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Abstract

We investigate properties of the coprimality relation within the
family of finite models being initial segments of the standard model
for coprimality, denoted by FM((w, 1)).

Within FM((w, L)) we construct an interpretation of addition and
multiplication on indices of prime numbers. Consequently, the first
order theory of FM((w, 1)) is II{ complete (in contrast to the decid-
ability of the theory of multiplication in the standard model). This
result strengthens an analogous theorem of Marcin Mostowski and
Anna Wasilewska, 2004, for the divisibility relation.

As a byproduct we obtain definitions of addition and multiplication
on indices of primes in the model (w, L, <p,), where P, is the set of
primes and products of two different primes and <y is the ordering
relation restricted to the set X. This can be compared to the decidabi-
lity of the first order theory of (w, L, <p), for P being the set of primes
(Maurin, 1997) and to the interpretation of addition and multiplication
in (w, L, <p2), for P2 being the set of primes and squares of primes,
given by Bés and Richard, 1998.

keywords: finite models, arithmetic, finite arithmetic, coprimality, in-
terpretations, complete sets, FM-representability.



1 Introduction

This paper is devoted to the study of finite arithmetics, the research area con-
centrated on semantical and computational properties of arithmetical notions
restricted to finite interpretations. Almost all computational applications of
logic or arithmetic consider arithmetical notions in essentially finite frame-
work. Therefore it is surprising that so little attention is directed to this
area. This is particularly surprising when we observe that a few of classical
papers in computer science (see e.g. Hoare [3], Gurevich [2]) postulate this
research direction as particularly important.

Discussing the problem of analyzing algorithms in an implementation-
independent way, Hoare essentially postulates proving their properties in
appropriate axiomatic versions of finite arithmetic. We know that particu-
lar implementations of integers or unsigned integers (natural numbers) are
essentially finite arithmetics with a distinguished upper bound.

By Trachtenbrot’s theorem |17 we know that first order theories of non-
trivial finite arithmetics cannot be axiomatizable. We know that the first
order logic allowing arbitrary interpretations is axiomatizable. However, re-
stricted to finite models it is axiomatizable only for poor vocabularies
for which it is recursive. Probably this was one of the reasons why Hoare’s
postulate did not motivate logicians to study the case of arithmetics with
a finite bound. Nevertheless, let us observe that working in the standard
infinite model of natural numbers is not easier in any way. The first order
theory of this model is not arithmetical. On the other hand, the first order
theory of any finite arithmetic is at most co-recursively enumerable, that is
I19. Therefore we can expect much better axiomatic approximations in the
finite case.

For this reason, we should firstly consider properties of finite arithmetics
from the logical point of view. Only recently a few papers devoted mainly
to this area have appeared, see [10], [14], [8], [12], [7]." Probably one of
the reasons for the lack of interest in finite arithmetics in the past was the
expectation that nothing surprising can be found under the restriction to
a finite framework. Presently, we know that finite arithmetics have a lot
of unexpected semantical and computational properties. Exponentiation is
easier than multiplication [7], divisibility itself is as complicated as addition

"We do not claim that finite arithmetics were not considered in older papers at all, but
not as the main topic.



and multiplication |12].

In this paper we give a solution of a problem presented at the Finite Model
Theory Workshop Bedlewo 2003. The problem is to determine the strength of
coprimality in finite models. We show that, although semantically essentially
weaker than the full arithmetic, it is recursively equally complicated.

The other source of our inspiration was the method of truth definitions
in finite models proposed in [10] and further investigated in [11], |5| and
[6]. The crucial problem there was finding a way of representing some non-
trivial infinite relations in finite models. This motivated the notion of FM
representability.? It is known that a large class of arithmetical relations can
be FM-represented. One of the motivating problems of our investigation is
the question how much built-in arithmetic we need to apply the method of
truth definitions. We characterize FM representability for the finite arith-
metic of coprimality. Our characterization surprisingly means that
coprimality is sufficiently strong for the application of the truth definitions
method in finite models.

Finally, as a byproduct of our research, we obtain an improvement of some
theorems by Bés and Richard [1| characterizing the expressive power of co-
primality in the standard infinite model equipped with some weak fragments
of the standard ordering.

