FM-representability and beyond

Marcin Mostowski¹ and Konrad Zdanowski²

¹ Department of Logic, Institute of Philosophy, Warsaw University
² Institute of Mathematics, Polish Academy of Science

Abstract. This work concerns representability of arithmetical notions in finite models. It follows the paper by Marcin Mostowski [8], where the notion of FM-representability has been defined. We discuss how far this notion captures the methodological idea of representing infinite sets in finite but potentially infinite domains.

We consider mainly some weakenings of the notion of FM-representability. We prove that relations weakly FM-representable are exactly those being Σ_2^0-definable. Another weakening of the notion, namely statistical representability, turns out to be equivalent to the original one.

Additionally, we consider the complexity of sets of formulae naturally defined in finite models. We state that the set of sentences true in almost all finite arithmetical models is Σ_2^0-complete and that the set of formulae FM-representing some relations is Π_3^0-complete.

1 Introduction

This work concerns mainly the following problem.

\emph{Let us suppose that our world is finite, but not of a restricted size. It means that everywhere it can be enlarged by a finite number of new entities. This assumption says, in Aristotelian words (see [1], Physics, book 3), that the world is finite but potentially infinite. Then, which infinite sets can be reasonably described in our language?}

For simplifying the problem we restrict our attention to sets (and relations) of natural numbers and we assume that our world contains only natural numbers.

Technically, the problem appears when one is trying to transfer some classical ideas into finite-models theoretic framework. It requires frequently a uniform representation for various infinite relations in finite models. As a rule, uniformity means that the representation of a relation is given by one formula. Of course in a single finite model only a finite approximation of any infinite relation can be defined. Therefore we have to consider representability in infinite classes of finite models — intuitively \emph{finite but potentially infinite models}.³ In the paper [8]

³ In the context of foundations of mathematics a very similar approach to potential infinitity is presented by Jan Mycielski in [11].
an attempt to make the notion precise has been made and FM-representability theorem has been proved (see Theorem 5).

Let \(R \) be a set of natural numbers. Then we say that \(R \) is FM-represented by a formula \(\varphi(x) \) if for each initial segment \(I \) of natural numbers \(\varphi(x) \) correctly describes \(R \) for all elements from \(I \) in all sufficiently large finite interpretations. Originally the notion was motivated by an attempt to transfer the Tarski’s method of classifying concepts by means of truth definitions to finite models. In this case we have to describe syntax of considered languages in finite models. Needed syntactical relations are essentially infinite. Therefore, the notion of FM-representability appeared as an answer to this problem.

In this paper we concentrate on the notion of FM-representability and some possible weakenings of it. We show that, in a sense, the notion captures strongly the idea of representing relations in finite models.

2 Basic Notions

We start with the crucial definition of FM-domain.

Definition 1. Let \(\mathcal{R} = \{R_1, \ldots, R_k\} \) be a finite set of arithmetical relations on \(\omega \). By an \(\mathcal{R} \)-domain we mean the model \(\mathcal{A} = (\omega, R_1, \ldots, R_k) \). We consider finite initial segments of these models. Namely, for \(n \geq 1 \), by \(\mathcal{A}_n \) we denote the structure

\[
\mathcal{A}_n = (\{0, \ldots, n-1\}, R_1^n, \ldots, R_k^n),
\]

where, for \(i = 1, \ldots, k \), the relation \(R_i^n \) is the restriction of the relation \(R_i \) to the set \(\{0, \ldots, n-1\} \). We treat \(n \)-ary functions as \(n+1 \)-ary relations.

The FM-domain of \(\mathcal{A} \) (or FM-domain of \(\mathcal{R} \)), denoted by \(\text{FM}(\mathcal{A}) \), is the family \(\{\mathcal{A}_n : n \in \omega\} \).

