Axiom schema for a model of arithmetic with a cut

Tin Lok Wong

Ghent University, Belgium

Joint work with Richard Kaye (Birmingham, UK) and Roman Kossak (City University of New York, USA)

25 July, 2012

*My current appointment is funded by the John Templeton Foundation.

Cuts

Definition

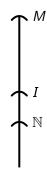
- ► PA stands for first order Peano arithmetic.
- ► A *cut* of a model of PA is a proper nonempty initial segment that is closed under successor, + and ×.

Example

 $\ensuremath{\mathbb{N}}$ is a cut of every nonstandard model of PA.

Why cuts?

- Model theory
- Second order arithmetic
- Nonstandard analysis
- Independence results



Language for cuts

Observation In a model of PA, no cut is definable.

 $\label{eq:logitht} \begin{array}{l} \text{Definition} \\ \mathscr{L}_{\text{cut}} = \{0,1,+,\times,<,\mathbb{I}\} \text{, where } \mathbb{I} \text{ is a unary predicate symbol.} \end{array}$

Definition $PA^{cut} = PA + "I \text{ is a cut"}.$

Convention

We write models of PA^{cut} as pairs (M, I) where $M \models PA$ and I is a cut of M.

Overview

Aim Understand cuts as models of PA^{cut}.

Plan

- 1. Elementary extensions of models of PA
- 2. Elementary extensions of models of PA^{cut}
- 3. Second order strength of $\mathscr{L}_{\mathsf{cut}}$ theories
- 4. Further topics

End extensions and cofinal extensions

Definition

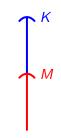
Let M, K be ordered sets and $K \supseteq M$.

▶ K is an *end extension* of M, denoted $K \supset_e M$, if

 $\forall x \in K \setminus M \ \forall y \in M \ y < x.$

• K is a *cofinal extension* of M, denoted $K \supset_{cf} M$, if

 $\forall x \in K \setminus M \; \exists y \in M \; x \leqslant y.$



The Splitting Theorem

Definition

A structure \mathfrak{K} is an *elementary extension* of another structure \mathfrak{M} , denoted $\mathfrak{K} \succ \mathfrak{M}$, if $\mathfrak{K} \supset \mathfrak{M}$ and

$$\mathfrak{M}\models heta(ar{c}) \quad \Leftrightarrow \quad \mathfrak{K}\models heta(ar{c})$$

for all formulas $\theta(\bar{x})$ and all $\bar{c} \in \mathfrak{M}$.

Splitting Theorem

If $K \succ M \models PA$, then there is \overline{M} such that $K \succeq_e \overline{M} \succeq_{cf} M$.

End extensions

Theorem (Mac Dowell–Specker 1961, Keisler 1966, Paris–Kirby 1978)

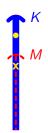
For a countable $M \models I\Delta_0$, the following are equivalent.

- (a) $M \models PA$.
- (b) There is $K \succ_{e} M$.
- (c) There is $K \succ_e M$ that is ω_1 -*like*,

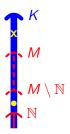
i.e., every proper cut of K is countable, but K is uncountable.

Remark

The regularity scheme plays an important role here.



Cofinal extensions



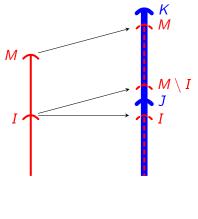
Theorem (Rabin 1962)

For every nonstandard $M \models PA$, there is $K \succ_{cf} M$.

Theorem (Kaye 1991)

The existence of elementary cofinal extensions does not imply PA.

Elementary extensions of models of PA^cut

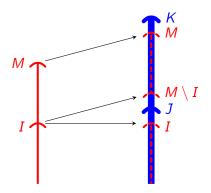


rev(X) denotes the reverse of the ordered set *X*.

