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Abstract. The aim of this paper is to provide formal and selfcontained derivation of effi-
cient scores for testing some hypotheses in two widely used linear semiparametric regression
models.

The derivation consists of two basic steps. The first one is a calculation of Hadamard
derivatives of the underlying model densities over parameters from suitable Banach spaces.
The resulting derivatives are defined via some vectors, called score vectors. The second step
is systematic derivation of projections of components of the score vectors related to parame-
ters of interest onto the space spanned by components corresponding to nuisance parameters.
The efficient scores are residuals resulting from these projections.
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INTRODUCTION

The motivation of this work is some construction of sensitive test for asserting goodness
of fit of some semiparametric linear regression model. Let Z = (X,Y) denote a random
vector in I x R, I = [0,1]. We would like to verify the null hypothesis asserting validity of
the model M (0)

Y = X)) +e¢

where X and € are independent, Fc = 0, Ee? < 0o, B € R? is a vector of unknown
parameters while v(z) = (vi(z),...,v,(2)) is a vector of known functions. The distribu-
tions of X and € possess densities, but are otherwise unknown. The symbol T denotes the
transposition. All vectors are row ones.

The basic steps of our construction are as follows.

e Embed the null model M(0) into auxiliary model My (6)
Y = 0[u(X)]" + Bu(X)] +e¢,

where 0§ € RF is a vector of unknown parameters, u(z) = (ui(x), ..., us(z)) is a vector
of known functions.

e Given a fixed k, construct score test statistic for testing § = 0 against 6 # 0 in M, (6).

e Incorporate into the score statistic a dimension & fitted by some score-based selection
rule.

Recall that the score statistic is simply some special norm of estimated efficient score vector.
The efficient score vector is obtained as residual from projections [derived under the null
hypothesis] of the scores for the parameters of interest on scores for the nuisance parameters.
The aim of this paper is to provide formal and selfcontained derivation of efficient scores
for testing 6 = 0 in the model M (6). The rest of the programme described above was carried
out in Inglot and Ledwina (2003). To allow some useful extension we shall consider in the
present paper heteroscedastic model as well. Therefore we introduce the following settings

[0] Y = 0[u(X)]" + Blu(X)]" + o(X)e,

[1] Y = 0[u(X)]" + B (X))T +¢,
along with the following basic model assumptions on the model [1]

u(z) = (u1(2), ..., ux(2)), v(2) = (vi(2), ..., v4(2)), and the given
functions uy, ...ug, vy, ..., v, are bounded and linearly independent;

9 € Rk, B € R? are unknown parameters;

< M]J1]1 > X has an unknown density g with respect to the Lebesgue
measure A supported on I = [0,1];

€ has an unknown density f with respect to the Lebesgue
measure A on R. The density f satisfies
Ere=0, 7= Efe® and 0 < 7 < 00,



s

and the respective assumptions on the model [0]

the set of assumptions < M[1]1 >;
<MI[0]1 > Egle| =1;

o() is an unknown positive function , bounded and bounded away
from O.

In both cases we like to test # = 0 in the presence of unknown remaining parameters. To
put things more formally set

K= K;[O] = (0777)’ n= (/Ba\/.aa \/}78), § = "‘“IOgU

and
K[ = 0, 77[1]), nmy = (8,9, \/})-
Introduce also
a=(6,8) and w(z)= (u(z),v(z))
So, the first null hypothesis is k = (0,7) while the second is %) = (0, 7). The alternatives

are unrestricted.
Set Z = (X,Y). Families of model densities induced by [0] and [1] have the form

) = olz 1 y — w(z)a’
0 plain) = slo) st (Lo
1] p(z k) = 9(2)f (v — w(z)a").

