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Abstract. We consider sl-semantics in which first order sentences are
interpreted in potentially infinite domains. A potentially infinite domain
is a growing sequence of finite models. We prove the completeness the-
orem for first order logic under this semantics. Additionally we charac-
terize the logic of such domains as having a learnable, but not recursive,
set of axioms.

The work is a part of author’s research devoted to computationally mo-
tivated foundations of mathematics.

1 Introduction

We present here some results related to logic of potential infinity. The idea is
slightly unconventional in mathematics of our days. Then we start with intuitions
and some history.

The research reported here is motivated by searching computationally mo-
tivated foundations of mathematics. Inspirations for this search can be found
in pre—computational era, particularly in works by Leopold Kronecker [10] and
David Hilbert [9].

Kronecker postulates that natural numbers are based on counting procedure.
So in every moment only finitely many of them are generated. Of course math-
ematics deals with what can happen further.

Hilbert — evidently influenced by Kronecker — recalled the Aristotelian no-
tions of actual and potential infinity (see [1]). Actually infinite sets simply con-
tain infinitely many members. Potentially infinite sets are finite, but they al-
low arbitrary finite enlargements. These enlargements can be repeated with no
bounds. Any counting procedure determines such potentially infinite set of nat-
ural numbers.

Paradoxically one of the last works on foundations written in the spirit of
potentially infinite mathematics was the Kurt Godel work presenting the first
version of the completeness theorem [4]. He had no tools for semantical con-
siderations on models of arbitrary cardinality,’ then he considered semantical
notions only for finite models. The countable model, which he is constructing, is
determined by finite approximations.

In more recent times the idea was recalled by Jan Mycielski [18] and [19].
In the first paper Mycielski discuss foundations of analysis defined on initial

1 Tt is know that the notion of truth was mathematized a few years later by Alfred
Tarski in [21].



segments of natural numbers. His approach essentially agrees with presented
in this paper. Nevertheless he proposes the general framework in the style of
nonstandard analysis. As a result he leaves finite framework. It seems that My-
cielski’s motivations and intuitions are in agreement with those of our paper.
Nevertheless technically his solutions go in essentially different direction.

Last but not least, let us mention another ancient idea, namely Euclidean
plane geometry as presented in Elements [3]. His fifth postulate “That, if a
straight line falling on two straight lines make the interior angles on the same
side less than two right angles, the two straight lines, if produced indefinitely,
meet on that side on which are the angles less than the two right angles.” ([7],
vol. 1, p. 151) seems to be meaningless when we think of straight lines as actually
given.

This can be easily understood when we recall Aristotle’s explanation from
Physics: “Our account does not rob the mathematicians of their science, by
disproving the actual existence of the infinite in the direction of increase, in the
sense of the untraversable. In point of fact they do not need the infinite and do
not use it. They postulate only that the finite straight line may be produced as
far as they wish.” (see [1]). It means that points on a straight line are added
during our construction.

The fifth common notion of Euclid “The whole is greater than the part.”
([7], vol. 1, p. 151) puts things even stronger. It is simply false when understood
in a spirit of actual infinity.?

Summarizing, plain geometry of Euclid is determined by a sequence of con-
structions which on every stage are finite.

2 Potentially infinite domains

In this section we define sl-semantics or semantics of potential infinity. The idea
of this semantics was formulated in [14], and it was investigated later in a few
papers devoted to finite arithmetics: [17], [16], [13], [11], [12].

2 Quite competent modern commentator Heath tries to interpret The fifth common
notion of Euclid as misunderstanding. He writes ([7], vol. 1, p. 232)

“The whole is greater than the part.

Proclus includes this “axiom” on the same ground as the preceding one. I think
however there is force in the objection which Tannery takes to it, namely that it
replaces a different expression in Eucl. I. 6, where it is stated that “the triangle D BC'
will be equal to the triangle AC B, the less to the greater: which is absurd.” The axiom
appears to be an abstraction or generalisation substituted for an immediate inference
from a geometrical figure, but it takes the form of a sort of definition of whole
and part. The probabilities seem to be against its being genuine, notwithstanding
Proclus’ approval of it.

Clavius added the axiom that the whole is the equal to the sum of its parts.”

Surely Heath knew very well the observation of Bernard Bolzano [2] that infinite
sets are equicardinal with their proper subsets. However for finite sets it cannot
happen. Therefore in potentially infinite domains the fifth common notion of Euclid
is true.



In this paper we consider sl-semantics in general setting. However we start
with recalling some ideas related to arithmetical models for two reasons. Firstly
they adequately explain basic intuitions. Secondly, we need them as examples
for the hardest cases.