2 Basic notions
We start with the crucial definition of FM domain.

Definition 1 Let R = (Ry,..., Rg) be a finite sequence of arithmetical re-
lations on w and let A = (w,R). We consider finite initial fragments of this
model. Namely, for n > 1, by A, we denote the following structure

A, =({0,....,n —1},R",...,R"),

where, for v = 1,...,k, the relation R} 1is the restriction of R; to the set
{0,...,n—1}.
The FM domain of A, denoted by FM(A), is the family {A, : n > 0}.

2This notion was first considered in [10]. (“FM” stands for “Finite Models”.) The paper
[13] discusses some variants of the notion of FM-representability.



We assume that all considered models are in relational vocabularies.
Thus, we think of addition or multiplication as ternary relations which de-
scribe graphs of corresponding functions. Nevertheless, we will write, e.g.
(x4 y) with the intended meaning 3z (+(z, y, 2) A@(z)). Thus, the formula
©(f(x)) means that there exists z which is the value for f(z) and ¢ is true
about this z.

Definition 2 We say that ¢ is true of aq,...,a, € w in all sufficiently large
finite models from FM(A) (shortly FM(A) Eq las, ..., a,]) if and only if

JkVn > k A, = ¢lay, ..., a,).

Sometimes we also say that ¢ is true of ay, ..., a, 1n almost all finite models
from FM(A).

Of course, k as above should be chosen in such a way that k >
max{a,...,a,}.

Definition 3 We say that R C w" is FM-represented in FM(A) by a formula
o(x1, ..., x,) if and only if for each aq, ..., a, € w the following conditions

hold:
(1) FM(A) Eq ¢lar,...,a.] if and only if R(aq,...,a,),
(17) FM(A) =g ~¢la, ..., a.] if and only if =R(ay,...,a,).

The main characterization of the notion of FM-representability in
FM(N), for N = (w, +, x), is given by the following theorem (see [10]).

Theorem 4 (FM-representability theorem) Let R C w". R is FM
representable in FM(N) if and only if R is decidable with a recursively enu-
merable oracle.

The first question related to FM-representability is the following: How
weak arithmetical notions are sufficient for the FM-representability theorem?
In [10] the theorem has been proven for addition, multiplication and concate-
nation. It is a straightforward observation that concatenation is superfluous.
A few less trivial results in this direction were obtained in [7| and [12]. In
particular, in the last paper it was proven that:



Theorem 5 For each R C w", R is FM-representable in FM(N) if and only
if R is FM-representable in FM-domain of divisibility, FM((w,|)), where
alb = 3z ax = b.

It is surprising that such a weak relation as divisibility is sufficient here.
So, the following natural problem appears. Can this theorem be improved
by replacing divisibility by some weaker notions? For example, coprimality,
where the coprimality relation, |, is defined by the following equivalence:

alb=Vz((z|la Azxb) = Yy x|y).
The answer is obviously negative. Let us consider the function f defined as

4 ifrx =2,
flz)=<¢ 2 ifx=4,
x otherwise.

f is an automorphism of (w, ). Moreover, f also preserves coprimality
when it is restricted to initial segments {0,...,n}, for n > 4,. Therefore,
the set {2} is not FM-representable in FM((w, L)). However, surprisingly,
in a weaker sense coprimality is as difficult as addition and multiplication,
see Theorems 10, 18, and 19.

Let us observe that in the standard model coprimality, and even mul-
tiplication, are relatively weak relations. Indeed, the first order theory of
(w, x, <p) is decidable, see |9, where P is the set of prime numbers and <p
is the ordering relation restricted to this set.

We use the notion, <y, for various sets X C w, with the analogous
meaning. The complement of the predicate | is denoted by A.

In our work, we use the notion of a first order interpretation. For details,
see the paper by Szczerba [16], where the method was codified for the first
time in the model-theoretic framework. We recall shortly the main ideas.