Throughout this paper we are interested mainly in the family \(\text{FM}(\mathbb{N}) \), for \(\mathbb{N} = (\omega, +, \times) \). By arithmetical formulae we mean first order formulae with addition and multiplication treated as ternary predicates. The standard ordering \(x \leq y \) is definable by the formula \(\exists z \ x + z = y \). Its strict version, \(x < y \), is defined as \(x \leq y \land x \neq y \). The constants 0 and MAX are defined respectively as \(\leq \)-smallest and \(\leq \)-greatest elements. For each \(n \in \omega \), by \(\bar{n} \) we mean the constant denoting the \(n \)-th element in the ordering \(\leq \) counting from 0. If there is no such element we take \(\bar{n} = \text{MAX} \). We write \(x \upharpoonright y \) for \(\exists z \leq y (1 < z \land zx = y) \). It is known that all these notions are definable by bounded formulae. Thus, their interpretations conform to their intended meaning also in models from \(\text{FM}(\mathbb{N}) \).

4 Some consequences of this idea are also discussed in [9], [6].
5 The basics of the method of truth definitions in finite models were formulated in [7].
6 The paper [8] covers [7], giving additionally some refinement of the method. It was applied then in [9], and [1] for classifying finite order concepts in finite models. Some applications of the method for classifying computational complexity classes can be found in [3].
Let us mention, that in [9] a finite axiomatization ST has been presented which characterizes, up to isomorphism, the family $\text{FM}(\mathbb{N})$ within the class of all finite models.

The other notions which we use here are fairly standard, one can consult e.g. [2] and [12] for model or recursion theoretic concepts, respectively. We write \{e\} to denote the partial function computed by the Turing machine with the index e. \{e\}(n) means that the function \{e\} is not defined on n, and \{e\}(n) means that \{e\}(n) is defined. We put $W_e = \{n \in \omega : \{e\}(n)\}$.

We consider the family of $\Sigma^0_n (\Pi^0_n)$ relations which are definable in \mathbb{N} by Σ^0_n (Π^0_n) formulae. Δ^0_n are relations which are definable by Σ^0_n and Π^0_n formulae.

$R \subseteq \omega^r$ is many one reducible to $S \subseteq \omega^s$ ($R \leq m S$) if there exists a total recursive function f such that for all $a_1, \ldots, a_r \in \omega$,

$$(a_1, \ldots, a_r) \in R \text{ if and only if } f(a_1, \ldots, a_r) \in S.$$

A relation S is complete for a class \mathcal{K} if $S \in \mathcal{K}$ and for any other $R \in \mathcal{K}$, $R \leq m S$.

We say that R is Turing reducible to S ($R \leq_T S$) if there is an oracle Turing machine which decides R using S as an oracle. R and S are Turing equivalent if $R \leq_T S$ and $S \leq_T R$. The degree of R, denoted by $\deg(R)$, is the class of all relations which are Turing equivalent to R. In particular, $0'$ is the degree of any recursively enumerable (RE) complete set, and $0''$ is the degree of any Σ^0_2-complete set.

We use bold characters, e.g. a, for valuations in a given model \mathcal{A}. We write $|\mathcal{A}|$ for the universe of a model \mathcal{A}. If $\varphi(x_1, \ldots, x_k)$ is a formula in the vocabulary of \mathcal{A} with all free variables between x_1, \ldots, x_k we write $\mathcal{A} \models \varphi[a_1, \ldots, a_k]$, for $a_1, \ldots, a_k \in |\mathcal{A}|$, when φ holds in \mathcal{A} under any valuation a for which $a(x_i) = a_i$, for $i = 1, \ldots, k$.

Definition 2. Let $\varphi(x_1, \ldots, x_r)$ be an arithmetical formula and $a_1, \ldots, a_r \in \omega$. We say that φ is true of a_1, \ldots, a_r in all sufficiently large finite models ($\models_{s1} \varphi[a_1, \ldots, a_r]$) if and only if $\exists k \forall n \geq k \ N_n \models \varphi[a_1, \ldots, a_r]$ (or, in other words, if φ is true of a_1, \ldots, a_r in almost all finite models from $\text{FM}(\mathbb{N})$).

For each unbounded family of finite models \mathcal{K}, by $\text{sl}(\mathcal{K})$ we denote the set of formulae which are true in almost all models from \mathcal{K}. In particular, $\models_{s1} \varphi$ means that $\varphi \in \text{sl}(\text{FM}(\mathbb{N}))$.

