
Yablo’s Paradox and ω-Inconsistency 
 

1. Introduction 

Yablo’s Paradox (Yablo 1993) may be presented as involving a denumerable 
sequence Yi of sentences (‘Yablo sentences’), with the following truth conditions: 

Y0:  For all n>0, Yn is not true 

Y1:  For all n>1, Yn is not true 

etc. 

Is this infinite list of sentences paradoxical? Roughly speaking, a set of sentences is 
paradoxical if there is no way of assigning truth values to the individual sentences. 
More exactly, in the case of Yablo’s paradox, we expect that set of associated 
biconditionals, of the form ‘Yn ↔ for all m>n, Ym is not true’, to be inconsistent with 
certain basic truth-theoretic principles, particularly disquotation.  

Analogously, for the usual (strengthened) Liar sentence, 

λ: λ is not true 

there is an associated biconditional, symbolized λ ↔ ¬T(λ), which is inconsistent 
with the disquotational T-sentence T(λ) ↔ λ for λ.1 

Matters are nothing like as straightforward in the case of Yablo’s paradox.2 We can 
show that the list of Yablo biconditionals is not inconsistent with the relevant 
disquotation principles (i.e., disquotation restricted to Yablo sentences). It is, 
however, ω-inconsistent. 

One way of obtaining an inconsistency in relation to the Yablo Paradox is as 
follows. First, since the sentences on the right hand side are the ‘truth conditions’ for 
the sentences named in the list, this suggests that we may express the truth conditions 
of the Yablo sentences uniformly, as a single universally quantified proposition: 

(A) The Uniform Homogeneous Yablo Principle3 

For all n, Yn is true if and only if, for all m>n, Ym is not true. 

                                                        
1 And similarly for ‘loopy’ semantical paradoxes, such as: 

µ:  ν is true. 
ν: µ is not true. 

Formally, the set of biconditionals {µ ↔ T(ν), ν ↔ ¬T(µ)} is inconsistent with the associated 
disquotational T-sentences {T(µ) ↔ µ, T(ν) ↔ ν}.  
2 One can ‘formalize’ Yablo’s paradox without mentioning truth at all, as Thomas Forster notes 
(Forster 1996). Just use infinitary propositional logic with a denumerable list of sentence letters p1, p2, 
… Then take as axioms each formula: 

An  =df    pn ↔ /\ {¬pk : k>n} 
where /\ {¬pk : k>n} is an infinitary formula, the infinite conjunction of formulae ¬pk, with k>n. 
It is easy to show that the set Γ = {An : n ∈ ω} is unsatisfiable. Indeed, the assumption that Γ is 
satisfiable reduces (in the meta-theory) to the Uniform Homogeneous Yablo Principle discussed below. 
As Forster points out, this is a nice illustration of the failure of the compactness theorem for infinitary 
languages (although Γ is unsatisfiable, each finite subset of  Γ is satisfiable). 
3 This principle is ‘homogeneous’ in the sense that it has the truth predicate on both sides of the 
biconditional. 



In a sense, this is rather like writing out the truth condition for λ in the form ‘λ is 
true if and only if λ is not true’, which is transparently inconsistent. 

The Uniform Homogeneous Yablo Principle (A) is inconsistent. For suppose that Y0 
is true. Then, by (A), for all m>0, Ym is not true (*). A fortiori, for all m>1, Yn is not 
true. So, Y1 is true. But, by (*), Y1 is not true. This contradiction shows that Y0 is not 
true. So, by (A), for some m>0, Ym is true. Let k be a witness. So, Yk is true. Again, 
from (A), for all m>k, Ym is not true (**). A fortiori, for all m>k+1, Ym is not true. So, 
by (A), Yk+1 is true. But, from (**), Yk+1 is not true. Contradiction. 

The Uniform Homogeneous Yablo Principle has the logical form: 

For all x, f(x) is P if and only if, for all y>x, f(y) is not P. 

which may be further schematized, 

(B) Uniform Homogeneous Yablo Scheme 

∀x[ϕ(x) ↔ ∀y(ψ(y, x) → ¬ϕ(y))]. 

Analysis of the inconsistency derivation shows that the Uniform Homogeneous 
Yablo Scheme is inconsistent with the following axioms for the relation symbol ψ:  

(a) ∀x∃yψ(y, x), 

(b) ∀x∀y∀z(ψ(x, y) ∧ ψ(y, z) → ψ(x, z)). 