Let 7 and o be vocabularies and, for simplicity, let o contain only one n-
ary predicate R. A sequence ¢ = (¢u, ¢~, pr) of formulae in the vocabulary
7 is a first order interpretation of models of the vocabulary o if the free
variables of ¢y are x1,...,x,, the free variables of ¢~ are x;,..., T, and the
free variables of @i are xy,...,2,,. The sequence ¢ defines in a model A
of the vocabulary 7 a model of the vocabulary ¢ in the following sense. A
universe U, defined by ¢y, is the set of n tuples from A:

U=A{(a,...,a,): A= vylar,...,a]}.



The equality relation is given by ¢, which should define an equivalence
relation on U. The interpretation of R is defined by

R(a;,...,a,) if and only if

Elﬁ,] Ga]Elﬁ,nEan.A\: @R[a],...,an],

where ay,...a, are equivalence classes of the relation defined by ¢, in U.
The number 7 is called the width of the interpretation.
We write I;(A) for the model defined by ¢ in A.

Definition 6 We say that ¢ is an interpretation of EM(A) in EM(B) if there
15 a monotone, unbounded function f :w — w such that for each n > 1,

I(B,) = Ajm).-

If ¢ is of width 1, @y defines an initial segment in each model from FM(B)
and the isomorphism between Ay, and B, is just identity then we say that
v 1s an IS interpretation.

An IS interpretation was used in [12] for proving Theorem 5. In our
interpretation of FM(N) in FM((w, L)) we define arithmetic on indices of
prime numbers.

3 The main theorem

In what follows models of the form (w, L) or FM((w, L)) are called coprimal-
ity models.

Let {p; : i € w} be the enumeration of primes, that is py = 2,p; = 3, ...
For a natural number a we use the notion of the support of a, defined as
Supp(a) = {p; : pila}. We define the equivalence relation ~ as follows:

a~b <= Supp(a) = Supp(b).

For each a, the equivalence class of a is denoted by [a]. Let us observe, that
in each model from FM((w, L)) as well as in (w, L) we cannot distinguish
between elements being in the same equivalence class of =.



Definition 7 A relation R C w" is coprimality invariant if ~ 1is a congru-
ence relation for R. This means that for all tuples a,...,a, and by, ..., b,
such that a; = b;, fori=1,...,r,

(ai,...,a,) € R <= (by,...,b,) € R.
We define relations R, and Ry by the following conditions:
R+([p1]= [pk]a [ m]) if and OIlly iti+k= m,

Ry ([pil, [pk]; [pm]) if and only if ik = m.

We identify these relations with their coprimality invariant versions on
elements of w, instead of w/_. R, and R, give an interpretation of addition
and multiplication on indices of prime numbers. Our main result is that they
are interpretable in FM((w, L))

For the proof of our main theorem we need some facts about the distrib-
ution of prime numbers.

Let m(z) be a function defined as

m(x) = Z 1.

psx
p prime

The prime number theorem states that the limit 7 (x)/(z/In(z)) converges
to 1 for & going to infinity. We need the following consequences of the prime
number theorem.

Proposition 8 For each b € w there is K such that for each n > K and
for each © < b there is a prime q such that

in<q<(i+1)n
Sierpiniski has observed in [15] that K = e’ suffices.

Proposition 9 Let 0 < ¢ < 1. There is N such that for all xt > N the
interval (z,z(1 4 ¢€)) contains a prime.

Essentially, Proposition 9 is one of the corollaries of the prime number
theorem mentioned in |4].
The main theorem of this section is the following.



Theorem 10 There is an interpretation ¢ of width 1 of FM(N) in
FM((w, L)) such that for each k there is n such that ¢ defines in the
model ({0,...,n— 1}, L) the relations R, and Ry on an initial segment of
{0,...,n— 1} of size at least k.

Moreover, the equality predicate is not used in the formulae from .

Proof. We will prove the theorem through a sequence of lemmas.
Firstly, we define some auxiliary notions. Let oy (7, y) be the formula

Vz(zle = 2z 1y).