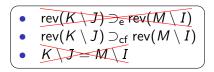
•
$$K \supset_{e} M$$

• $K \supset_{cf} M$
• $rev(K \setminus J) \supset_{e} rev(M \setminus I)$
• $rev(K \setminus J) \supset_{c} rev(M \setminus I)$
• $rev(K \setminus J) \supset_{cf} rev(M \setminus I)$
• $K \setminus J = M \setminus I$
• $J \supset_{cf} I$
• $J \supset_{cf} I$
• $J = I$

End segments



 $\begin{array}{l} K \supset_{\mathsf{e}} M \\ K \supset_{\mathsf{cf}} M \end{array}$



Theorem (Smoryński 1984) If two models of PA share some end segment, then they are equal.

$$\begin{array}{cccc}
\bullet & J \supset_{e} I \\
\bullet & J \supset_{cf} I \\
\bullet & J = I
\end{array}$$

End extensions

Theorem (Smith 1989) If $I \subset_{e} M \prec_{e} K \models PA$, then $(M, I) \prec (K, I)$.

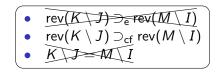
Proof

Back-and-forth in the style of Kotlarski, Smoryński, and Vencovská.

Corollary

For every $(K, J) \succ (M, I)$, there exists \overline{M} such that $(K, J) \succeq_{e} (\overline{M}, J) \succeq_{cf} (M, I)$.

$$\begin{array}{|c|c|c|} \bullet & K \supset_{\rm e} M \\ \bullet & K \supset_{\rm cf} M \end{array} \qquad \checkmark$$



$$\begin{array}{|c|c|c|} \bullet & J \supset_{e} I \\ \bullet & J \supset_{cf} I \\ \bullet & J = I \end{array} a$$

and $K \neq M$

End extending the cut

Theorem

For any countable $(M, I) \models \mathsf{PA}^{\mathsf{cut}}$, the following are equivalent.

- (a) (M, I) satisfies the regularity scheme.
- (b) There is $(K, J) \succ (M, I)$ such that $J \supset_{e} I$.
- (c) There is $(K, J) \succ (M, I)$ such that $J \supset_e I$ and J is ω_1 -like.

Regularity scheme

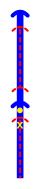
For each formula $\theta(x, y)$ in \mathscr{L}_{cut} ,

$$\forall a \in \mathbb{I} \ (\mathbb{Q}x \in \mathbb{I} \ \exists y < a \ \theta(x, y) \to \exists y < a \ \mathbb{Q}x \in \mathbb{I} \ \theta(x, y)),$$

where $Q \times \in \mathbb{I}$ means "there are cofinally many x in \mathbb{I} ".

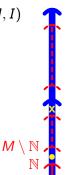
Example

If *M* is a nonstandard model of PA, then $(M, \mathbb{N}) \models$ regularity.



Cofinally extending the cut

Theorem Let $(M, I) \models \mathsf{PA}^{\mathsf{cut}} + \mathsf{regularity}$ in which I is nonstandard. If (M, I) is countable, then there is a countable $(K, J) \succ (M, I)$ such that $J \supset_{\mathsf{cf}} I$.



Preserving the cut

Theorem

For any countable $(M, I) \models \mathsf{PA}^{\mathsf{cut}}$, the following are equivalent.

- (a) (M, I) satisfies the contraregularity scheme.
- (b) There is $(K, I) \succ (M, I)$ in which $rev(K \setminus I) \not\supseteq_{cf} rev(M \setminus I)$.
- (c) There is $(K, I) \succ (M, I)$ in which I has uncountable downward cofinality.

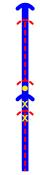
Contraregularity scheme

For each formula $\theta(x, y)$ in \mathscr{L}_{cut} ,

 $\forall x \in \mathbb{I} \ \exists y > \mathbb{I} \ \theta(x, y) \to \exists b > \mathbb{I} \ \forall x \in \mathbb{I} \ \exists y > b \ \theta(x, y).$

Remark

Every model of PA has an elementary extension K such that $(K, \mathbb{N}) \models$ contraregularity.