2.1 FM-domains

Actually infinite domain of natural numbers is the set N ={0,1,2,...}.

As an explication of potentially infinite domain of natural numbers we mean
the family of finite approximations of the actually infinite domain. This is the
following family:

{0},
{0,1},
{0,1,2},
{0,1,2,3},

Therefore, having an arithmetical model M = (N, Ry, ..., Rs), we define its
potentially infinite version as the family FM (M) = {M;, Ma, M3, ...}, where
M, = (Np,R",...,RS™), N, ={0,1,...,n — 1} and R " is the restriction of
R; to the set {0,1,...,n —1}.

When the the basic model M will be just the standard model of addition and
multiplication then the elements of FM (M) will be called arithmetical models.

2.2 m—domains

Let o be a vocabulary. The set of o—sentences (closed formulae) is denoted by
F,. We assume that all the considered vocabularies are purely relational, it
means that there are no individual constants and function symbols. Moreover
all vocabularies are finite.

Let K be a class of finite models for a given finite relational vocabulary o.
The sl-theory of K, si(K) is the set of all those sentences from F, which are
true in almost all models from K, that is

SIK)={p € F,:3kVM € K(card(M) >k = M = ¢)}.

For a class of finite models K and a formula ¢ we define truth in the limit or
truth in all sufficiently large models relation |= g as follows

K = ¢ if and only if JkYM € K (card(M) > k = M |= ¢).

Thus we can define si(K) equivalently as

sK) ={p € Fy: K [Fg ¢}



Let us observe that if the class K contains only models of cardinality bounded
by some natural number n then si(K) = F,. So sl-theory of this class is in a
sense inconsistent.

A class K of finite c—models is unbounded if and only if for each n there is
M € K such that card(M) > n. The class K will be called unbounded o—class
or simply unbounded class when a vocabulary will be clear from the context.

Unbounded classes containing for each cardinality at most one (up to iso-
morphisms) model approximate in a sense an infinite domain. Such classes
will be called potentially infinite domains, or pi—domains, or m—domains. When
a m—domain K describes an infinite structure in a stronger sense, that is
K = {My, My, Ms,...} and for all n, M,, C M,41, then we say that K is a
proper w—domain.

By MOD, we mean the class of all finite models of vocabulary o. Because
we consider only finite vocabularies then there is only countably many non iso-
morphic models in MOD,,. Moreover we can assume that all finite models are
defined on the initial segments of natural numbers.® Therefore we can assume
that MOD,, is a reasonable, computationally manageable, countable set.

In what follows we will frequently use the set of purely logical sentences
Ainf: {&1,&2,&5, ...}, where &, is the following:

Vay ... Ve, y(zr ZYy A ... Axp #Y).

The sentence &, says that there are more than n objects.

3 Logics of finite models

3.1 Logics Ly and Lﬁn

When a vocabulary o is fixed then sl-logic Lg we define as Ly = s(MOD,).
The logic of finite models L s defined as Lgn = th(MOD,,), where

th(K)={p € F, : M £ ¢, for all M € K}.

Of course we have Lﬁn C L. Additionally the inclusion is proper because
each statement &, for n > 0, belongs to Lg — Lﬁn’ where &, is the following:

Vay .. Ve, y(zr Zy A ... Axp £ y).

Let us define the set A as the union of Lﬁn and Ainf = {&,&, ...}, that
18 Asl = Lﬁn U AZ’I’Lf
Theorem 1. L is the set of all first oder consequences of Ag.
3 Of course it does not mean that we consider only arithmetical models. We use

only the fact that each finite model is isomorphic with a model having the set
{0,1,...,n — 1} as the universe, for some n.



Proof. We know that Ay C L. Moreover, see [14], L is closed on first oder
consequences. Therefore it suffices to prove that for all ¢ € F,, if ¢ € L then
ASl F @.

Let us assume that A I/ ¢. It means that —¢ is consistent with Ay and
particularly the sentence (&, A —¢) is consistent, for arbitrary n. Then (£, A —p)
has a model. We claim that it has a finite model. Let us suppose that it has
no finite model. Then —(&, A —p) € Lﬁn' It follows that &, = ¢ belongs to
L fin' Therefore @ is a first order consequence of A
assumption.

We have proved that the sentence (£, A ~¢) has a finite model, for each n.
Therefore —¢ has arbitrary large finite models and ¢ cannot be true in almost
all finite models, so ¢ & L.

s> What is impossible by our

3.2 Trachtenbrot’s theorem

Trachtenbrot proved that the logic Lg,, is not recursively enumerable. Because
we need here some of the refinements of his theorem then we give here a sketchy
proof of it.

