PEANO DOWNSTAIRS

Albert Visser

Department of Philosophy, Faculty of Humanities, Utrecht University

Kotlarski-Ratajczyk Conference

July 25, 2012, Będlewo

Reduction Relations

Two Groups of Theories

The Theory PA-

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Peano Downstairs and Peano Cellar

Reduction Relations

Two Groups of Theories

The Theory PA⁻

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Peano Downstairs and Peano Cellar

Reduction Relations

Two Groups of Theories

The Theory PA-

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Peano Downstairs and Peano Cellar

Reduction Relations

Two Groups of Theories

The Theory PA⁻

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Peano Downstairs and Peano Cellar

Reduction Relations

Two Groups of Theories

The Theory PA-

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Peano Downstairs and Peano Cellar

Reduction Relations

Two Groups of Theories

The Theory PA⁻

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Peano Downstairs and Peano Cellar

Reduction Relations

Two Groups of Theories

The Theory PA-

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Peano Downstairs and Peano Cellar

Reduction Relations

Two Groups of Theories

The Theory PA⁻

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Peano Downstairs and Peano Cellar

Reduction Relations

Two Groups of Theories

The Theory PA-

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Peano Downstairs and Peano Cellar

Reduction Relations

Two Groups of Theories

The Theory PA⁻

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Peano Downstairs and Peano Cellar

Reduction Relations

Two Groups of Theories

The Theory PA-

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Peano Downstairs and Peano Cellar

Reduction Relations

Two Groups of Theories

The Theory PA⁻

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Peano Downstairs and Peano Cellar

Reduction Relations

Two Groups of Theories

The Theory PA-

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Peano Downstairs and Peano Cellar

Reduction Relations

Two Groups of Theories

The Theory PA⁻

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Peano Downstairs and Peano Cellar

Reduction Relations

Two Groups of Theories

The Theory PA-

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Peano Downstairs and Peano Cellar

Reduction Relations

- $V \triangleright U$ iff, there is a *K* with $K : V \triangleright U$. This relation is *interpretability*.
- V ▷_{mod} U iff, for all models M of V, there is an translation τ such that τ̃(M) is a model of U. This relation is *model interpretability*.
- V ⊳_{loc} U iff, for all finitely axiomatized subtheories U₀ of U,
 V ⊳ U₀.
 This relation is *local interpretability*.

Fact: Suppose A is finitely axiomatized. We have:

 $U \triangleright A \Leftrightarrow U \triangleright_{\mathsf{mod}} A.$

Reduction Relations

Two Groups of Theories

The Theory PA-

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Reduction Relations

Two Groups of Theories

The Theory PA⁻

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Peano Downstairs and Peano Cellar

Reduction Relations

Two Groups of Theories

The Theory PA-

Cut-Interpretability

The Σ_{1.n}-Hierarchy

Peano Downstairs and Peano Cellar

Finitely Axiomatized Sequential Theories

S_2^1 , EA, $I\Sigma_1$, ACA₀, GB.

・ロト・日本・日本・日本・日本・日本

Let A be a consistent, finitely axiomatized, sequential theory and let $N : S_2^1 \lhd A$.

- ► There is a Σ_1 -sentence *S* such that $A \triangleright (A + S^N)$ and $A \triangleright (A + \neg S^N)$.
- Suppose A ⊢ Supexp^N. Then the interpretability logic of A w.r.t. N is ILP.
 ⊢ φ ⊳ ψ → □(φ ⊳ ψ).
- There is a Σ_1 -sound $M : S_2^1 \lhd A$.

Reduction Relations

Two Groups of Theories

The Theory PA-

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Peano Downstairs and Peano Cellar

6

Essentially Reflexive Sequential Theories

PA, ZF and their extensions in the same language.

U is *essentially reflexive* (w.r.t. $N : PA^- \triangleleft U$) iff *U* proves the full uniform reflection principle for predicate logic in the signature of *U*. This implies full induction w.r.t. *N*. If *U* is sequential, full induction w.r.t. *N* implies full uniform reflection.