Obviously, this formula defines the relation = in (w, ). Ambiguously, we
denote relations defined by ¢ (x,y) in models (w, L) and FM((w, L)) by
~. In all these models ~ is a congruence relation. (It means that ~ is an
equivalence and for all a,b,a’,b’ € w such that a ~ o' and b ~ b’ we have
alb if and only if o’ Lb'.) Therefore, in all considered models we cannot
differentiate elements which are in the relation &~. So, we can consider models
M., instead of M. The equivalence class of a € |M| with respect to ~ is
denoted by [a]. The elements of M/, which are of the form [a] for a € |M],
can be identified with finite sets of primes, Supp(a).
We define some useful predicates.

e P(x):=Vz,y(zfae ANylax = zLy) xisa power of prime,
e x €y:=P(x) Nz Ly — x is a power of prime dividing y.

e {p,q} — a function denoting, for a pair of primes p, ¢, an element of an
equivalence class of pg. We have no multiplication but elements a such
that a =~ pq are defined by the formula Vz(zLa = (zLp A zLgq)). Of
course we cannot define the unique a with this property. Nevertheless,
this element is unique up to =. So, when considering models of the
form M/, it is simply unique.

We have some operations definable on the equivalence classes of ~.

Lemma 11 There are formulae in the coprimality language o, (z,vy,2),
on(z,y,2), ¢ (x,y,2) such that in each coprimality model M, the follow-
ing conditions hold for each a,b,c € |M|:

e M = ¢yla,b,c] if and only if Supp(a) U Supp(b) = Supp(c),



« M [0.b.d] if and only if Supp(a) \ Supp(b) = Supp(c)
e M E ¢nla,b,c] if and only if Supp(a) N Supp(b) = Supp(c).
Proof. As ¢py(x,y,2) we can take
Vw(wlz = (wlx Awly)).
¢_(z,y,2) can be written as
Vu(P(w) = (wiz = (w iz Awly))).

©n is expressible in terms of ¢y and ¢_. [J
O

It follows that in all coprimality models we can reconstruct a partial
lattice of finite sets of primes. However, the operation U is total only in the
infinite model (w, L).

The crucial fact is that in finite models from FM((w, 1)) we can compare
small elements of a given model by the following formula ¢_(x,y) :=

Jz(P(z) ANzLlx A zLly A Jw py(x, 2, w) A =3w ¢y, 2, w)).

By ¢<(x,y) we mean the formula ¢ (z,y) V px(z,y).
For a finite set X C w, we write I1.X for the product of all numbers in X.

Lemma 12 For each ¢ there is N such that for all n > N and for all a,b
with 1 < a,b < n and max{[ISupp(a), [ISupp(b)} < ¢ the following holds

({0,...,n—1}, L) E v<la,b] if and only if TISupp(a) < IISupp(b)

Proof. Let A= ({0,...,n — 1}, 1). The direction from left to right is
simple. If A |= ¢<|a, b] then there is a prime d € |A| such that dITSupp(a) <
n — 1 and dIISupp(b) > n — 1. So, Supp(a) < Supp(b).

To prove the other direction let us set a; = IISupp(a) and by = I[ISupp(b)
and let a; < b;. Then, ¢_ is satisfied by a and b if and only if (%, 211 con-

ay

tains a prime. In the worst case by = a; +1 and in this case (%, %= (14 2-)]
should contain a prime. Thus it suffices to take N from Proposition 9 for
£ = l/al. L]

O



Now, our aim is to define in models from FM(w, 1)) the relations
R., R.,. We define these relations on an initial segment of the model
({0,...,n—1},1).

Firstly, we introduce a tool for coding pairs of primes.

COde(pa x, Yy, q) <~ Def
P(p) A P(q) A P(x) A P(y) A“ q is the < greatest prime less then {p, z,y}”.

The statement in quotation marks can be written down as

VoVw((eu(z,y, 2) A pu(p, 2z, w)) = p<(g, w)]A

Vr[(P(r) A o<(q,r)) = 323w(pu(z,y, 2) A pu(p, z,w) A ps(w,r))].

In the above formula, the variable w plays the role of the set {p, z,y}. Then,
with the help of p_ we easily express the maximality of q.

The intended meaning of the formula Code(p, x, y, ¢) is that ¢ is a code of
an unordered pair consisting of z and y. The prime ¢ is determined uniquely
up to the equivalence ~. The prime p is called a base of a coding. Now, we
define a formula which states that coding with the base p is injective below
x.