Definition 3. We say that $R \subseteq \omega^r$ is FM-represented by a formula $\varphi(x_1, \ldots, x_r)$ if and only if for each $a_1, \ldots, a_r \in \omega$ both of the following conditions hold:

(i) $\models_{s1} \varphi[a_1, \ldots, a_r]$ if and only if $R(a_1, \ldots, a_r)$.
(ii) $\models_{s1} \neg \varphi[a_1, \ldots, a_r]$ if and only if $\neg R(a_1, \ldots, a_r)$.

We say that R is FM-representable if there is an arithmetical formula φ which FM-represents R.

The notion of FM-representability has been defined in [8] in a slightly different way. We summarize various equivalent conditions in the following
Proposition 4. Let \(R \subseteq \omega^r \) and \(\varphi(x_1, \ldots, x_r) \) be a formula in a vocabulary of \(\text{FM}(\mathbb{N}) \). The following conditions are equivalent:

1. \(\varphi(x_1, \ldots, x_r) \) \(\text{FM} \)-represents \(R \),
2. for each \(m \) there is \(k \) such that for all \(a_1, \ldots, a_r \leq m \),

\[
R(a_1, \ldots, a_r) \text{ if and only if } \mathbb{N}_i \models \varphi[a_1, \ldots, a_r],
\]

for all \(i \geq k \).

The second condition expresses the intuition that \(\varphi \) \(\text{FM} \)-represents \(R \) in \(\text{FM}(\mathbb{N}) \) if each finite fragment of \(R \) is correctly described by \(\varphi \) in all sufficiently large models from \(\text{FM}(\mathbb{N}) \).

The main characterization of the notion of \(\text{FM} \)-representability is given by the following

Theorem 5 (\(\text{FM} \)-representability theorem, see [8]). Let \(R \subseteq \omega^r \). \(R \) is \(\text{FM} \)-representable if and only if \(R \) is of degree \(\leq 0' \) (or, equivalently, is \(\Delta^0_1 \)-definable).

The theorem does not depend on the strength of the underlying logic provided that the truth relation for this logic restricted to finite models is recursive and it contains first order logic. On the other hand, it is surprising that the theorem requires relatively weak arithmetical notions. In [5] it is proved that it holds in \(\text{FM} \)-domain of multiplication. It is improved in [10] to the divisibility relation.

3 Weak \(\text{FM} \)-representability

As the most natural weakening of the notion of the notion of \(\text{FM} \)-representability we consider the following

Definition 6. A relation \(R \subseteq \omega^r \) is weakly \(\text{FM} \)-representable if there is a formula \(\varphi(x_1, \ldots, x_r) \) with all free variables among \(x_1, \ldots, x_r \) such that for all \(a_1, \ldots, a_r \in \omega \),

\[
(a_1, \ldots, a_r) \in A \text{ if and only if } \models_{\text{sl}} \varphi[a_1, \ldots, a_r].
\]

Since the definition of \(\models_{\text{sl}} \varphi \) can be expressed as a \(\Sigma^0_2 \)-sentence the following holds.

Fact 7 Let \(R \subseteq \omega^r \). If \(R \) is weakly \(\text{FM} \)-representable, then \(R \in \Sigma^0_2 \).

The reverse of the implication from Fact 7 will be proved after evaluating the degree of the theory \(\text{sl}(\text{FM}(\mathbb{N})) \).

As an analogue of the relation between \(\text{FM} \)-representability and weak \(\text{FM} \)-representability we recall the relation between strong and weak representability in Peano arithmetic. We say that a relation \(R \subseteq \omega^r \) is strongly PA-representable
if there is a PA-formula $\varphi(x_1,\ldots,x_r)$ with all free variables among x_1,\ldots,x_r such that for all $n_1,\ldots,n_r \in \omega$,

\[
(n_1,\ldots,n_r) \in R \iff \text{PA} \vdash \varphi(\bar{n}_1,\ldots,\bar{n}_r)
\]

\[
(n_1,\ldots,n_r) \notin R \iff \text{PA} \vdash \neg \varphi(\bar{n}_1,\ldots,\bar{n}_r).
\]

$R \subseteq \omega^r$ is weakly PA-representable if there is a PA-formula $\varphi(x_1,\ldots,x_r)$ with all free variables among x_1,\ldots,x_r such that for all $n_1,\ldots,n_r \in \omega$,

\[
(n_1,\ldots,n_r) \in R \iff \text{PA} \vdash \varphi(\bar{n}_1,\ldots,\bar{n}_r).
\]

A relation R is strongly PA-representable if and only if it is decidable. R is weakly PA-representable if and only if R is recursively enumerable. If R and its complement are weakly PA-representable, then R is strongly PA-representable. We state the analogous fact for FM-representability and weak FM-representability. It follows easily from the known relations between the classes Σ^0_2 and Δ^0_2.