Corresponding distributions are denoted by P, and Py,

Calculating efficient scores is related to differentiation of the model densities and project-
ing resulting derivatives onto some tangent spaces. Typical approach is to consider square
root of densities and treat them as elements of appropriate Ly space. To write an increment
of p'/2(z;-) a common practice is to introduce some paths throughout which one approaches
the model density. The next step then is to modify classical notions of differentiability such
as e.g. that of Fréchet or Hadamard to provide some pathwise variants of them. This works,
but introduces many complications. Probabilistic and analytical arguments are mixed up.
Many authors consider different variants of differentiability and introduce new notions which
often are not very consistent each to other. This causes that many existing results are in
fact not easily accessible.

Our impact to the story is an observation that it is much more convenient to separate
analytical and probabilistic arguments whenever possible. Namely, instead to solve problems
in probability space with distribution indexed by few parameters [infinite dimesional also]
we propose to solve related problems defined in one standard measurable space with the
Lebesgue measure. This considerably simplifies the setting. To be more specific we shall
present below the idea in application to the model [0].

Instead to introduce paths consider more general setting by introducing more general map
than xk — p'/?(z;x) and differentiate this general map in a standard way. More precisely,
p'/?(z; k), seen as a function of x, is a map from Q — 7, where Q@ = A x B x C x § while
A= Rkte B = Ly(I,)), C = Ly(R,N), 8§ = Loo(I, A), while H = Lo(I x R,A x A). The
specific structure of p'/2 (z; &), given above, motivates introducing an abstract map

U:QH, U(w)=AyrTs(be),
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where Y, is some scale operator while A,,r is some shift operator. These operators are
precisely described and investigated in Section A. Roughly speaking this section generalizes
widely used Hajek and Sidak (1967), pp. 210-214, results on classical location/scale family.
Having defined ¥ we apply classical notion of Hadamard differentiability in Banach spaces.
The derivative ¥(,3. ) of U is obtained in Section B. Moreover, Theorem B.7 relates the
standard in statistical literature derivative of p'/2(z; k) with ¥,. The range of ‘il(a,b,c,s) for
(a,b,c,s) coming from < M[0]1 > is investigated in Section B[0].2. Further, Remark B.10
indicates that, having fixed this, we can again forget about probability and derive necessary
projections in the restricted [by probabilistic arguments] subspaces of the introduced abstract
spaces [cf. Remark B.10 and Sections C[0].1.1 - C[0].1.3].

Obviously, similar approach can be applied to model [1]. Related results are presented
in section labeled by B[1] and C[1]. A reason to including this simpler case as well is our
application of these results to construct a data driven smooth test we considered in Inglot
and Ledwina (2003).

Closing, we would like to emphasize that primary goal of this paper is to simplify existing
approach to understand carefully necessary assumptions and derivation of existing results.
Basic ingredients [i.e. the residuals 7° and ;] of efficient scores we derived, can be found
in the literature [cf. Schick (1997)]. Anyway, no derivations were provided.

A. SOME AUXILIARY PROPERTIES OF SHIFT AND SCALE OPERA-
TORS

We prove here some auxiliary results which will be used in Section B. Set H = Ly(I x
R,A x \) and C = Ly(R, X), where X is the Lebesgue measure on the corresponding space,
and I = [0,1]. Denote by || ||3 the norm in # and by || - ||¢c the norm in C. Throughout the
paper all integrals are taken with respect to the Lebesgue measure if not otherwise indicated.

Theorem A.1. (Rudin 1974, Theorem 9.5) For ¢ € € and ¢t € R put Ajc(y) =
cly —t), y € R. Then for each ¢ € C, A} is a uniformly continuous transformation of
R into C. In particular, for each c € C, ||Afc—c¢|lc = 0as ¢ — 0.

Corollary A.2. Let ¢ be an arbitrary, fixed measurable function on [0,1]. Define
Ay:H—Hby

(A.1) Ayh(z,y) = h(z,y — o(z), z€[0,1], yER, heH.
Then
(i) A, is an isometry on #,

(ii) for each h € H it holds
(42) L | Axgh — hl 5 = 0.

If, additionally, {¢;, t € R} is a family of measurable functions on [0, 1] satisfying lim;o t@:(z) =

0 for almost all z, then
(iii) for each h € H it holds

(A4.3) lim [|Agp h = b3 = 0.



