO
MP WV WMP + MP∨

WLPO V LLPO
LLPO V MP∨

LPO V BD-N
LLPO V FAN∆

LLPO WV WKL



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Constructive Reverse Mathematics under B IV

Same for WMP, FAN∆, BD-N, and MP∨.
Same for ‘mixed’ theorems:

BISH (based on BHK) NSA (based on CL)

LPO ↔ MP+WLPO

MP ↔ WMP + MP∨

WLPO → LLPO

LLPO → MP∨

LPO → BD-N

LLPO → FAN∆

LLPO ↔ WKL

LPO WV MP + WLPO
MP WV WMP + MP∨

WLPO V LLPO
LLPO V MP∨

LPO V BD-N
LLPO V FAN∆

LLPO WV WKL



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Conclusion: NSA ≈ BISH

If BISH ` X then X 6→LPO, LLPO, MP, . . . (princ. rejected in BISH)

If NSA ` Y then Y 6V LPO,LLPO,MP, . . . (not provable in NSA)

Reuniting the antipodes (Palmgren & Moerdijk).

Reverse-engineering Reverse Mathematics (Fuchino-sensei)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Conclusion: NSA ≈ BISH

If BISH ` X then X 6→LPO, LLPO, MP, . . . (princ. rejected in BISH)

If NSA ` Y then Y 6V LPO,LLPO,MP, . . . (not provable in NSA)

Reuniting the antipodes (Palmgren & Moerdijk).

Reverse-engineering Reverse Mathematics (Fuchino-sensei)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Conclusion: NSA ≈ BISH

If BISH ` X then X 6→LPO, LLPO, MP, . . . (princ. rejected in BISH)

If NSA ` Y then Y 6V LPO,LLPO,MP, . . . (not provable in NSA)

Reuniting the antipodes (Palmgren & Moerdijk).

Reverse-engineering Reverse Mathematics (Fuchino-sensei)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Conclusion: NSA ≈ BISH

If BISH ` X then X 6→LPO, LLPO, MP, . . . (princ. rejected in BISH)

If NSA ` Y then Y 6V LPO,LLPO,MP, . . . (not provable in NSA)

Reuniting the antipodes (Palmgren & Moerdijk).

Reverse-engineering Reverse Mathematics (Fuchino-sensei)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.

Can Ω-invariance help capture e.g. Type Theory?

Homotopy:

f (x)

g(x)

•

•

•
�
�

•
�
��

•
��

���

•
PPPPP

@
@
@
@
@

mω(x) ≈

kω(x) ≈

•@@
•

Q
QQ

•
PPPPP

•
PPPPP�

�
�
�
�

•PPPPP•��
���

•⇓ ONE basic step

...
ω basic steps

...

Independent of the choice of ω

≈ Ω-invariant broken-line transformation hω,t of f to g .



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.

Can Ω-invariance help capture e.g. Type Theory?

Homotopy:

f (x)

g(x)

•

•

•
�
�

•
�
��

•
��

���

•
PPPPP

@
@
@
@
@

mω(x) ≈

kω(x) ≈

•@@
•

Q
QQ

•
PPPPP

•
PPPPP�

�
�
�
�

•PPPPP•��
���

•⇓ ONE basic step

...
ω basic steps

...

Independent of the choice of ω

≈ Ω-invariant broken-line transformation hω,t of f to g .



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.

Can Ω-invariance help capture e.g. Type Theory?

Homotopy:

f (x)

g(x)

•

•

•
�
�

•
�
��

•
��

���

•
PPPPP

@
@
@
@
@

mω(x) ≈

kω(x) ≈

•@@
•

Q
QQ

•
PPPPP

•
PPPPP�

�
�
�
�

•PPPPP•��
���

•⇓ ONE basic step

...
ω basic steps

...

Independent of the choice of ω

≈ Ω-invariant broken-line transformation hω,t of f to g .



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.

Can Ω-invariance help capture e.g. Type Theory?

Homotopy:

f (x)

g(x)

•

•

continuous transformation ht of f to g (t ∈ [0, 1]).

•
�
�

•
�
��

•
��

���

•
PPPPP

@
@
@
@
@

mω(x) ≈

kω(x) ≈

•@@
•

Q
QQ

•
PPPPP

•
PPPPP�

�
�
�
�

•PPPPP•��
���

•⇓ ONE basic step

...
ω basic steps

...

Independent of the choice of ω

≈ Ω-invariant broken-line transformation hω,t of f to g .



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.

Can Ω-invariance help capture e.g. Type Theory?

Homotopy:

f (x)

g(x)

•

•

continuous transformation ht of f to g (t ∈ [0, 1]).

ht1(x)

ht2(x)

ht3(x)

...

...

...