Let U be consistent, sequential and essentially reflexive w.r.t. N.

- ► There is a Δ_2 -sentence *B* such that $U \triangleright (A + B^N)$ and $A \triangleright (A + \neg B^N)$, but no Σ_1 -sentence has this property.
- ► The interpretability logic of *A* w.r.t. *N* is ILM. $\vdash \phi \triangleright \psi \rightarrow (\phi \land \Box \chi) \triangleright (\psi \land \Box \chi).$
- $U + \text{incon}^{N}(U)$ is consistent and no $M : S_{2}^{1} \triangleleft (U + \text{incon}^{N}(U))$ is Σ_{1} -sound.
- U is not locally mutually interpretable with a finitely axiomatized theory.

Reduction Relations

Two Groups of Theories

The Theory PA-

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Peano Downstairs en Peano Cellar

The theories Peano Downstairs (or PA^{\downarrow}) and Peano Cellar (or $PA^{\downarrow\downarrow}$) are in many respects like PA:

- They satisfy an induction principle that is in some respects more like full induction than Σ_n-induction.
- They are sententially essentially reflexive (w.r.t. restricted provability).
- They have no consistent finitely axiomatized extension in the same language. So e.g. PA[↓] is not a subtheory of IΣ_n. It is a subtheory of PA.

On the other hand they are locally weak, i.e. they are locally interpretable (and even cut-interpretable) in PA⁻.

I predict that almost all results of Per Lindstöm's book Aspects of Incompleteness transfer to extensions of $PA^{\downarrow\downarrow}$ / PA^{\downarrow} . But what about model theoretic results? This is far less clear.

Reduction Relations

Two Groups of Theories

The Theory PA-

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Peano Downstairs and Peano Cellar

Reduction Relations

Two Groups of Theories

The Theory PA⁻

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Peano Downstairs and Peano Cellar

Reduction Relations

Two Groups of Theories

The Theory PA-

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Peano Downstairs and Peano Cellar

The Theory PA⁻, 1

The theory PA⁻ is the theory of discretely ordered commutative semirings with a least element.

The theory is mutually interpretable with Robinson's Arithmetic Q. However, PA⁻ has a more mathematical flavor. Moreover, it has the additional good property that it is sequential. This was shown recently by Emil Jeřábek.

The theory PA⁻ is given by the following axioms.

Reduction Relations

Two Groups of Theories

The Theory PA-

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Peano Downstairs and Peano Cellar

The Theory PA⁻, 2

$$\begin{array}{rl} \mathsf{PA}^{-1} & \vdash x + 0 = x \\ \mathsf{PA}^{-2} & \vdash x + y = y + x \\ \mathsf{PA}^{-3} & \vdash (x + y) + z = x + (y + z) \\ \mathsf{PA}^{-4} & \vdash x \cdot 1 = x \\ \mathsf{PA}^{-5} & \vdash x \cdot y = y \cdot x \\ \mathsf{PA}^{-6} & \vdash (x \cdot y) \cdot z = x \cdot (y \cdot z) \\ \mathsf{PA}^{-7} & \vdash x \cdot (y + z) = x \cdot y + x \cdot z \\ \mathsf{PA}^{-8} & \vdash x \leq y \lor y \leq x \\ \mathsf{PA}^{-9} & \vdash (x \leq y \land y \leq z) \rightarrow x \leq z \\ \mathsf{PA}^{-10} & \vdash x + 1 \nleq x \\ \mathsf{PA}^{-11} & \vdash x \leq y \rightarrow (x = y \lor x + 1 \leq y) \\ \mathsf{PA}^{-12} & \vdash x \leq y \rightarrow x + z \leq y + z \\ \mathsf{PA}^{-13} & \vdash x \leq y \rightarrow x \cdot z \leq y \cdot z \end{array}$$

Reduction Relations

Two Groups of Theories

The Theory PA-

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Peano Downstairs and Peano Cellar

The Theory PA⁻, 3

The subtraction axiom is:

sbt $\vdash x \leq y \rightarrow \exists z \; x + z = y$

In many presentations the subtraction axiom is part of the axioms of PA^-. We call $PA_{sbt}^-:=PA^-+sbt.$

sbt is interpretable in PA⁻ on a cut.