GoodBase(p, x) :=
P(p) AVqr .. Yo [ NP (@) Ap=(ai, 7)) A —~ox{ar. a2} {as, aa})] =

i<4

3eidez(Code(p, 1,2, ¢1) A Code(p, g3, s, c2) N~ (e, e2) )

The above formula states that p is a good base for our coding for primes
which are less than x. Namely, for each pair of primes below x we obtain a
different code ¢ taking p as a base. The existence of a good base for each
given z is guaranteed by Proposition 8. We subsume the above consideration
in the following lemma.

Lemma 13 For each k there is N and p < N such that For all n > N,
Code(p, 71, 9, 2) defines an injective coding of pairs of primes less than k in
each model ({0,...,n — 1}, 1).

Proof. Let k be given and let K be chosen from Proposition 8 for b = k2.
Next, let p be a prime greater than K. By Proposition 8 p is a good base



for our coding in all models ({0,...,n — 1}, L), forn > N = k?p. O
0

When the exact base for our coding of pairs of primes is inessential we
write simply (z,y) for a prime coding a pair x, y. Of course, in such a case
a proper base for our coding should be assured to exist. Nevertheless, since
we always will be interested in coding pairs of primes from a given initial
segment, the existence of a proper base follows in this case by Lemma 13.

The last lemma allows to turn recursive definitions of addition and mul-
tiplication on indices of primes into explicit ones. The first needed relation
is the successor relation on indices of primes. It is defined as

Si(x) =y = pe w<(x,y) A P(x) A P(y)A
Vz (P(z) = ~(p<(7,2) A p<(2,9))).

Let us observe that if S.(p,) is defined in a given finite model then it is the
case that S.(p,) = p,+1. We have the following.

Lemma 14 Partial functions on indices of primes FM representable in co-
primality models equipped with the relation < are closed under the scheme of
primitive recursion.

Proof. Let ¢g:w"™ — w and h : W™ — w be functions on indices of
primes FM representable in coprimality models. We need to show that the
function f: w™*! — w defined as

f(0,2) = g(z),
fli+1,2)=h(i+1,7, f(i,1)).
is FM representable in coprimality models with <. For simplicity we assume
that n = 1. Since we have < and L, we can define, by Lemma 13, a function
(z,y) coding pairs of primes as primes. The formula defining f(p;, p.) = p

states that there is a set which describes a recursive computation of f(p;, p,)
with the output p;. It can be written as

FX{(po, 9(p2)) € XA
VD Vpulo<(pz i) = (D241, p0) € X
Fpo (P2, Do) € X A puy = h(pai1, Pa o)) 1A
(pispr) € X}



Let us observe that quantification over a set of primes X can be interpreted
as first order quantification over numbers. Instead of X we can take a such
that X = Supp(a). Thus, if we have formulas defining ¢g and h, all the other
notions can be defined in models for coprimality and <. [

O

Now, let ¢, and ¢, be formulae, provided by means of Lemma 14, which
define addition and multiplication on indices of primes. They define R, and
R only on some initial segment of primes from a given finite model, but this
segment grows with the size of a model.

We define the universe of our interpretation by the formula ¢y (1) which
states that ¢, and ¢« define addition and multiplication on the set

{y: Ply)A(y=z1Vy <)}

Such a formula exists because there is a finite axiomatization of
FM((w, +, x)) within the class of all finite models given explicitly in
[11]. Thus, we have shown that FM((w,+, x)) is interpretable in finite
models of coprimality even without equality. This ends the proof of Theorem
10. O

O

4 Some applications in finite models

As a corollary of Theorem 10, we obtain a partial characterization of relations
which are FM-representable in FM((w, 1)).

Definition 15 Let R C w". We define R* as

R ={(xy,...,2,) : Hal...ﬂar(/\(aji R po;) A (ag, ..., a,) € R},

i<r

Corollary 16 Let R C w". R is FM representable in FM(N) if and only if
R* is FM representable in FM((w, L)).

Now we are going to characterize the complexity of the first order theory
of FM((w, L)) and of relations which are FM-represented in FM((w, 1)).
Firstly, we need a partial result in this direction.