Fact 8 Let $R \subseteq \omega^r$. R and $\omega^r - R$ are weakly FM-representable if and only if R is FM-representable.

Below, we prove the stronger fact that weakly FM-representable relations are exactly the Σ^0_2 relations.

Firstly, we consider some properties of coding computations and the formula $\text{Comp}(e,c)$ which says that c is a finished computation of the machine e. (Here and in what follows by a Turing machine we mean a deterministic Turing machine.) We construct $\text{Comp}(e,c)$ using Kleene predicate $T(e,x,c)$, which means that c is a finished e-computation with the input x. It is known that this predicate is definable by an arithmetical formula with all quantifiers bounded by c. Moreover, if $T(e,x,c)$ then $e < c$ and $x < c$. We define $\text{Comp}(e,c)$ as $\exists x < c T(e,x,c)$.

Now let us state a few facts about the formula $\text{Comp}(e,c)$. All quantifiers in $\text{Comp}(e,c)$ are bounded c. It follows that the truth value of $\text{Comp}(e,c)$ in a given model M does not depend on the elements in M greater than c and that $\text{Comp}(e,c)$ will hold in a given model $M \in \text{FM}(\mathbb{N})$ as soon as the code of the computation appears in M.

Now, we state the lemma summarizing these considerations.

Lemma 9. There is a formula $\text{Comp}(x,y)$ such that

\[
\forall e \forall c \forall M \in \text{FM}(\mathbb{N})(\text{card}(M) > c \Rightarrow (c \text{ is a finished computation of } e \iff M \models \text{Comp}[e,c])).
\]

Definition 10. By Fin we mean the set of indices of Turing Machines having finite domains, i.e.,

\[
\text{Fin} = \{e \in \omega : \exists n \in \omega \text{ card}(W_e) = n\}.
\]
By a well known result from recursion theory (see e.g. [12]) Fin is Σ^0_2-complete.

Lemma 11. Fin is weakly FM-representable.

Proof. Let $\varphi(x)$ be the formula $\neg\text{Comp}(x, \text{MAX})$, where $\text{Comp}(x, y)$ is the formula from the last lemma. By properties of Comp stated there, for all e,

$$e \in \text{Fin} \text{ if and only if } \models_{sl} \varphi[e].$$

If $e \in \text{Fin}$ then there are only finitely many finished computations of e. (Here, we use the assumption that all machines are deterministic.) In this case φ is true of e in all models in which MAX is greater than the biggest computation of e. On the other hand, if $\models_{sl} \varphi[e]$, then there are only finitely many finished computations of e. Thus, the domain of e is also finite.

Thus, Fin is weakly FM-representable. \square

We have the following lemma.

Lemma 12. The family of weakly FM-representable relations is closed on many-one reductions.

Proof. For simplicity we consider only sets $A, B \subseteq \omega$. Let $f : \omega \to \omega$ be a reduction from A to B that is for all z,

$$z \in A \text{ if and only if } f(z) \in B$$

and let $\varphi_B(x)$ weakly FM-represent B. Additionally, let $\psi_f(x, y)$ FM-represent the graph of f. Now, the following formula $\varphi_A(x)$ FM-represents A,

$$\exists y \psi_f(x, y) \land \forall y' < y - \psi_f(x, y') \land \varphi_B(y').$$

Here, we need to add the conjunct $\forall y' < y - \psi_f(x, y')$ to force the uniqueness of y. \square

As a corollary from Lemmas 11 and 12 we obtain the following characterization of weak FM-representability.

Theorem 13. Let $R \subseteq \omega^\omega$. R is weakly FM-representable if and only if A is Σ^0_2.