Proof of Corollary A.2. The property (i) is a consequence of the following equalities:

2 _ (1 { 2 _ ] _ ! 2 B2
1aphlf = [ [ W@y - e@)dy|da= [| [ K@ 9)dy] da = I1rl}
To prove (ii) observe that for almost all z € I, h(z,-) € C and by Theorem A.1
(A.4) lim [|A% bz, ) — bz, e = 0

for almost all z. On the other hand, as A, is an isometry on C for every
te€ Rand x € I, we have

(A.5) 1AL () = Rz, e < 4]|h(z, )]z
Hence, by (A.4), (A.5) and Lebesgue Dominated Convergence Theorem we get
2 ! * 2
1Awh = by = [ 1Atk ) = iz, )IIE] dw = 0

as t — 0 which gives (A.2).
The proof of (A.3) is similar. O

Before stating the next result introduce the following useful notation: %h = izy.

Corollary A.3. Let ¢ be arbitrary, fixed measurable function on [0, 1] and h € # such
that h, exists for every y € R and almost all z and h, € H. Then

. 1 .
(A5) 18gh =+ hy|l5 < [ llolAeohy = byt
where both sides of (A.6) or only the right hand side are allowed to be equal +oo.
Proof of Corollary A.3. Actually, the assumptions on h imply that for almost all

z € I h, is absolutely continuous with respect to y € R (see Theorem 8.21 in Rudin 1974).
Hence for almost all € I and every y € R

y—p(z) .

Aph(z,y) — h(z,y) + p(@)hy(2,y) = /y hy(z, T)dT + 0(2)hy(z,y) =

= [ (~0(@))h (2,3 ~ 10(2))dt - (~p(@) iy z:9) =

= [ taD sl = 1) = o] .

Putting on the norm of A we get by Fubini Theorem

8ok —h+ gyl = [ [ ([ o) ey~ to(e) — hfav)] ) dody <

/01 /R /01 ©*(z) [hy(x, y — to(x)) — hy(z, y)]2 dzdydt = /01 Il [Awfzy - ily] |[7dt
which proves (A.6). o



Remark A.4. If ¢ € Lo (I) then by (i) of Corollary A.2 we have for every t € I

o [Atphy — ) 113 < 4118112y |13,
and both sides of (A.6) are finite.

Remark A.5. In the proof of Corollary A.3 we have exploited only that A is absolutely
continuous with respect to y for almost all z € I. So, in Corollary A.3 it is enough to assume
e.g. that for almost all z the derivative h, exists except a finite set of points in which there
exist right hand side and left hand side derivatives and h, € H.

In the above statements we have established some properties of the shift operator A.
Now, we shall formulate and prove the analogous results for scale operators T and T*.

Theorem A.6. For c € C and ¢ € R put Tic(y) = c(yt), y € R. For arbitrary 7 > 0 set
T = [1,00). Then for each ¢ € C and 7 > 0 Y% is uniformly continuous transformation of 7’
into C. In particular, for each c€ C ||Tic—c|lc > 0ast — 1.

The proof of Theorem A.6 is analogous to that of Theorem A.1 so we omit it.

Corollary A.7. Let ¢ be an arbitrary fixed measurable function on [0,1]. Define
T, :H — H by

(A7) Toh(z,y) = [h(z,ye”@)| #=/, s eI, ye R, heH.
Then

(i) T, is an isometry on #,

(ii) for each h € H it holds
(48) Ly e = bl = 0

If, additionally, {¢:, ¢ € R} is a family of measurable functions on [0, 1] satisfying lim;,q tp:(z) =
0 for almost all z, then
(iii) for each h € # it holds

(49) iy e = bl = 0.
Proof of Corollary A.7. The property (i) can be proved similarly as previously by a

suitable change of variables in the integral. To prove (ii) observe that by Theorem A.6 for
almost all z € T

exp{tp(z

(A.10) |ITe (@, )@ — bz, )|lc <

< [Tt ie@ph(@ ) = hi@, lle] €972 + ||h(, )|l [/ = 1] - 0 as ¢ — 0.
On the other hand, for every t € R, z € I, we have

