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Cuts

Definition

I PA stands for first order Peano arithmetic.

I A cut of a model of PA is a proper nonempty initial segment
that is closed under successor, + and ×.

I

N

M
Example

N is a cut of every nonstandard model of PA.

Why cuts?

I Model theory

I Second order arithmetic

I Nonstandard analysis

I Independence results



Language for cuts

Observation
In a model of PA, no cut is definable.

Definition
Lcut = {0, 1,+,×, <, I}, where I is a unary predicate symbol.

Definition
PAcut = PA + “I is a cut”.

Convention
We write models of PAcut as pairs (M, I ) where M |= PA and
I is a cut of M.



Overview

Aim
Understand cuts as models of PAcut.

Plan

1. Elementary extensions of models of PA

2. Elementary extensions of models of PAcut

3. Second order strength of Lcut theories

4. Further topics



End extensions and cofinal extensions

K

M

K M

Definition
Let M,K be ordered sets and K ) M.

I K is an end extension of M, denoted K ⊃e M, if

∀x ∈ K \M ∀y ∈ M y < x .

I K is a cofinal extension of M, denoted K ⊃cf M, if

∀x ∈ K \M ∃y ∈ M x 6 y .



The Splitting Theorem

Definition
A structure K is an elementary extension of another structure M,
denoted K �M, if K⊃M and

M |= θ(c̄) ⇔ K |= θ(c̄)

for all formulas θ(x̄) and all c̄ ∈M.

Splitting Theorem

If K � M |= PA, then there is M such that K �e M �cf M.



End extensions

Theorem (Mac Dowell–Specker 1961, Keisler 1966,
Paris–Kirby 1978)

For a countable M |= I∆0, the following are equivalent.

K

M

•

x

(a) M |= PA.

(b) There is K �e M.

(c) There is K �e M that is ω1-like,
i.e., every proper cut of K is countable, but K is uncountable.

Remark
The regularity scheme plays an important role here.



Cofinal extensions

Theorem (Rabin 1962)

For every nonstandard M |= PA, there is K �cf M.

K

N
M \ N

M

x

•

Theorem (Kaye 1991)

The existence of elementary cofinal extensions does not imply PA.



Elementary extensions of models of PAcut

I

M

K

J

M \ I

M

I

• J ⊃e I

• J ⊃cf I

• J = I

• rev(K \ J )⊃e rev(M \ I )
• rev(K \ J )⊃cf rev(M \ I )
• K \ J = M \ I

K \ J is an
end segment
of M \ I .

M \ I is downward
cofinal in K \ J .

• K ⊃e M
• K ⊃cf M

rev(X ) denotes the reverse of the
ordered set X .



End segments

I

M

K

J

M \ I

M

I

Theorem (Smoryński 1984)

If two models of PA share
some end segment, then they
are equal.

• J ⊃e I

• J ⊃cf I

• J = I

• rev(K \ J )⊃e rev(M \ I )
• rev(K \ J )⊃cf rev(M \ I )
• K \ J = M \ I

• K ⊃e M
• K ⊃cf M



End extensions

Theorem (Smith 1989)

If I ⊂e M ≺e K |= PA, then
(M, I ) ≺ (K , I ).

Proof
Back-and-forth in the style of
Kotlarski, Smoryński, and
Vencovská.

Corollary

For every (K , J ) � (M, I ),
there exists M such that

(K , J ) �e (M, J ) �cf (M, I ).

• J ⊃e I

• J ⊃cf I

• J = I and K 6= M

• rev(K \ J )⊃e rev(M \ I )
• rev(K \ J )⊃cf rev(M \ I )
• K \ J = M \ I

• K ⊃e M X
• K ⊃cf M X



End extending the cut

Theorem

•
•
x

For any countable (M, I ) |= PAcut, the following are equivalent.

(a) (M, I ) satisfies the regularity scheme.

(b) There is (K , J ) � (M, I ) such that J ⊃e I .

(c) There is (K , J ) � (M, I ) such that J ⊃e I and J is ω1-like.

Regularity scheme

For each formula θ(x , y) in Lcut,

∀a∈I
(
Qx∈I ∃y<a θ(x , y)→ ∃y<a Qx∈I θ(x , y)

)
,

where Qx∈I means “there are cofinally many x in I”.

Example

If M is a nonstandard model of PA, then (M,N) |= regularity.



Cofinally extending the cut

Theorem

N
M \ N

•
x

•

Let (M, I ) |= PAcut + regularity in which I is nonstandard.
If (M, I ) is countable, then there is a countable (K , J ) � (M, I )
such that J ⊃cf I .



Preserving the cut

Theorem

•
x
x

For any countable (M, I ) |= PAcut, the following are equivalent.

(a) (M, I ) satisfies the contraregularity scheme.

(b) There is (K , I ) � (M, I ) in which rev(K \ I ) 6⊃cf rev(M \ I ).

(c) There is (K , I ) � (M, I ) in which I has uncountable downward
cofinality.