First, note that the above inconsistency argument does not establish that the list of 
Yablo sentences is paradoxical. It establishes only that the stronger Uniform 
Homogeneous Yablo Principle is inconsistent, and this is analogous to the trivial 
demonstration that the statement ‘λ is true if and only if λ is not true’ is inconsistent. 
Second, the inconsistency of the Uniform Homogeneous Yablo Principle has nothing 
to do with truth, for its inconsistency arises irrespective of what ϕ means: other than 
the Yablo scheme itself (B) and the auxiliary axioms (a), (b), no specific axioms for ϕ 
are used in the deduction of the inconsistency. 

Third, and importantly, although the Uniform Homogeneous Yablo Scheme is 
inconsistent, we can demonstrate that its associated set of numerical instances is 
consistent. To see this, let LF be the extension of the first-order language L of 
arithmetic, augmented with a primitive monadic predicate symbol F. Consider the 
theory PA ∪ {∀x[F(x) ↔ ∀y>x¬F(y))]}. This theory is inconsistent, as shown above. 

But consider instead the theory, PAF = PA ∪ {F(n) ↔ ∀y>n¬F(y) : n ∈ ω}. Then, 
PAF is ω-inconsistent. For, consider PAF ∪ {F(n)}, for any n∈ω. This implies 
∀y>n¬F(y), and thus ∀y>n+1¬F(y), and thus both ¬F(n+1) and F(n+1). This 
contradiction shows that, 

(a) PAF ⊢ ¬F(n), for all n∈ω.  

And thus, PAF ⊢ ∃y>n F(y), for all n∈ω. So,  

(b) PAF ⊢ ∃y F(y).  

So, PAF is ω-inconsistent. 

This implies that no expansion of the standard model N of arithmetic satisfies PAY. 

However, PAF has a non-standard model. For let M ⊨ PA be a non-standard model, 



and pick a non-standard element b.4 Since b is non-standard, b is >M than any 
‘standard’ element of M. Let X = {b}, where X is an interpretation of the predicate F 
and let (M, X) be the expanded model for the language LF. Since b is non-standard, 

we have (M, X) |= ¬F(n), for all n ∈ ω. Also, since X is non-empty, we have (M, X) ⊨ 
∃yF(y). Since the witness is b, which is >M than any ‘standard’ number in M, we have 

(M, X) ⊨ ∃y>nF(y), for all n ∈ ω. Thus, for all n ∈ ω, (M, X) ⊨ F(n) ↔ ∀y>n¬F(y). 

So, (M, X) ⊨ PAF. 

This shows that the set of numerical instances of the Uniform Homogeneous Yablo 
Principle is consistent. It follows that the derivation of inconsistency in relation to the 
Yablo’s Paradox must use the Uniform Homogeneous Yablo Principle, and not the set 
of its instances.5 In particular, the list of Yablo sentences is not strictly paradoxical. 
Rather, the list might be called ‘ω-paradoxical’, in the sense that it is unsatisfiable on 
the standard model N of arithmetic. 

2. Formalizing Yablo’s Paradox 

Graham Priest (1997) gave a natural formalization of the Yablo paradox. Priest 
showed how to construct the ‘Yablo formula’ Y(x), such that, 

Y(x): For any number y>x, y does not satisfy Y(x). 

This equivalence is uniform. One cannot express this easily without abusing 
use/mention somewhat, but what it involves is roughly, 

∀x(Y(x) ↔ for any number y>x, y does not satisfy ‘Y(x)’) 

Priest’s main point is that it looks as if there is a subtle form of self-reference 
involved in Yablo’s Paradox after all. For the Yablo formula Y(x) now explicitly 
refers to itself. Technically, the 1-place Yablo predicate Y(x) is a uniform fixed-point 
of the 2-place predicate ‘No number larger than x satisfies z’. 

We can formalize the paradox in the language LT of arithmetic augmented with a 
primitive truth predicate T. The uniform diagonalization theorem implies the 
existence of a Yablo formula Y(x) (containing T, and with a free variable x) such that, 

(1) PA ⊢ ∀x(Y(x) ↔ ∀y>x¬T(Y(dot(y))).6 
Each individual Yablo sentence Yn is then Y(n), where n is a numeral. Let us isolate 

this statement (note: provable in syntax): 

(C) The Uniform Fixed-Point Yablo Principle 

∀x(Y(x) ↔ ∀y>x¬T(Y(dot(y))) 
                                                        