(A.11) Y trpgtote) 2@, )P — bz, )2 <
<2 [ W(a,ye" )y + 2 e, |3 = 4Gz, )|

7
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Hence, by (A.10), (A.11) and Lebesgue Dominated Convergence Theorem we get
2 1 * tp(z)/2 2
ooh = hllE = [ [ o gupen plas )2 = bz, 2] do = 0

as t — 0 which proves (A.8).
The proof of (A.9) is similar. O

Before formulating the next result introduce the following notation:
(A12) i(y) =y and K(z,y) = i(y)hy(z,y), z€I, y € R.

In short, AV = 4h,,.

Corollary A.8. Let ¢ be an arbitrary, fixed measurable function on [0,1] and h € H
such that 2 wh= h, exists for every y € R and almost all # and h(") = ih, € H. Then

1
(4.13) 1ph = h — oh® — Sehl, <

1 1 st
<2 [ llp [Tuh® = K0T 3t + 5 [ Il [Yaoh — B e,

where both sides of (A.13) or only the right hand side may be equal to +o0.

Proof of Corollary A.8. For fixed z and y define §(7) = h(z,ye")e™/2. By the
assumption on h it follows that §(7) is differentiable at each 7 € R and

. 1
&'(r) = ye?"’/zhy(x, ye™) + 567/2]7,(.’5, yeT).

Moreover, ¢'(7) is integrable on each finite interval. Consequently, 6(7) is absolutely contin-
uous and for almost all z and all y it holds

Toh(z,y) — h(z,y) = h(z, ye?@)e? @2 — h(z,y) = §(p(z)) - 6(0) =

v(@) 1 _ v(@) 37/2} T 1
/0 §'(1)dr —-/0 ye’ ™ hy(z, ye")dr + 5/0

Inserting T = tp(z) we obtain

vl e ?h(z, yeT)dr.

1 . 1
Toh(z,y) - h(z,y) = /0 (2)ye* 2 hy (2, yet? @) dt + % /0 ()€ h(z, ye'))dt =
1 @ 1 1
= () /0 Ti,h'Y (2, y)dt + —2~(,0(a:) /0 Tih(z,y)dt
for almost all z and all y. Putting on the norm of # we get similarly as in Corollary A.3

1
b = b= ohY — Seohlff, =

2

/01 [ (<p(:v) /01 [Te,hD (2, ) — B (z,y)] dt + %Sﬁ(m‘) /01 (o) — ho)] dt) <
fo 1 fR fo 20%(a) [X1hD (z, ) — KO (a, )] dodydt+

8
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+ [ 1 [ (@) [Tuph(a,) — Az, )] dudyds =

1 1 7t
1 _ p(1)) 112 - . 2
2 [l [Xih® = hO] [dt+ 5 [ llo [Toh = B[t
which proves (A.13). O

Remark A.9 If ¢ € Lo, (I) then by (i) of Corollary A.7 we have fort € I
[l [Teph™ — RO |15, < 4lleol|2] KO3,

and
|l [Teph — Bl 13, < 4llel3| IRl
and consequently both sides of (A.13) are finite.

B. TOWARDS DIFFERENTIABILITY OF THE MODEL DENSITY
B[0]. Heteroscedastic regression

Define the following spaces A = R¥t4, B = Ly(I,)), C = Ly(R, ), H = Ly(I x R, )\ x
A), 8= L(I,)) and set @ = A X B x C x S. Related norms in respective spaces shall be
denoted by ||-||4, || ||5, etc. Moreover, for a; and as from A, ay - ay stands for their scalar
product. In some places, to improve readability, we shall use previous notation a;-ay = aia3.

Square root of the model density p(z; ), z = (z,y) € I X R, seen as a function of &,
can be considered as a map from {2 to H. Indeed, putting @ = a, b = /g, ¢ = Vf and
§ =g = —logo we get

P/2((@, 1) 8) = Duge)aLsw) (B(2)E(w)) -
This observation naturally leads to introducing the map
TU:Q—H, ¥(w)= Ay Ts(be),

with w = (a,b, ¢, s) and w = (wy, ..., Wiq), Where w; € S, i =1, ...,k + ¢, and deciding on
its differentiability. In our application Hadamard differentiability is useful and sufficiently
strong notion.