•

•h1(x) =

h0(x) =

•
�
�

•
�
��

•
��

���

•
PPPPP

@
@
@
@
@

mω(x) ≈

kω(x) ≈

•@@
•

Q
QQ

•
PPPPP

•
PPPPP�

�
�
�
�

•PPPPP•��
���

•⇓ ONE basic step

...
ω basic steps

...

Independent of the choice of ω

≈ Ω-invariant broken-line transformation hω,t of f to g .



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.

Can Ω-invariance help capture e.g. Type Theory?

Homotopy:

f (x)

g(x)

•

•

•
�
�

•
�
��

•
��

���

•
PPPPP

@
@
@
@
@

mω(x) ≈

kω(x) ≈

•@@
•

Q
QQ

•
PPPPP

•
PPPPP�

�
�
�
�

•PPPPP•��
���

•⇓ ONE basic step

...
ω basic steps

...

Independent of the choice of ω

≈ Ω-invariant broken-line transformation hω,t of f to g .



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.

Can Ω-invariance help capture e.g. Type Theory?

Homotopy:

f (x)

g(x)

•

•

•
�
�

•
�
��

•
��

���

•
PPPPP

@
@
@
@
@

mω(x) ≈

kω(x) ≈

•@@
•

Q
QQ

•
PPPPP

•
PPPPP�

�
�
�
�

•PPPPP•��
���

•⇓

increment is multiple of 1
ω

ONE basic step

...
ω basic steps

...

Independent of the choice of ω

≈ Ω-invariant broken-line transformation hω,t of f to g .



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.

Can Ω-invariance help capture e.g. Type Theory?

Homotopy:

f (x)

g(x)

•

•

•
�
�

•
�
��

•
��

���

•
PPPPP

@
@
@
@
@

mω(x) ≈

kω(x) ≈

•@@
•

Q
QQ

•
PPPPP

•
PPPPP�

�
�
�
�

•PPPPP•��
���

•⇓

increment is multiple of 1
ω

ONE basic step

...
ω basic steps

...

Independent of the choice of ω

≈ Ω-invariant broken-line transformation hω,t of f to g .



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.

Can Ω-invariance help capture e.g. Type Theory?

Homotopy:

f (x)

g(x)

•

•

•
�
�

•
�
��

•
��

���

•
PPPPP

@
@
@
@
@

mω(x) ≈

kω(x) ≈

•@@
•

Q
QQ

•
PPPPP

•
PPPPP�

�
�
�
�

•PPPPP•��
���

•⇓ ONE basic step

...
ω basic steps

...

Independent of the choice of ω

≈ Ω-invariant broken-line transformation hω,t of f to g .



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.

Can Ω-invariance help capture e.g. Type Theory?

Homotopy:

f (x)

g(x)

•

•

•
�
�

•
�
��

•
��

���

•
PPPPP

@
@
@
@
@

mω(x) ≈

kω(x) ≈

•@@
•

Q
QQ

•
PPPPP

•
PPPPP�

�
�
�
�

•PPPPP•��
���

•⇓ ONE basic step

...
ω basic steps

...

Independent of the choice of ω

≈ Ω-invariant broken-line transformation hω,t of f to g .



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.

Can Ω-invariance help capture e.g. Type Theory?

Homotopy:

f (x)

g(x)

•

•

•
�
�

•
�
��

•
��

���

•
PPPPP

@
@
@
@
@

mω(x) ≈

kω(x) ≈

•@@
•

Q
QQ

•
PPPPP

•
PPPPP�

�
�
�
�

•PPPPP•��
���

•⇓ ONE basic step

...
ω basic steps

...

Independent of the choice of ω

≈ Ω-invariant broken-line transformation hω,t of f to g .



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Philosophy of Physics

Why is Mathematics in Physics so constructive/computable?

Indeed, most of Physics can be formalized in BISH (e.g. Gleason’s
theorem).

Yet, in Physics, an informal version of NSA is used to date.
(Weierstraß’ notorious ‘ε-δ’ method was never adopted, neither
was BISH).

Now, in Physics, the end result of a calculation should have
physical meaning (modeling of reality).

A mathematical result with physical meaning will not depend on
the choice of infinite number/infinitesimal used, i.e. it is
Ω-invariant. (Alain Connes)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Philosophy of Physics

Why is Mathematics in Physics so constructive/computable?

Indeed, most of Physics can be formalized in BISH (e.g. Gleason’s
theorem).

Yet, in Physics, an informal version of NSA is used to date.
(Weierstraß’ notorious ‘ε-δ’ method was never adopted, neither
was BISH).

Now, in Physics, the end result of a calculation should have
physical meaning (modeling of reality).

A mathematical result with physical meaning will not depend on
the choice of infinite number/infinitesimal used, i.e. it is
Ω-invariant. (Alain Connes)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Philosophy of Physics

Why is Mathematics in Physics so constructive/computable?