Reduction Relations

Two Groups of Theories

The Theory PA-

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Reduction Relations

Two Groups of Theories

The Theory PA⁻

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Peano Downstairs and Peano Cellar

Reduction Relations

Two Groups of Theories

The Theory PA-

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Peano Downstairs and Peano Cellar

We are mostly speaking about *definable* cuts. A definable cut is a virtual class that is downwards closed w.r.t. \leq and closed under successor.

If a cut is closed under addition it is an a-cut. If a cut is closed under addition and multiplication it is an am-cut. Etc.

Solovay's method of shortening cuts: a definable cut can always be shortened to a definable am-cut. And similarly for closure under the any element of the ω_n -hierarchy. Reduction Relations

Two Groups of Theories

The Theory PA-

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Cut-interpretability in PA⁻

A central result: $PA^- \triangleright_{cut} (I\Delta_0 + \Omega_1)$.

Given that exponentiation is undefined for some *n*, there is a unique element \mathfrak{s} , *Solovay's number*, such that supexp(\mathfrak{s}) is defined and supexp($\mathfrak{s} + 1$) is undefined. The following theories are interpretable on a cut:

For
$$k < n$$
: $I\Delta_0 + (Exp \lor \mathfrak{s} \equiv k \pmod{n})$.

•
$$I\Delta_0 + (\Omega_1 \rightarrow \mathsf{Exp}).$$

There are 2^{\aleph_0} theories locally cut-interpretable in PA⁻. To each $\alpha : \omega \to \{0, 1\}$, we assign an extension of I Δ_0 that says: either Exp or the binary expansion of \mathfrak{s} ends with $\ldots \alpha_2 \alpha_1 \alpha_0$. These theories are pairwise incompatible in the sense that their union implies Exp.

Universiteit Utrecht

heories

The Theory PA-

Cut-Interpretability

```
The \Sigma_{1,n}-Hierarchy
```

Reduction Relations

Two Groups of Theories

The Theory PA⁻

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Peano Downstairs and Peano Cellar

Reduction Relations

Two Groups of Theories

The Theory PA-

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Peano Downstairs and Peano Cellar

The Hierarchy Defined

- ► The class $\Sigma_{1,0}$ consists of formulas of the form $\exists \vec{x} S_0(\vec{x}, \vec{y})$, where S_0 is Δ_0 .
- The class $\Sigma_{1,n+1}$ consists of formulas of the form $\exists \vec{x} \forall \vec{y} \leq \vec{t} S_0(\vec{x}, \vec{y})$, where S_0 is $\Sigma_{1,n}$.
- The class $\Sigma_{1,\infty}$ is the union of the $\Sigma_{1,n}$.

In a similar way we define the formula classes $\Pi_{1,n}$ and $\Pi_{1,\infty}$.

Reduction Relations

Two Groups of Theories

The Theory PA

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Collection

The scheme $B\Sigma_1$ is given as follows:

► $\forall a, \vec{z} (\forall x \leq a \exists y A(x, y, \vec{z}) \rightarrow \exists b \forall x \leq a \exists y \leq b A(x, y, \vec{z})),$ where A is Δ_0 .

The scheme $B\Sigma_1^j$ is given as follows:

► $\forall a, \vec{z} \exists u \leq a \forall b (A(u, b, \vec{z}) \rightarrow \forall x \leq a \exists y \leq b A(x, y, \vec{z})),$ where A is Δ_0 .