Now, we are in a position to solve some questions which were put, explicitly or implicitly, in [8]. Let us recall that $\text{sl}(\text{FM}(N)) = \{ \varphi : \models_{sl} \varphi \}$. So, $\text{sl}(\text{FM}(N))$ is the theory of almost all finite models from FM(N). By the definition of \models_{sl} the above set is in Σ^0_2.

In [8], it was proven by the method of undefinability of truth, that

$$0' < \deg(\text{sl}(\text{FM}(N))) \leq 0''.$$

Here we strengthen this result by the following,
Theorem 14. \(\text{sl}(\text{FM}(N)) \) is \(\Sigma^0_2 \)-complete, so its degree is \(0'' \).

Proof. We know that \(\text{sl}(\text{FM}(N)) \) is \(\Sigma^0_2 \). It is \(\Sigma^0_2 \)-complete by the procedure from the proof of Lemma 11 which reduces \(\text{Fin} \) to \(\text{sl}(\text{FM}(N)) \). We put \(f(e) = \neg \text{Comp}(\bar{e}, \text{MAX}) \). By properties of \(\text{Comp}(x, y) \) we obtain:

\[e \in \text{Fin} \text{ if and only if } f(e) \in \text{sl}(\text{FM}(N)). \]

Since \(\text{Fin} \) is \(\Sigma^0_2 \)-complete, \(\text{sl}(\text{FM}(N)) \) is too. \(\square \)

Let us observe that the degree of \(\text{sl}(\text{FM}(N)) \) does not depend on the underlying logic provided it has decidable “truth in a finite model” relation and contains first order logic.

Now, let us consider the complexity of the question whether a given formula \(\varphi(x_1, \ldots, x_k) \) with free variables \(x_1, \ldots, x_k \) FM-represents some relation in \(\text{FM}(N) \). Let us define the set

\[F_{\text{Det}} = \{ \varphi(x_1, \ldots, x_k) : \varphi \in \omega \text{ or } \neg \varphi \} \]

\(F_{\text{Det}} \) is the set of formulae which are determined for all substitutions of constant numerical terms for their free variables. In other words, this is the set of formulae which FM-represent some concepts.

We have the following theorem characterizing the degree of \(F_{\text{Det}} \).

Theorem 15. \(F_{\text{Det}} \) is \(\Pi^0_3 \)-complete.

Proof. \(F_{\text{Det}} \) has a \(\Pi^0_2 \) definition so it is a \(\Pi^0_3 \) relation. Now, let \(A \subseteq \omega^k \) be a \(\Pi^0_3 \)-relation. We show a many-one reduction from \(A \) to \(F_{\text{Det}} \).

There is a recursive relation \(R \) such that for all \(n_1, \ldots, n_k \in \omega \),

\[(n_1, \ldots, n_k) \in A \text{ if and only if } \exists n \in \omega \quad \varphi(n, x, y, z). \]

Since \(\text{Fin} \) is \(\Sigma^0_2 \)-complete, we have a total recursive function \(g : \omega^k+1 \to \omega \) such that for all \(n_1, \ldots, n_k \in \omega \),

\[\exists n \in \omega \quad R(n, x, y, z) \text{ if and only if } \forall x g(n_1, \ldots, n_k, x) \in \text{Fin}. \]

Now, let \(\psi_g(x_1, \ldots, x_k, x, y) \) FM-represent the graph of \(g \) and let \(\varphi(x_1, \ldots, x_k, x) \) be the following formula

\[\exists y(\psi_g(x_1, \ldots, x_k, x, y) \land \forall z < y \psi_g(x_1, \ldots, x_k, x, z) \land \neg \text{Comp}(y, \text{MAX})) \]

where \(\text{Comp}(x, y) \) is the formula from Lemma 9. Because we consider only deterministic Turing machines \(\text{Comp}(y, \text{MAX}) \) can be determined only negatively. Thus, for all \(n_1, \ldots, n_k \in \omega \),

\[(n_1, \ldots, n_k) \in A \text{ if and only if } \forall m \in \omega \quad \varphi(n_1, \ldots, n_k, m) \text{ if and only if } \varphi(n_1, \ldots, n_k, x) \in F_{\text{Det}}. \]

Thus, we obtained a reduction from \(A \) to \(F_{\text{Det}} \). \(\square \)
4 Statistical Representability

In this section we present another weakening of the original concept of FM-representability. Now, we do not require that for all \(a_1, \ldots, a_k \) a given formula correctly describes a given relation \(R \) on \(a_1, \ldots, a_k \). We only want that the description is more likely to be correct than incorrect.