4 See Kaye 1991 for a detailed explanation of the properties of non-standard models of PA. The only 
property we need is the existence of non-standard ‘infinite’ elements, which are ‘larger’ than all the 
‘standard’ numbers in the model. 
5 At least if we ignore infinitary logic. If we formalize Yablo’s Paradox using infinitary logic, the 
Uniform Homogeneous Yablo Principle reappears in the meta-theory (see footnote 2 above). 
6 Here we use a variant of Feferman’s ‘dot notation’, which allows us to ‘quantify into’ quotations. 
When dot(x) appears inside a quotation term, it is defined such that the term ϕ(dot(x)) is an open 
function term, with x free, meaning ‘the result of substituting the numeral of the number x for all free 
variables in the formula ϕ’. More exactly, ϕ(dot(x)) can be defined as sub(num(x), ϕ(x)), where the 
function term sub(x, y) means ‘the result of substituting x for all free variables in y’ and num(x) means 
‘the numeral of x’. In contrast, note that ϕ(x) is a closed quotation term, in which the variable x is not 
free.  



The sub-formula T(Y(dot(y))) means ‘the result of substituting the numeral of the 
number y for all free variables in the formula Y(x) is true’. And this means ‘y satisfies 
the formula Y(x)’. We can symbolize this as S(Y(x), y). So, equivalently, we have: 

(2) PA ⊢ ∀x(Y(x) ↔ ∀y>x¬S(Y(x), y). 

So, the Yablo formula Y(x) is a fixed point (w.r.t. the free variable z) of the 2-place 
formula ∀y>x¬S(z, y), meaning ‘no number larger than x satisfies z’. 

We know that the Uniform Homogeneous Yablo Principle is inconsistent. To get 
from the Uniform Fixed-Point Yablo Principle to the homogeneous one, we need 
some kind of truth-theoretical principle. And naïvely, one might expect the Uniform 
Fixed-Point Yablo Principle to be inconsistent with the associated local disquotation 
principles,  

(D) The Local Arithmetic Disquotation Scheme 

T(ϕ) ↔ ϕ,  with ϕ ∈ Sent(L). 

This implements the equivalence of T(ϕ) and ϕ, when ϕ is an arithmetic sentence, 
lacking the truth predicate T.7 

(E) The Local Yablo Disquotation Principle 

T(Yn
) ↔ Yn,  with n ∈ ω. 

Let PAY be the theory PA ∪ (D) ∪ (E). Then, PAY is ω-inconsistent. For PA ⊢ Y(n) 

↔ ∀y>n¬T(Y(dot(y))), for all n ∈ ω. So, PAY ⊢ T(Y(n)) ↔ ∀y>n¬T(Y(dot(y))), 
for all n ∈ ω. Let F(x) be the formula T(Y(x)). So, PAY ⊢ F(n) ↔ ∀y>n¬F(y), for all 
n ∈ ω. This is ω-inconsistent, by our earlier result that PAF is ω-inconsistent. 

Again, this implies that no expansion of the standard model N of arithmetic 
satisfies PAY. However, despite its ω-inconsistency, we can show that PAY is 
consistent. Indeed, PAY has a non-standard model. The prove this, select any non-

standard model M ⊨ PA. Let # be a gödel coding of LT-sentences into the initial 
segment of ‘standard’ numbers in M. We need to define an expansion (M, E), where 

E is the interpretation of the truth predicate T, such that (M, E) ⊨ PAY. Let E0 be {#ϕ: 

M ⊨ ϕ and ϕ ∈ Sent(L)}. Then E0 contains only codes of arithmetic sentences. Let 
t(y) be the term Y(dot(y)).  Let tM be the function it denotes in M. Because M is non-
standard, there exist non-standard elements c, b such that c = tM(b). (From the non-
standard model’s viewpoint, c is the bth Yablo sentence.) Now, let E = E0 ∪ {c}. In 

particular, we have (M, E) ⊨σ y>n ∧ T(Y(dot(y))), for all n∈ω (where σ is an M-

assignment such that σ(y) = c). So (M, E) ⊨ ∃y>n T(Y(dot(y))), for all n∈ω. It is 
easy to see that (M, E) satisfies the Local Arithmetic Disquotation Scheme, since each 
element of E is either the code of an arithmetic truth in M, or is c. So, we need to 

prove that (M, E) satisfies the local Yablo disquotation principle. That is: (M, E) ⊨ Yn 
↔ T(Yn

), for each n∈ω. The code of each Yablo sentence Yn is neither the code of an 

                                                        
7 The full disquotation scheme is trivially inconsistent, since λ ↔ ¬T(λ) is provable in syntax. So, in 
order to study the situation here, we must concentrate on weaker truth-theoretic principles, so we can 
‘isolate’ the reasoning to inconsistency. The local arithmetic disquotation scheme is very weak. In fact, 
it is conservative over almost any ‘reasonable’ base theory in L.  