Over $I\Delta_0$ these schemes coincide (Jeřábek). Note that $B\Sigma_1^j$ is $\Pi_{1,1}.$

Over $PA^- + B\Sigma_1$ the $\Sigma_{1,n}$ -hierarchy collapses to $\Sigma_{1,0}$. Over $I\Delta_0 + \neg B\Sigma_1$ the hierarchy explodes to the full language.

Reduction Relations

wo Groups of heories

The Theory PA-

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Peano Downstairs and Peano Cellar

Marker's Theorem

Suppose \mathcal{M} and \mathcal{N} are countable models of PA⁻ that are jointly recursively saturated. Suppose further that, for all sentences S of $\Sigma_{1,\infty}$, we have: if $\mathcal{M} \models S$, then $\mathcal{N} \models S$. Then there is an initial embedding of \mathcal{M} in \mathcal{N} .

Reduction Relations

Two Groups of Theories

The Theory PA-

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Peano Downstairs and Peano Cellar

Reduction Relations

Two Groups of Theories

The Theory PA⁻

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Peano Downstairs and Peano Cellar

Reduction Relations

Two Groups of Theories

The Theory PA-

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Peano Downstairs and Peano Cellar

Definition of the Theories

- ► $I\Sigma_{\infty}[\Sigma_{1,n}]$ is PA⁻ plus $\vdash S \rightarrow S'$, where *S* is a $\Sigma_{1,n}$ -sentence and where *I* is a PA⁻-cut.
- Peano Cellar is $PA^{\downarrow\downarrow}$ is $I\Sigma_{\infty}[\Sigma_{1,0}]$.
- Peano Downstairs is PA^{\downarrow} is $I\Sigma_{\infty}[\Sigma_{1,1}]$.

The theories have many equivalent formulations. E.g., Peano Cellar is equivalent to $I\Delta_0$ plus: "all Σ_1 -definable elements are in each inductive virtual class."

Each of these theories says that inductive classes / cuts are large. Thus we are looking at a variant of the induction principle. **Reduction Relations**

wo Groups of heories

The Theory PA

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Basic Facts

 \Box_m is provability in predicate logic where all formulas in the proof have complexity $\leq m$.

We have:

- **1.** $\mathbf{PA}^{\downarrow\downarrow} \vdash \mathbf{I\Pi}_1^-$.
- **2.** $\mathsf{PA}^{\downarrow\downarrow} \nvDash \mathrm{B}\Sigma_1$.
- **3.** for $n \ge 1$, $\mathsf{PA}^{\downarrow} = \mathrm{I}\Sigma_{\infty}[\Sigma_{1,n}] = \mathsf{PA}^{\downarrow\downarrow} + \mathrm{B}\Sigma_1$.

4.
$$\mathsf{PA}^{\downarrow\downarrow} \vdash \Box_m A \to A$$
,

for all sentences A in the language of arithmetic.

We say that $PA^{\downarrow\downarrow}$ is sententially essentially reflexive.

In fact $PA^{\downarrow\downarrow}$ is equivalent to the restricted sentential reflection scheme $\Box_m A \rightarrow A$ over CFL, which is $I\Delta_0$ plus "exponentiation is defined for all Σ_1 -definable numbers".

wo Groups of "heories

The Theory PA-

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Peano Downstairs and Peano Cellar

Basic Facts 2

The theories $PA^{\downarrow\downarrow}$ and PA^{\downarrow} do not have a finitely axiomatized extension. So they are subtheories of any of the $I\Sigma_n$. Also they are not mutually interpretable with a finitely axiomatized theory but they are locally mutually interpretable with a finitely axiomatized theory.

 $PA^{\downarrow\downarrow} + Exp$ is not locally mutually interpretable with a finitely axiomatized theory. So, in this respect $PA^{\downarrow\downarrow} + Exp$ is more like PA than $PA^{\downarrow\downarrow}$ is.

EA is Σ_2 -conservative over PA^{$\downarrow\downarrow$} (since it is Σ_2 -conservative over III₁⁻) and PA^{\downarrow} is II₂-conservative over EA.