In what follows we need some properties of the Kleene predicate T and his
function U. T'(e,c,n) says that e is a Turing machine and c is its computation
with the input n. U(c) gives the output of the computation ¢. The both T" and
U can be defined by arithmetical formulae with all quantifiers bounded by the
condition “< ¢”. So we get the following:

Lemma 1. There are arithmetical formulae or(x,y,2) and py(x,y) such that
for each e,c,n,m € N and each arithmetical finite model of cardinality greater
than e, c,n,m we have

T(e,c,n) if and only if M |= or(e,c,n)

and
U(c) =m if and only if M |= oy(c,m).

Moreover in models too small — that is of cardinality < ¢ — the formulae are
false.

In other words, the Kleene predicate T and the function U are definable in
finite models.

It is known, see [15], that models isomorphic to finite arithmetical models
can be separated by finite set of axioms in the class of finite models. Then we
have the following.

Lemma 2. Let us assume here that o is the arithmetical vocabulary. There is
a sentence @ such that the class K = {M € MOD, : M = @} contains all
arithmetical models and only models isomorphic to arithmetical models.

Now we can prove the following.



Theorem 2 (Trachtenbrot’s theorem). The set Lgp is 119 —complete.

Proof. From definition it follows that the set L fin is I79. Then we have to show
that all IT?-sets are recursively reducible to L fin: We will show that X9—complete

set H ={(e,n) : IcT(e,c,n)} is recursively reducible to the consistency in finite
models — the problem which is equivalent to the complement of L fin: The set H
is so called “the halting problem”.

We define f : (e,n) — (va A Jepr(e, c,n)). From the construction it follows
that e hallts on the input n if and only if f(e,n) has a finite model.

As a corollary we obtain the following.
Theorem 3. The set Ay is I —complete.
Proof. The set A is the union of two disjoint sets: L fin which is IT)—complete,

and {£1,82,83,...} — which is recursive. Therefore also A is I19-complete.

3.3 Complexity of sl-logic

The main advantage of axiomatic method is the possibility of giving conclusive
arguments for truth of our claims in a way that soundness of these arguments
can be checked in a routine way. Therefore sets of theorems of practically useful
theories have to be recursively enumerable or equivalently X9. This is so because
@ 1S a theorem is equivalent to:

3D (D is a proof for v),

and the relation “is a proof for” should be recursive.

The existence of complete proof procedure is the main advantage of first order
logic in comparison with stronger logical systems. Therefore applicability of first
order logic for theories based on sl-semantics seems to be a good argument for
plausibility of sl-semantics. Unfortunately things are not so simple.

Theorem 4. The set L is X9 —complete.

Proof. In the paper [17] it is proved that for the standard model of arithmetic
M, the set si(FM(M)) is Y9—complete. Therefore it suffices to reduce this set
to L. For any formula ¢, we define f(¢) = (pa = ¢). Then we obtain

@ € s(FM(M)) if and only if f(p) € L.

4 The Completeness Theorem

The classical completeness theorem? says that for each T C F,, and ¢ € F, we

have the equivalence
Tk yeifand only if T = ¢,

4 The completeness theorem was proved for the first time in the earlier mentioned
paper by Kurt Godel [4]. However in this general form it was proved by Leon Henkin
(8].



where on the left side we have the standard provability relation I, and on the
right side we have the standard semantical entailment =. What will happen if
we replace = by =7

In this section we are going to prove the standard completeness is also valid
for sl-semantics.

Now we prove the crucial lemma needed for constructing suitable 7—domains.

Lemma 3. Let T C F, contain sl-logic (Asl CT)and p € Fy,.
If ¢ is consistent with T (T 1/ —p) then for each finite subset {11, ... ,¥,} C
T there are arbitrary large finite models M such that

ME (1A ANy A ).

Proof. Let us assume that T satisfies the assumptions and T' I/ —p. Let us take
any finite subset {¢1,...,%,} C T. Then the formula (1 A ... A, A p) has a
model. We have show that it has a finite model. Let us assume that it has only
infinite models. Then the formula —(1; A ... A, A @) belongs to Lﬁn’ so also
the formula ((¢1 A ... Ay,) = —p) belongs to L - However this means that

T F —p, what contradicts to the assumptions. Therefore there is a finite model
M such that

M (1A A A ).

It remains to prove that M can be arbitrary large. However we can always
put into the considered finite set at the very begining the statement &,,, for
arbitrary large m, so the size of M should be greater than m.