Contraregularity scheme

For each formula θ(x , y) in Lcut,

∀x∈I ∃y>I θ(x , y)→ ∃b>I ∀x∈I ∃y>b θ(x , y).

Remark
Every model of PA has an elementary extension K such that
(K ,N) |= contraregularity.



Downward cofinally extending the complement

xx
•
x

Theorem
For any countable (M, I ) |= PAcut + regularity, the following are
equivalent.

(a) (M, I ) satisfies the contraregularity scheme.

(b) (M, I ) satisfies the weak contraregularity scheme, and
there is a countable (K , J ) � (M, I ) such that J ⊃e I and
rev(K \ J )⊃cf rev(M \ I ).

(c) There is (K , J ) � (M, I ) such that J is ω1-like and K \ J has
countable downward cofinality.



Standard systems

Definition
For a structure M, denote by Def(M) the collection of all
parametrically definable subsets of M.

Definition (Tennenbaum 1959, Friedman 1973, . . . )

For a nonstandard M |= PA,

SSy(M) = {X ∩ N : X ∈ Def(M)}.

N SSy(M)

M Def(M)



Second order arithmetic

I Second order arithmetic lives in first order logic.

I It has a number sort and a set sort.

I Models of second order arithmetic consist of (M,X ),
where M is the universe for the number sort,

and X ⊆ P(M) is the universe for the set sort.

Observation
(N,SSy(M)) is a model of second order arithmetic whenever
M |= PA.

Fact
(M,N) uniformly interprets (N, SSy(M)) for nonstandard M |= PA.



Second order strength

Problem
Given an Lcut theory T , what is

ThN(T ) =
⋂{

Th(N, SSy(M)) : (M,N) |= PAcut + T
}

?

In particular, where does it sit relative to the Big Five theories

RCA0,WKL0,ACA0,ATR0,Π
1
1-CA0

of reverse mathematics?



Strength of regularity

ThN(T ) =
⋂{

Th(N,SSy(M)) : (M,N) |= PAcut + T
}

Regularity scheme

For each formula θ(x , y) in Lcut,

∀a∈I
(
Qx∈I ∃y<a θ(x , y)→ ∃y<a Qx∈I θ(x , y)

)
,

where Qx∈I means “there are cofinally many x in I”.

Proposition

ThN(regularity) = WKL0.

Proof

I Every (M,N) |= PAcut satisfies the regularity scheme.

I Scott (1962) says a countable X ⊆ P(N) realizes as SSy(M)
for some M |= PA if and only if (N,X ) |= WKL0.



Strength of contraregularity

ThN(T ) =
⋂{

Th(N,SSy(M)) : (M,N) |= PAcut + T
}

Contraregularity scheme

For each formula θ(x , y) in Lcut,

∀x∈I ∃y>I θ(x , y)→ ∃b>I ∀x∈I ∃y>b θ(x , y).

Theorem
ThN(contraregularity) ⊇ ACA0.

Proof
Via the Kirby–Paris notion of strong cuts:

∀f ∃b>I ∀x∈I
(
f (x) > I→ f (x) > b

)
.



Saturation

ThN(T ) =
⋂{

Th(N,SSy(M)) : (M,N) |= PAcut + T
}

Strong standard systems implies strong saturation conditions
when the model is recursively saturated.

Theorem (Wilmers 1975)

A countable X ⊆ P(N) realizes as SSy(M) for some recursively
saturated M |= PA if and only if (N,X ) |= WKL0.

Definition (Kaye, Kossak, Kotlarski, Schmerl, . . . 1990s)

A recursively saturated M |= PA is arithmetically saturated if
(N,SSy(M)) |= ACA0.



Transplendency

ThN(T ) =
⋂{

Th(N,SSy(M)) : (M,N) |= PAcut + T
}

Engström and Kaye (2012) introduced a notion of transplendency
which ensures the existence of expansions omitting suitably
consistent types.

Theorem (Engström–Kaye 2012)

Transplendent M |= PA make (N,SSy(M)) ≺ (N,P(N)).
In particular, ThN(transplendency) = Th(N,P(N)).

Disadvantage

Transplendency may not be axiomatizable in Lcut.



Fullness

ThN(T ) =
⋂{

Th(N,SSy(M)) : (M,N) |= PAcut + T
}

Definition
Let SSy(M,N) = {X ∩ N : X ∈ Def(M,N)} for (M,N) |= PAcut.

Definition
A nonstandard M |= PA is full if SSy(M,N) ⊆ SSy(M).

Observation
Fullness of a model M |= PA is a first order property of (M,N).

Example

If M |= PA such that SSy(M) = P(N), then M is full.

Theorem
ThN(fullness) ⊇ CA.



Conclusion

Summary

I
regularity

cut
=

contraregularity

model− cut
.

I strengthN(regularity) = WKL0.

I strengthN(contraregularity) ⊇ ACA0.

Some further topics

I Definable sets in a model of PAcut

I Elementary extensions of models of set theory
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