Definition 16. Let \(\varphi(x_1, \ldots, x_k) \) be a formula and \(a \) be a valuation in \(\mathbb{N} \). By \(\mu_n(\varphi, a) \) we denote

\[
\mu_n(\varphi, a) = \frac{\text{card}(A \in \text{FM}(\mathbb{N}) : \max_{1 \leq i \leq k} \{a(x_i)\} \leq \text{card}(A) \leq n \land A \models \varphi[a])}{n}
\]

By \(\mu(\varphi, a) \) we denote the limit value of \(\mu_n \) for \(n \to \infty \), if it exists.

\[
\mu(\varphi, a) = \lim_{n \to \infty} \mu_n(\varphi, a).
\]

Since, \(\mu(\varphi(x_1, \ldots, x_k), a) \) is determined by values \(a \) on the free variables of \(\varphi \) we write also \(\mu(\varphi, a_1, \ldots, a_k) \) with the obvious meaning. If \(\varphi \) is a sentence then the value of \(\mu(\varphi, a) \) does not depend on \(a \). In this case we write \(\mu(\varphi) \).

Definition 17. The relation \(R \subseteq \omega^r \) is statistically representable if there is a formula \(\varphi(x_1, \ldots, x_r) \) with all free variables among \(x_1, \ldots, x_r \) such that for all \(a_1, \ldots, a_r \in \omega \),

- \(\mu(\varphi, a_1, \ldots, a_r) \) exists,
- if \((a_1, \ldots, a_r) \in R \) then \(\mu(\varphi, a_1, \ldots, a_r) > 1/2 \)
- if \((a_1, \ldots, a_r) \not\in R \) then \(\mu(\varphi, a_1, \ldots, a_r) < 1/2 \).

Theorem 18. Let \(R \subseteq \omega^r \). Then, \(R \) is statistically representable if and only if \(R \) is FM-representable.

Proof. The implication from right to left is obvious. To prove the converse let us assume that \(R \subseteq \omega^r \) is statistically represented by \(\varphi(x_1, \ldots, x_r) \). We will give a \(\Sigma^0_2 \) definition of \(R \). Then, since the set of statistically representable relations is obviously closed on the complement, we get that \(R \) has to be \(\Delta^0_2 \). We have the following: for all \(a_1, \ldots, a_r \in \omega \),

\[
(a_1, \ldots, a_r) \in R \iff \exists N \forall n \geq N \mu_n(\varphi, a_1, \ldots, a_r) > \frac{1}{2}. \tag{*}
\]

The formula on the right side of \((*)\) is \(\Sigma^0_2 \) so it remains to show that it gives a good description of \(R \).

If the right side of \((*)\) holds then of course \(\mu(\varphi, a_1, \ldots, a_r) \) is greater or equal \(1/2 \). But, by the definition of statistical representability, \(\mu(\varphi, a_1, \ldots, a_r) \) cannot be equal to \(1/2 \). Thus, \[
\mu(\varphi, a_1, \ldots, a_r) > \frac{1}{2} \quad \text{and} \quad (a_1, \ldots, a_r) \in R.
\]

\(^{a}\) The results contained in this section are based on [13]
On the other hand, if \((a_1, \ldots, a_r) \in R\) then \(\mu(\varphi, a_1, \ldots, a_r) = \frac{1}{2} + \varepsilon\), for some \(\varepsilon > 0\). Now, if we choose \(N\) in such a way that for all \(n \geq N\),

\[
|\mu(\varphi, a_1, \ldots, a_r) - \mu_n(\varphi, a_1, \ldots, a_r)| < \frac{\varepsilon}{2}
\]

then the right side of (*) holds. \(\square\)

Definition 19. The relation \(R \subseteq \omega^r\) is weakly statistically representable if there is a formula \(\varphi(x_1, \ldots, x_r)\) such that for all \(a_1, \ldots, a_r \in \omega\),

\[(a_1, \ldots, a_r) \in R \text{ if and only if the value } \mu(\varphi, a_1, \ldots, a_r) \text{ exists and equals } 1.\]

Since the statistical representability coincides with FM-representability one could expect that relations which are weakly statistically representable are exactly relations which are weakly FM-representable. On the other hand, the quantifier prefix in the expression \(\mu(\varphi) = 1\) suggests that these relations are exactly relations which are \(\Pi^3_3\) in the arithmetical hierarchy. The second guess is correct.