Indeed, most of Physics can be formalized in BISH (e.g. Gleason’s
theorem).

Yet, in Physics, an informal version of NSA is used to date.
(Weierstraß’ notorious ‘ε-δ’ method was never adopted, neither
was BISH).

Now, in Physics, the end result of a calculation should have
physical meaning (modeling of reality).

A mathematical result with physical meaning will not depend on
the choice of infinite number/infinitesimal used, i.e. it is
Ω-invariant. (Alain Connes)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Philosophy of Physics

Why is Mathematics in Physics so constructive/computable?

Indeed, most of Physics can be formalized in BISH (e.g. Gleason’s
theorem).

Yet, in Physics, an informal version of NSA is used to date.

(Weierstraß’ notorious ‘ε-δ’ method was never adopted, neither
was BISH).

Now, in Physics, the end result of a calculation should have
physical meaning (modeling of reality).

A mathematical result with physical meaning will not depend on
the choice of infinite number/infinitesimal used, i.e. it is
Ω-invariant. (Alain Connes)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Philosophy of Physics

Why is Mathematics in Physics so constructive/computable?

Indeed, most of Physics can be formalized in BISH (e.g. Gleason’s
theorem).

Yet, in Physics, an informal version of NSA is used to date.
(Weierstraß’ notorious ‘ε-δ’ method was never adopted, neither
was BISH).

Now, in Physics, the end result of a calculation should have
physical meaning (modeling of reality).

A mathematical result with physical meaning will not depend on
the choice of infinite number/infinitesimal used, i.e. it is
Ω-invariant. (Alain Connes)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Philosophy of Physics

Why is Mathematics in Physics so constructive/computable?

Indeed, most of Physics can be formalized in BISH (e.g. Gleason’s
theorem).

Yet, in Physics, an informal version of NSA is used to date.
(Weierstraß’ notorious ‘ε-δ’ method was never adopted, neither
was BISH).

Now, in Physics, the end result of a calculation should have
physical meaning (modeling of reality).

A mathematical result with physical meaning will not depend on
the choice of infinite number/infinitesimal used, i.e. it is
Ω-invariant. (Alain Connes)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Philosophy of Physics

Why is Mathematics in Physics so constructive/computable?

Indeed, most of Physics can be formalized in BISH (e.g. Gleason’s
theorem).

Yet, in Physics, an informal version of NSA is used to date.
(Weierstraß’ notorious ‘ε-δ’ method was never adopted, neither
was BISH).

Now, in Physics, the end result of a calculation should have
physical meaning (modeling of reality).

A mathematical result with physical meaning will not depend on
the choice of infinite number/infinitesimal used, i.e. it is
Ω-invariant. (Alain Connes)



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Philosophy of Mathematics: Whither Structuralism?

Structuralism ≈ Mathematics is about a single structure.

E.g. first-order arithmetic is about (models isomorphic to) the
standard model N.

Problem: How to exclude the nonstandard models of arithmetic?
(Second-order?, Tennenbaum’s Theorem?)

When life gives you lemons... you make Ω-invariance:

Arithmetic is about a computationally robust variety of structures.

Despite Tennenbaum’s Theorem, one can define
computability/constructivity via Ω-invariance in each nonstandard
model of arithmetic.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Philosophy of Mathematics: Whither Structuralism?

Structuralism ≈ Mathematics is about a single structure.

E.g. first-order arithmetic is about (models isomorphic to) the
standard model N.

Problem: How to exclude the nonstandard models of arithmetic?
(Second-order?, Tennenbaum’s Theorem?)

When life gives you lemons... you make Ω-invariance:

Arithmetic is about a computationally robust variety of structures.

Despite Tennenbaum’s Theorem, one can define
computability/constructivity via Ω-invariance in each nonstandard
model of arithmetic.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Philosophy of Mathematics: Whither Structuralism?

Structuralism ≈ Mathematics is about a single structure.

E.g. first-order arithmetic is about (models isomorphic to) the
standard model N.

Problem: How to exclude the nonstandard models of arithmetic?
(Second-order?, Tennenbaum’s Theorem?)

When life gives you lemons... you make Ω-invariance:

Arithmetic is about a computationally robust variety of structures.

Despite Tennenbaum’s Theorem, one can define
computability/constructivity via Ω-invariance in each nonstandard
model of arithmetic.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Philosophy of Mathematics: Whither Structuralism?

Structuralism ≈ Mathematics is about a single structure.

E.g. first-order arithmetic is about (models isomorphic to) the
standard model N.

Problem: How to exclude the nonstandard models of arithmetic?
(Second-order?, Tennenbaum’s Theorem?)

When life gives you lemons... you make Ω-invariance:

Arithmetic is about a computationally robust variety of structures.

Despite Tennenbaum’s Theorem, one can define
computability/constructivity via Ω-invariance in each nonstandard
model of arithmetic.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Philosophy of Mathematics: Whither Structuralism?