B[0].1. Hadamard differentiability of ¥

To fix some notations and terminology we recall now an adjusted definition of Hadamard
differentiability.
Let (D1, ]| - ||p,) and (Da, || - ||p,) be two Banach spaces and let 7" : D; — D, be a map.

Definition B.1. Let d € D;. We say that T is Hadamard differentiable at d if there

exists a continuous linear operator T, : D1 — Dy such that for all ¢, € R, ¢, — 0, all dy € D;
and all {dn} C Dy with Hdn - dOH'Dl — 0 it holds

(B.1)

H T(d + tndn) — T(d) — toTa(dn)
tn

D2
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Remark B.2. Obviously, equivalently one can write in (B.1) Ty(do) instead of Ty(dy).
One can also say that dy € D; defines a direction at which we approach d. It is worth
noticing that considering square roots of the probability densities p(z;x) and the model
Y = a[w(X)]* 4+ o(X)e there are some natural restrictions on the directions we may consider
[cf. (B.9), (B.10), below]. Anyway, in this section we consider simply an abstract setting
and no restrictions on the set of directions shall be imposed.

When checking (B.1) it is convenient to introduce

_ T(d+tpds) — T(d) — t.Tu(dn)

Rn(T) = i .
Define now some auxiliary mappings.
(B.2) TV .05 AxH xS, ¥ (a,b,c,s)=(a,bc,s),
(B.3) @ AXHXSE = AxH, ¥(q,h,s)=(a,T:h),
and
(B.4) T AxH = H, TO(a,h) = Aygh

With these notations for ¥(a, b, ¢, §) = Ay, Ts(bc) it holds that
T =00 00® og)
where o denotes the superposition.

To prove Hadamard differentiability of ¥ we shall exploit the well known fact that su-
perposition of Hadamard differentiable mappings is Hadamard differentiable and the chain

rule holds i.e. ) . (3) : (2) L (1)
‘I’(a,b,c,s) = ‘I’\y(z)oql(l)(a’b’c,s) °© ‘I’\Il(l)(a,b,c,s) ° \Il(a,b,c,s)

[cf. e.g. Bickel et al. (1993), Proposition 1, p. 455]. Therefore in successive propositions we
prove Hadamard differentiability of ¥, j =1,2,3.

Proposition B.3. Let (a, b, ¢, s) and (ay, by, o, o) be two arbitrary points from Q. Then
the map ¥(V is Hadamard differentiable at each (a,b,c,s) and

(B.5) ‘i’§2b,c,5) (a0, bo, co, S0) = (@, beg + boc, So).

Proof. Let (an, by, ¢, Sn) — (ao, by, o, So) and ¢, — 0. Then
1
Oy = 2 .
Ra(UW) = - (0, £2bncn, 0) .

Hence it follows R,(TM) - 0in Ax H X S. O

Before formulating the next result recall that in (A.12) we have defined A() = ih,.

10



Proposition B.4. Let (ag, ho, o) be an arbitrary point from A x # x 8. Then the
map ¥® is Hadamard differentiable at each (a, h, s) such that i, (z, y) exists for every y and
almost all z and A € . Moreover,

. 1
(B.6) ¥, (ao, ho, s6) = (ao, so T, (b + 5h) + Tsho) .

Proof. Let (an, hn, $n) — (a0, ho, $o) and &, — 0. Then

Ra(8®) = = (0,80 (- tuin, 5+ 1) = ¥O(h,5) = 6w, (rn, 50) =

= (0, R1n (T®)) + (0, Ron (T?)),
where 1 1
Run(¥) = = [Ts (Tt,,snh — b= tasah® — §tnsnh>] ,

Ran(8®) = 2 [, Xay0, (tnhn) = tala}].