Downward cofinally extending the complement

Theorem

For any countable $(M, I) \models PA^{cut} + regularity$, the following are equivalent.

- (a) (M, I) satisfies the contraregularity scheme.
- (b) (M, I) satisfies the weak contraregularity scheme, and there is a countable $(K, J) \succ (M, I)$ such that $J \supset_e I$ and $\operatorname{rev}(K \setminus J) \supset_{cf} \operatorname{rev}(M \setminus I)$.
- (c) There is $(K, J) \succ (M, I)$ such that J is ω_1 -like and $K \setminus J$ has countable downward cofinality.

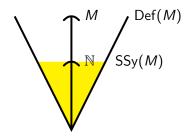
Standard systems

Definition

For a structure \mathfrak{M} , denote by $\mathsf{Def}(\mathfrak{M})$ the collection of all *parametrically* definable subsets of \mathfrak{M} .

Definition (Tennenbaum 1959, Friedman 1973, ...) For a nonstandard $M \models PA$,

 $\mathsf{SSy}(M) = \{X \cap \mathbb{N} : X \in \mathsf{Def}(M)\}.$



Second order arithmetic

- Second order arithmetic lives in first order logic.
- It has a number sort and a set sort.
- Models of second order arithmetic consist of (M, X), where M is the universe for the number sort, and X ⊆ P(M) is the universe for the set sort.

Observation

 $(\mathbb{N}, SSy(M))$ is a model of second order arithmetic whenever $M \models PA$.

Fact

 (M, \mathbb{N}) uniformly interprets $(\mathbb{N}, SSy(M))$ for nonstandard $M \models PA$.

 $\begin{array}{l} \mbox{Problem}\\ \mbox{Given an } \mathscr{L}_{\rm cut} \mbox{ theory } \mathcal{T}, \mbox{ what is} \end{array}$

$$\mathsf{Th}_{\mathbb{N}}(T) = \bigcap \{ \mathsf{Th}(\mathbb{N}, \mathsf{SSy}(M)) : (M, \mathbb{N}) \models \mathsf{PA}^{\mathsf{cut}} + T \}?$$

In particular, where does it sit relative to the Big Five theories

$$\mathsf{RCA}_0,\mathsf{WKL}_0,\mathsf{ACA}_0,\mathsf{ATR}_0,\mathsf{\Pi}_1^1\text{-}\mathsf{CA}_0$$

of reverse mathematics?

Strength of regularity

$$\mathsf{Th}_{\mathbb{N}}(T) = \bigcap \big\{ \mathsf{Th}(\mathbb{N}, \mathsf{SSy}(M)) : (M, \mathbb{N}) \models \mathsf{PA}^{\mathsf{cut}} + T \big\}$$

Regularity scheme

For each formula $\theta(x, y)$ in $\mathscr{L}_{\mathsf{cut}}$,

$$\forall a \in \mathbb{I} \ (\mathbb{Q}x \in \mathbb{I} \ \exists y < a \ \theta(x, y) \to \exists y < a \ \mathbb{Q}x \in \mathbb{I} \ \theta(x, y)),$$

where $Qx \in \mathbb{I}$ means "there are cofinally many x in \mathbb{I} ".

Proposition

 $\mathsf{Th}_{\mathbb{N}}(\mathsf{regularity}) = \mathsf{WKL}_0.$

Proof

- Every $(M, \mathbb{N}) \models \mathsf{PA}^{\mathsf{cut}}$ satisfies the regularity scheme.
- Scott (1962) says a countable X ⊆ P(N) realizes as SSy(M) for some M ⊨ PA if and only if (N, X) ⊨ WKL₀.