Structuralism ≈ Mathematics is about a single structure.

E.g. first-order arithmetic is about (models isomorphic to) the
standard model N.

Problem: How to exclude the nonstandard models of arithmetic?
(Second-order?, Tennenbaum’s Theorem?)

When life gives you lemons... you make Ω-invariance:

Arithmetic is about a computationally robust variety of structures.

Despite Tennenbaum’s Theorem, one can define
computability/constructivity via Ω-invariance in each nonstandard
model of arithmetic.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Philosophy of Mathematics: Whither Structuralism?

Structuralism ≈ Mathematics is about a single structure.

E.g. first-order arithmetic is about (models isomorphic to) the
standard model N.

Problem: How to exclude the nonstandard models of arithmetic?
(Second-order?, Tennenbaum’s Theorem?)

When life gives you lemons... you make Ω-invariance:

Arithmetic is about a computationally robust variety of structures.

Despite Tennenbaum’s Theorem, one can define
computability/constructivity via Ω-invariance in each nonstandard
model of arithmetic.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Philosophy of Mathematics: Whither Structuralism?

Structuralism ≈ Mathematics is about a single structure.

E.g. first-order arithmetic is about (models isomorphic to) the
standard model N.

Problem: How to exclude the nonstandard models of arithmetic?
(Second-order?, Tennenbaum’s Theorem?)

When life gives you lemons... you make Ω-invariance:

Arithmetic is about a computationally robust variety of structures.

Despite Tennenbaum’s Theorem, one can define
computability/constructivity via Ω-invariance in each nonstandard
model of arithmetic.



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Final Thoughts

And what are these [infinitesimals]? [. . . ] They are neither finite

Quantities nor Quantities infinitely small, nor yet nothing. May we

not call them the ghosts of departed quantities?

George Berkeley, The Analyst

...there are good reasons to believe that Nonstandard Analysis,
in some version or other, will be the analysis of the future.

Kurt Gödel

We thank the John Templeton Foundation for its generous support!

Thank you for your attention!
Any questions?



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Final Thoughts

And what are these [infinitesimals]? [. . . ] They are neither finite

Quantities nor Quantities infinitely small, nor yet nothing. May we

not call them the ghosts of departed quantities?

George Berkeley, The Analyst

...there are good reasons to believe that Nonstandard Analysis,
in some version or other, will be the analysis of the future.

Kurt Gödel

We thank the John Templeton Foundation for its generous support!

Thank you for your attention!
Any questions?



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Final Thoughts

And what are these [infinitesimals]? [. . . ] They are neither finite

Quantities nor Quantities infinitely small, nor yet nothing. May we

not call them the ghosts of departed quantities?

George Berkeley, The Analyst

...there are good reasons to believe that Nonstandard Analysis,
in some version or other, will be the analysis of the future.

Kurt Gödel

We thank the John Templeton Foundation for its generous support!

Thank you for your attention!
Any questions?



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Final Thoughts

And what are these [infinitesimals]? [. . . ] They are neither finite

Quantities nor Quantities infinitely small, nor yet nothing. May we

not call them the ghosts of departed quantities?

George Berkeley, The Analyst

...there are good reasons to believe that Nonstandard Analysis,
in some version or other, will be the analysis of the future.

Kurt Gödel

We thank the John Templeton Foundation for its generous support!

Thank you for your attention!
Any questions?



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Final Thoughts

And what are these [infinitesimals]? [. . . ] They are neither finite

Quantities nor Quantities infinitely small, nor yet nothing. May we

not call them the ghosts of departed quantities?

George Berkeley, The Analyst

...there are good reasons to believe that Nonstandard Analysis,
in some version or other, will be the analysis of the future.

Kurt Gödel

We thank the John Templeton Foundation for its generous support!

Thank you for your attention!

Any questions?



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Final Thoughts

And what are these [infinitesimals]? [. . . ] They are neither finite

Quantities nor Quantities infinitely small, nor yet nothing. May we

not call them the ghosts of departed quantities?

George Berkeley, The Analyst

...there are good reasons to believe that Nonstandard Analysis,
in some version or other, will be the analysis of the future.

Kurt Gödel

We thank the John Templeton Foundation for its generous support!

Thank you for your attention!
Any questions?



Introduction NSA, BISH and Constructive Reverse Mathematics Conclusion

Take-home message

In Nonstandard Analysis, an algorithm is any object whose definition is

independent of the choice of infinitesimal (Ω-invariance).

More technically, we define a translation between Constructive
Analysis (BISH) and Nonstandard Analysis (NSA):

(Proof and Algorithm) in BISH = (Transfer and Ω-invariance) in NSA

Most results from CRM (= RM based on BISH) translate to NSA via a

natural translation B.