Reduction Relations

Two Groups of Theories

The Theory PA-

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Local Cut-interpretability

Consider any finite set S of $\Sigma_{1,\infty}$ -sentences. Consider any model \mathcal{M} of PA⁻. The set S splits into S_0 the set of S in S that are true in all definable \mathcal{M} -am-cuts J, and S_1 the set of S in S such that for some definable \mathcal{M} -am-cut J_S we have $\mathcal{M} \models (\neg S)^{J_S}$. Let J^* be the intersection of the J_S for S in S_1 . Then clearly we have $J^*(\mathcal{M}) \models S \rightarrow S^J$, for all am-cuts J and for all $S \in S$.

We may conclude that: $\mathsf{PA}^- \rhd_{\mathsf{mod},\mathsf{cut}} (\mathsf{PA}^- + \{S \to S' \mid \mathsf{am-cut}(I) \text{ and } S \in S\}).$

So, a fortiori: $PA^- \triangleright_{loc,cut} (PA^- + \{S \rightarrow S^I \mid am-cut(I) \text{ and } S \in \Sigma_{1,1}\text{-sent}\}).$ Reduction Relations

Two Groups of Theories

The Theory PA-

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Characterization Theorem

Suppose \mathcal{M} is a countable, recursively saturated model of PA⁻. Then \mathcal{M} satisfies PA^{\downarrow} iff there is a, not necessarily definable, initial embedding of \mathcal{M} into the intersection $\mathcal{J}_{\mathcal{M}}$ of all definable am-cuts in \mathcal{M} .

Thus PA^{\downarrow} is the theory of all countable, recursively saturated models \mathcal{M} that have an initial embedding in $\mathcal{J}_{\mathcal{M}}$.

This uses Marker's theorem plus the fact that, by chronic resplendence, we can extend \mathcal{M} with an non-definable am-cut $\mathcal{I} \subseteq \mathcal{J}_{\mathcal{M}}$ such that every Σ_1 -definable element is in \mathcal{I} , where \mathcal{M} and \mathcal{I} are jointly recursively saturated.

Reduction Relations

Two Groups of Theories

The Theory PA-

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

A Consequence

There is no finitely axiomatizable extension of $PA^{\downarrow\downarrow}$ in the same language. So $PA^{\downarrow\downarrow}$ is not a subtheory of $I\Sigma_n$.

Let *U* be any sequential theory with p-time decidable axiom set. We consider a sentence Θ such that:

$$\mathsf{PA}^- \vdash \Theta \leftrightarrow \forall x \, (\mathsf{con}_x(\mathsf{PA}^{\downarrow\downarrow} + \Theta) \to \mathsf{con}_x(U)).$$

We have:

$$(\mathsf{PA}^{\downarrow\downarrow} + \Theta) \equiv_{\mathsf{loc}} U.$$

Specifically, we have:

$$(\mathsf{PA}^{\downarrow\downarrow} + \Theta) \rhd U$$
 and $U \rhd_{\mathsf{loc}} (\mathsf{PA}^{\downarrow\downarrow} + \Theta)$.

This last result is an immediate adaptation of a result of Per Lindström.

Two Croups of

Two Groups of Theories

The Theory PA-

Cut-Interpretability

The $\Sigma_{1,n}$ -Hierarchy

Peano Downstairs and Peano Cellar

Another Consequence

Suppose *U* is an extension of PA^{\downarrow} and *V* is sequential. Then: $U \triangleright V$ iff, for every countable recursively saturated model \mathcal{N} of *U*, there is a model \mathcal{M} of *V* such that, for every internal model \mathcal{K} of PA^{-} in \mathcal{M} , there is an initial embedding of \mathcal{N} in \mathcal{K} . Reduction Relations

Two Groups of Theories

The Theory PA-

Cut-Interpretability

Γhe Σ_{1.n}-Hierarchy