Let us define the relation S C w? such that
(x,y) € Sif and only if Fz(z ~ x Ay = p,).
Lemma 17 The relation S is FM-representable in FM((w, L)).

Proof. To simplify the exposition we consider all the equivalences be-
tween formulae in the sense of being true in all sufficiently large models from
FM((w,L)). They will be justified for fixed parameters a,b for which we
want to decide whether (a,b) € S. Thus, we may safely assume that b ~ p,
for some prime p.

Let xg, 1, ... be the enumeration of all consecutive products of different
primes ordered according to <. This enumeration lists &~ representatives of
all &~ equivalence classes. For x € w we define ind(z) as the unique ¢ such
that = ~ z;. We define an auxiliary relation W such that

(Tay) ceW — Y = Pind(z)-

Now, take n = ind(x) and let ay, . . ., a, be an initial segment of the above
enumeration. By Proposition 8, there is a prime ¢ such that each interval
(ta;, ta;yq1), for i < n, contains a prime. Let qq, . .., g, be a sequence of primes
such that

¢; = min{s : P(s) A ta; < ¢;}

and let B = Il;<,q;. Then, let py,...,p; be a sequence of consecutive primes
such that p, ~ y and let C' = Il<yp;. Let us observe that B and C are
definable from z, ¢ and y in terms of < and L. Moreover, any ¢ which allows
this definition is good for our purpose. Thus, we can use B and C in our
formulae.

Now, we show how to write a formula @y (x, y) which, for any pair of fixed
parameters as = and y, holds in almost all finite models from FM((w, 1))
exactly when (z,y) € W. The formula ¢w(z,y) expresses the fact that
sets coded by B and C, constructed as above, are equicardinal. This can
be witnessed by a set X which is a set of pairs of primes from B and C
determining a bijection between B and C. In the formula ¢y below we use
3712 for the quantifier “there exists exactly one z”.

AX{Vge B3I 'peClg,p) e XAVpeCI'qge B{q,p) € X}.



Of course, the existence of such an X proves that B and C' are equicardinal.
By the same argument as in the proof of Lemma 14 we can replace quantifying
over X by first order quantification.
Now, we show how to define S from W. Let T" be the following relation.
For all z,y € w,
(z,y) € T <= ind(z) =y.

This relation is recursive, thus also FM representable in FM((w, +, x)) and,
by Corollary 16, the starred version of T is FM representable in FM((w, L)).
T™ satisfies the following condition: for all z,y,

(z,y) € T" <= F2(p. ® & A Pina(z) ® Y)-

So, let or«(z,y) FM-represent T*.
Let us also recall the definitions of S and W:

(z,y) €S <= F(z=zAp, ~y),

(:an) ceW = Y = Pind(z)-

Let us observe that in all sufficiently large finite models an element w such

that @w (z,w) is just Ping(z)-
Now, the formula g (z,y) which FM represents S can be written as

Fw(ew (x, w) A o« (y, w)).

Then, for all fixed parameters a and b, and for almost all finite models M
from FM((w, 1)), the following equivalence holds:

M E ps(a,b) <= (a,b) €S.

For the direction from left to right let us assume that for some ¢ we have
ow(a,t) and @y« (b, t). This means that

l =~ Pind(a)
and that for some s we have
Ps = b and Pind(s) =~ t.

This gives pind(a) & Pind(s) and ind(a) = ind(s). Therefore, s =~ a and p, ~ b,
which gives (a,b) € S.



Now let us assume that (a,b) € S. Then for some z we have
z~a and p, ~ b.

This gives that ind(z) = ind(a), p. = b and pina(;) = t, for £ = pina;). Then
@7- (b, t). Additionally, £ & pinage) and @w(a,t). Therefore, pg(z,b). O
[

Theorem 18 Let R C w". R is FM representable in FM((w, L)) if and
only if R is FM-representable in FM(N) and R is coprimality invariant.

Proof. All relations which are FM-representable in FM((w, L)) are copri-
mality invariant. Therefore, the implication from left to right is obvious. So,
we prove the converse.