Strength of contraregularity

$$\mathsf{Th}_{\mathbb{N}}(T) = \bigcap \big\{ \mathsf{Th}(\mathbb{N}, \mathsf{SSy}(M)) : (M, \mathbb{N}) \models \mathsf{PA}^{\mathsf{cut}} + T \big\}$$

Contraregularity scheme

For each formula $\theta(x, y)$ in \mathscr{L}_{cut} ,

$$\forall x \in \mathbb{I} \ \exists y > \mathbb{I} \ \theta(x, y) \to \exists b > \mathbb{I} \ \forall x \in \mathbb{I} \ \exists y > b \ \theta(x, y).$$

Theorem

 $\mathsf{Th}_{\mathbb{N}}(\mathsf{contraregularity}) \supseteq \mathsf{ACA}_0.$

Proof

Via the Kirby-Paris notion of strong cuts:

$$\forall f \; \exists b > \mathbb{I} \; \forall x \in \mathbb{I} \; (f(x) > \mathbb{I} \to f(x) > b).$$

Saturation

$\mathsf{Th}_{\mathbb{N}}(T) = \bigcap \{\mathsf{Th}(\mathbb{N},\mathsf{SSy}(M)) : (M,\mathbb{N}) \models \mathsf{PA}^{\mathsf{cut}} + T\}$

Strong standard systems implies strong *saturation conditions* when the model is recursively saturated.

Theorem (Wilmers 1975)

A countable $\mathscr{X} \subseteq \mathcal{P}(\mathbb{N})$ realizes as SSy(M) for some recursively saturated $M \models PA$ if and only if $(\mathbb{N}, \mathscr{X}) \models WKL_0$.

Definition (Kaye, Kossak, Kotlarski, Schmerl, ... 1990s) A recursively saturated $M \models PA$ is *arithmetically saturated* if $(\mathbb{N}, SSy(M)) \models ACA_0$.

Transplendency

$\mathsf{Th}_{\mathbb{N}}(T) = \bigcap \big\{ \mathsf{Th}(\mathbb{N}, \mathsf{SSy}(M)) : (M, \mathbb{N}) \models \mathsf{PA}^{\mathsf{cut}} + T \big\}$

Engström and Kaye (2012) introduced a notion of transplendency which ensures the existence of expansions omitting suitably consistent types.

Theorem (Engström-Kaye 2012)

Transplendent $M \models \mathsf{PA}$ make $(\mathbb{N}, \mathsf{SSy}(M)) \prec (\mathbb{N}, \mathcal{P}(\mathbb{N}))$. In particular, $\mathsf{Th}_{\mathbb{N}}(\mathsf{transplendency}) = \mathsf{Th}(\mathbb{N}, \mathcal{P}(\mathbb{N}))$.

Disadvantage

Transplendency may not be axiomatizable in $\mathscr{L}_{\mathsf{cut}}$.

Fullness

$\mathsf{Th}_{\mathbb{N}}(T) = \bigcap \big\{ \mathsf{Th}(\mathbb{N}, \mathsf{SSy}(M)) : (M, \mathbb{N}) \models \mathsf{PA}^{\mathsf{cut}} + T \big\}$

Definition

Let $SSy(M, \mathbb{N}) = \{X \cap \mathbb{N} : X \in Def(M, \mathbb{N})\}$ for $(M, \mathbb{N}) \models PA^{cut}$.

Definition

A nonstandard $M \models PA$ is *full* if $SSy(M, \mathbb{N}) \subseteq SSy(M)$.

Observation

Fullness of a model $M \models PA$ is a first order property of (M, \mathbb{N}) .

Example

If $M \models \mathsf{PA}$ such that $\mathsf{SSy}(M) = \mathcal{P}(\mathbb{N})$, then M is full.

Theorem $Th_{\mathbb{N}}(fullness) \supseteq CA.$

Conclusion

Summary

- $\frac{\text{regularity}}{\text{cut}} = \frac{\text{contraregularity}}{\text{model} \text{cut}}.$
- strength_{\mathbb{N}}(regularity) = WKL₀.
- strength_{\mathbb{N}}(contraregularity) \supseteq ACA₀.

Some further topics

- Definable sets in a model of PA^{cut}
- Elementary extensions of models of set theory