Before we present the theorem we define some auxiliary notions. We write \(\sqrt{\text{MAX}} < x\) for the formula \(\forall z(x x \neq z)\). We write \(\text{Input}(c) = n\) for \(\exists e < cT(e, n, c)\) and \(x \in W_e\) for \(\exists e T(e, x, c)\).

Theorem 20. The family of relations which are weakly statistically representable is exactly the family of \(\Pi^3_3\) relations in the arithmetical hierarchy.

Proof. By the method from the proof of Lemma 12, It may be easily shown that the family of weakly statistically representable relations is closed on many one reductions. Thus, it suffices to show that a \(\Pi^3_3\)-complete set is in this family. We take the \(\Pi^3_3\)-complete set colInf of Turing machines with coinfinit domain:

\[
\text{colInf} = \{ e : \omega \setminus W_e \text{ is infinite} \}.
\]

Now, we write the formula \(\varphi(z) := \forall n \forall c \{ \sqrt{\text{MAX}} < c \land n = \text{Input}(c) \land \forall c_1 (\sqrt{\text{MAX}} < c_1 \rightarrow n \leq \text{Input}(c_1)) \} \Rightarrow \forall x \{ ((x \notin W_z \land x < n) \lor x = 1) \land \forall y ((y \notin W_z \land y < n) \Rightarrow y \leq x) \Rightarrow \neg(x \mid \text{MAX}) \}\)

with the property that for all \(e \in \omega\),

\[e \in \text{colInf} \text{ if and only if } \mu(\varphi, e) = 1.\] (**)

The formula \(\varphi\) in a model on \(\{0, \ldots, m - 1\}\) looks for a computation \(c\) greater than \(\sqrt{m - 1}\) with the smallest input \(n\). Then, it takes the greatest \(x < n\) which is not an input of any \(c\)-computation in the model (or it takes 1 if there is no such a \(x\)) and forces its own density close to 1 - 1/\(x\). If there is no such a computation \(c\) then \(\varphi\) is simply true. Now, we show (**).

Let us assume that \(W_e\) is coinfinite and let \(e > 1/k\) such that \(k \notin W_e\). Let \(N = \max\{c^2 : \text{Input}(c) \leq k\} + 1\). We show that for all \(m > N\), \(|1 - \mu_m(\varphi, e)| < \varepsilon\). In the model \(N_m\) there is no computation \(c\) such that \(\sqrt{m - 1} < c\) and \(\text{Input}(c) < k\). Thus, \(\varphi\) forces its density at least to \(1 - 1/k\) in models greater than \(N\).

Now, let us assume that \(W_e\) is cofinite and let \(k = \max(\omega \setminus W_e)\). Let us fix arbitrary large \(N\) and \(c_0 = \max\{c : \text{Input}(c) \leq N\}\). Starting from \(N_{c_0 + 1}\) up to \(N_{c_0^2}\), \(\varphi\) forces its density to \(1 - 1/k\). In follows that \(|1 - \mu_{c_0}(\varphi, e)| \geq 1/2k\). \(\square\)
5 Conclusions

We have investigated some variants and weakenings of the notion of FM-representability. Summarizing we observe that:

1. The notion of FM-representability has a natural characterization in terms of arithmetical definability.
2. It captures in a natural way the idea of a relation which can be in a meaningful way described in finite but potentially infinite domains.
3. FM-representing formulae can be considered as computing devices finitely deciding some relations. So the notion of FM-representability behaves similarly to recursive decidability. The main difference is that in the former case the halting condition — being still finite — cannot be determined in a single finite model. Let us observe that weak FM-representability corresponds — in this sense — to recursive enumerability.

References