For the sake of readability we consider only unary relations. Let us fix a
coprimality invariant relation R C w which is FM-representable in FM(N).
By Corollary 16, let us take a formula £(z) FM-representing R* in the FM-
domain of coprimality.

By Lemma 17, there is a formula ¢(z,y), with coprimality as the only
predicate, such that ¢(z,y) FM represents S in the FM domain of copri-
mality. Then the formula ¢(z) defined as

Fy((z,y) ANV2(p<(2,y) = (7, 2)) ANE(Y))

FM-represents R. []
O

Finally, let us consider the recursive complexity of the elementary theory
of FM((w,L)). The classical Trachtenbrot theorem says that we can reduce
the halting problem to the problem of satisfiability in finite models. By our
interpretation, it suffices to consider only finite models for coprimality.

Theorem 19 (Trachtenbrot’s theorem for coprimality FM—domain)
The first order theory of FM((w, L)) is 1Y complete. Moreover, the theorem
remains valid even if we do not have equality in the language.



5 An application in the standard model

Maurin has shown in [9] that the first order theory of (w, X, <p), where <p
is the standard ordering restricted to primes, is decidable. On the other
hand, Bés and Richard have shown in [1| that adding the ordering on primes
and squares of primes to coprimality allows an interpretation of addition and
multiplication. In what follows, we prove a similar result for the structure
(w, L, <p,), where P, is the set of primes and products of two different primes.
Namely, we show that the relations R, and R, are definable in (w, L, <p,).
It follows that the first order theory of this model is as hard as the theory
of (w, 4+, x). (Let us mention that it is not known whether R, and R, are
definable in the structure considered by Bés and Richard.)

Below, we show how to develop a coding for pairs of prime numbers below
a given prime k. Then, the rest of the argument is the same as in the case
of finite models. However, we cannot use coding of pairs of primes from
the preceding sections since it uses a comparison of primes with products of
three different primes. We defined such a coding there since it gives a simpler
construction. Moreover, if one wants to estimate a fragment of a finite model
on which we have definitions of R, and Ry then such a coding gives a better
bound than the coding which we are going to present now. On the other
hand, in the infinite model, we want to add to coprimality a relation as weak
as possible to obtain our definability result.

Theorem 20 R, and R, are definable in (w, L, <p,), where <p, is the or-
dering relation restricted to primes and products of two different primes.

Proof. We only show how to define coding of pairs of primes by one prime,
while the rest of the proof remains the same as in the finite case.

Let a prime k£ be given. We show how to code pairs of primes less or
equal to k. Let £ be such that

(1+e)* <k*/(k* - 1), (*)
and let p be a prime such that for all n > p, the interval
(n,n(1+¢))

contains a prime number. Then, our new formula Code(p,z,y,r) is the
following:
P(p) A P(xz) AN P(y) A P(r)A



Iry3ry(“ry is the smallest prime greater than pz”A
“ry is the smallest prime greater than py”A“r is the greatest prime less than ryry”).

All the notions needed in the above formula are definable in (w, L, <p,).
Now, we only argue that the coding with p chosen as above is injective below
k.

Let ¢, q' be two primes less or equal to k. By the choice of £ and p, there
is a code r for this pair with the property

p’(aq' = 1)(1+e)* <7 <pqq'(l+e)”.

The first inequality follows from the fact that pg < ry and pq¢’ < r5. Thus,
r is greater than any z such that z(1 + ) < p?qq’. The maximal z with this
property is greater than p*(qq¢’ — 1)(1 + ¢)?. Indeed,

Pad = 1)(1+2)*(1+2) < pqq'(1 = 1/qq) (1 + &)
< p*qq'(1 — 1/k)(1 +¢)®
<p’qq,

where the last strict inequality follows by (*).

The second inequality follows from the fact that ry < pg(1 + ¢), ry <
pq'(1+¢), and r < ryry.

Therefore, for any pair of primes ¢, ¢ < k, the code r for this pair is in
the interval (p?(qq’ — 1)(1 + )%, p*q¢'(1 + £)?). However, since for any other
pair of primes t,t' < k, q¢' differs from #t' by at least one, these intervals are
disjoint for different pairs of primes. This proves that our coding method

with p as a base is injective below k. [J
OJ
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