arithmetic sentence, nor is identical to c. So, for any Yn, we have #Yn ∉ E. So, (M, E) ⊨ ¬T(Yn
), for each n∈ω. Next, recall that PA ⊢ Yn ↔ ∀y>n¬T(Y(dot(y))), for each 

n∈ω. So, (M, E) ⊨ Yn ↔ ∀y>n¬T(Y(dot(y))), for each n∈ω. But, (M, E) ⊨ ∃y>n 

T(Y(dot(y))). So, (M,  E) ⊨ ¬Yn, for each n∈ω. So, (M, E) ⊨ Yn ↔ T(Yn
), for each 

n∈ω.8 

Since PAY is consistent, it follows that the (inconsistent) Uniform Homogeneous 
Yablo Principle is not provable in PAY. Each numerical instance T(Yn

) ↔ 
∀x>n¬T(Y(dot(x))), with n ∈ ω, is provable. But the generalization is not provable. 
It follows that, in order to deduce an inconsistency from the Uniform Fixed-Point 
Yablo principle, one needs (an instance of) the uniform disquotational T-scheme.  

More exactly, one needs the truth-theoretic axiom,  

(F) The Uniform Yablo Disquotation Principle 

∀x(T(Y(dot(x))) ↔ Y(x)) 

Note that this may be equivalently stated (by definitions) using satisfaction, 

∀y(S(Y(dot(x)), y) ↔ Y(y)) 

This uniform truth-theoretic principle is stronger than the Local Yablo Disquotation 
Principle (E). In fact, as expected, the theory PA + {∀x(Y(x) ↔ T(Y(dot(x))))} is 
inconsistent. For PA proves ∀x(Y(x) ↔ ∀y>x¬T(Y(dot(y))). Using the uniform 
Yablo disquotation principle (F), we can semantically ascend, and prove 
∀x(T(Y(dot(x))) ↔ ∀y>x¬T(Y(dot(y))). The logical form of this is ∀x(ϕ(x) ↔ 
∀y>x¬ϕ(y)), the Uniform Homogeneous Yablo Scheme, which is inconsistent. 

3. Summary 

We have isolated the following six statements and/or schemes: 

(A) The Uniform Homogeneous Yablo Principle 

For all n, Yn is true if and only if, for all m>n, Ym is not true. 

(B) Uniform Homogeneous Yablo Scheme 

∀x[ϕ(x) ↔ ∀y(ψ(y, x) → ¬ϕ(y))]. 

Auxiliary axioms:  

∀x∃yψ(y, x),  

∀x∀y∀z(ψ(x, y) ∧ ψ(y, z) → ψ(x, z)). 

(C) The Uniform Fixed-Point Yablo Principle 

∀x(Y(x) ↔ ∀y>x¬T(Y(dot(y))) 
(D) The Local Arithmetic Disquotation Scheme 

T(ϕ) ↔ ϕ, with ϕ ∈ Sent(L). 

                                                        
8 The above model-theoretic proof in fact establishes that PAY is a conservative extension of PA. For 
suppose that PA does not prove an arithmetic sentence ϕ. Then, there is a model of PA ∪ {¬ϕ}. 
Indeed, there is an non-standard such model M. Then, by the above proof, M may be expanded to a 
model (M, E) of PAY. Since ϕ lacks the T-symbol, ϕ is still false in (M, E), and so PAY does not prove 
ϕ. By contraposition, if PAY proves ϕ, then PA proves ϕ too. 



(E) The Local Yablo Disquotation Principle 

T(Yn
) ↔ Yn ,  with n ∈ ω. 

(F) The Uniform Yablo Disquotation Principle 

∀x(T(Y(dot(x)) ↔ Y(x)) 

And their properties may be summarized as follows: 

1: The scheme (B) is inconsistent (with the auxiliary axioms for the order). 

2: The set of numerical instances of (B) is consistent, albeit ω-inconsistent. 

3: (A) implies (B). So (A) is inconsistent. 

4: (C)+(D)+(E) is consistent, albeit ω-inconsistent. 

5: (C)+(F) implies (A). So (C)+(F) is inconsistent. 

The central point is that, when examining the Yablo Paradox, if one demands a 
formal inconsistency, rather than an ω-inconsistency, one must use both the uniform 
fixed-point principle and the uniform disquotation principle. The local versions (sets 
of numerical instances) of these principles are consistent, and satisfiable on non-
standard models. 
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