Now we are ready to prove of the main theorem of this section.

Theorem 5 (The Completeness Theorem). For each T C F, containing
Ay (Ag € T) and ¢ € F, we have the equivalence

T+ if and only if T |= g .

Proof. Let T C F,, contain sl-logic (L € T) and ¢ € F.

(=) Let us assume that T F ¢. Then there is a finite subset {1,...,¢¥,} C T
such that ((¢1 A ... Ay,) = ) is a first order tautology.

Let K be m-domain (proper or not) such that K [=g T'. Therefore for each
i = 0,1,...,n there is k; such that 1, is true in all models from K of cardi-
nality greater than k;. We take k = max(kg, k1,...,ky). Then all the sentences
Yo, Y1, - ..,y are true in all models from K of cardinality greater than k. Hence
also ¢ is true in all models from K of cardinality greater than k. This proves
that T ):Sl ®.

(<) Now let us assume that T' I/ . Therefore —¢ is consistent with 7'
Let g, 1,19, ... be enumeration of all sentences from 7. We construct an in-
finite sequence of finite models My, My, Ms, ... such that for all n, card(M,) <
card(Mp,41) and

My = (Yo A1 A A A=),



Let us assume that models My, M, ..., M, _1 were defined. Then, by lemma
3, there is a model M, such that card(M,,) > card(M,,_1) and

My = (Yo A1 Ao A A=),

Finally we take K = {My, My, Ma, ...}. By the construction we have K |=g T
and K =g —p. Therefore T' [= .

Let us consider an example. In our language we have one unary predicate U
and two binary predicates S and R.

Ty = {VavyVy' (S(z, y) A S(@,y") =y =),
Vava'Vy(S(z,y) A S(x',y) = =),
VaIy S(x,y),

Yy3dz S(x,y),

Vavy(S(z,y) = x #y),

I=le U (),

R restricted to U is a linear ordering with S as the successor},

T=T,U Asl'
There is no proper m-domain K such that K =g T

5 Characteristic m—domains

In this section we prove a generalization of the theorem of Micha Krynicki, Jerzy
Tomasik, and Konrad Zdanowski [12].

Theorem 6 (Existence of characteristic /—domains).
For each consistent T' C F, containing Asl (Asl C T) there is a m1—domain
K such that sl(K) is the set of all first order consequences of T

Proof. Let T C F, be a consistent theory such that Asl C T. Let us fix
00, P1, P2, - - . enumeration of all elements of T'. Let g, 11,12, ... be enumer-
ation of all sentences ¢ € F,, such that T F 1. Moreover we assume that all such
1) are repeated infinitely many times in this enumeration.

Now we construct — using lemma 3 — the sequence of models My, My, Mo, . ..
such that for all n: card(M,,) < card(M,41) and

Mn|:(900/\%01/\~--/\90n/\_‘wn)'

Finally we take K = {My, M1, M>,...}.

Now let us assume that 7'+ ¢. Then si(K) F ¢ and ¢ € si(K).

Now let us assume that 7"t/ . Then — by the construction — there are
infinitely many models in K not satisfying ¢. Therefore ¢ & sli(K).



Let us observe that we cannot claim that the above would be a proper 7—
domain. The method applied in the proof of theorem 5 cannot be used here. Let
us consider an example. Take K as the class of all finite fields. We claim that
there is no proper 7—domain K’ such that sli(K) = sl(K").

Let us suppose that there is a proper 7—domain K’ such that si(K) = si(K’).
Let us observe that for F, F’ € K’ if F' C F’ then F is a subfield of F’ in usual
sense and fields I, I are of the same characteristic. Then all the fields in K’
are of the same characteristic, say p. Therefore the sentence x,, saying that the
characteristic is p, belongs to sl(K’), but not to si(K).

6 Some conclusions

We shown that the first order logic is correct and complete inference tool for
sl-semantics. Unfortunately, interesting theories of potentially infinite domains
usually are not axiomatizable in the standard sense. However this is true also for
classical semantics which allows actually infinite models. We have no standard
axiomatization of standard number theory either. Only some partial approxima-
tions are available, such as Peano Arithmetic.

We claim that sl-semantics is in much better situation than the classical
one. The main problem is that we have the set of logical axioms A ; being IT D
complete. Then it cannot be replaced by any recursive set. Nevertheless it is A9,
so it is algorithmically learnable.® The classical number theory is in much worse
position. The arithmetical truth — by the Tarski undefinability of truth theorem
[21] — is beyond the arithmetical hierarchy.
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