By Corollary A.7 (i), T, is an isometry. Therefore, by (A.13) applied to ¢ = t,s, we get

1 1
HRIH(‘I’@))H?H = ZEHTtn-snh —h— tnsnh(l) - EtnsnhHgt <

1 1 rt
2 [ llon(Yrtaanh® = KOty + 5 [ llsn(Xrtyssh = )|

By (A.9), Remark A.9 and Lebesgue Dominated Convergence Theorem we obtain that
Rin (@) tends to 0 in H.
Similarly we have

HtR”Zn(lII(Z))H’H = HTs(Ttnsuhn—hn)H% = HTtnsnhn"'hnHH < HTtnsnhO"hO”'H“i‘Q{|hn'“h0H’H-

Again by (A.9) and the assumption ||k, — ho||yz — 0 it follows that Ry, (¥@) — 0in #. In
view of the form of R,,(¥(?) the proof is concluded. |

_ Proposition B.5. The map ¥® is Hadamard differentiable at each point (a, &) such that
hy(z, y) exists for every y and almost all z and h, € H. Moreover, for each (ag, ho) € AX H

(B.7) T, (a0, ho) = —Aw.ahiy[w - ao] + Auaho.

Proof. Let (an, hn) — (a0, ho) and ¢, — 0. Then
1 .
R (T®) = - (€@ (@ + tatn, b+ tahn) — T® (g, B) = ta T, (an, hn)] =

= Rin(TG)) 4+ Ry (I®),

where .
Rin(¥9) = —~ [Ava(Btywanh — h+ tabylw - an))]

n

11
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1
R2n (‘I’(3)) = 't‘_ [Aw-a{Atnw-an (tnhn) — tnhn}] .

n

Since A,., is an isometry we get by (A.6) applied to ¢ = t,w - a, the following
1 rt . .
M2 _
IRin® )= g [ - en) (Bt = ] o

Using now boundedness of the coordinate functions of w, Remark A.4 and (A.3) we infer
again by Lebesgue Dominated Convergence Theorem that ||R1,(¥®)||% tends to 0.

To prove that ||Ran(¥®)||z, — 0 we exploit again the isometry property of A,., and
Ay, wa, and the triangle inequality thus obtaining

| R2n (T®)| |5 =§é || At w-an hn = Bl < || At wean o = Bolla + 2||hn — hol|s-
As ||hs — hollz — 0, (A.3) implies ||Ron(T®)]|3 — 0. .

Theorem B.6. The map ¥ = ¥®) o ¥® o ¥ : Q — % is Hadamard differentiable at
each point w = (g, b, ¢, s) such that c is differentiable for every y € R, [3[c'(¥)]*dy < oo and
[rlyc' (v)]2dy < oo. Moreover, for any (aq, by, co, So) € £ it holds

(B.8) ‘ijgzzb,c,s)(a()’ b, €0, S0) =

1
= AyaTs (——esbc'[w - ap] + [ic’ + §c]bso + beg + boc> )

Proof. By Propositions B.3, B.4 and B.5 and the chain rule of Hadamard derivative we
obtain _ o i
Y (a,5,¢,5)(@0, bo, o, 50) = ‘I’Em)z)(a,bc,s) ° \I’&Zbc,s) (a0, beo + boc, s0) =

. 4, 1
= B0, o0y (000 o Tu([i¢ + 500 + T(boo + buc)) =

- [Aw.a (%Ts(bc)) [w+ ap] + Ay (Ts ([ic' + —;-c]bso) + Ts(bey + boc))} .

Since 5. Ts(bc) = [T4(bc’)]e® the proof is concluded. 0

B[0].2. Hadamard differentiability of p*/?(z; )
Recall that our model is as follows
Y = afw(X)]" + o(X)e,

where a = (6,f3), € has a density f while X has a density g. Basic model assumptions
< MJ0]1 > have been stated in Introduction.

Now we shall discuss how we can approach such model in the space of densities and how
it reflects the related directions in B and C.

Obviously f and g always satisfy [p fdA = [;9gdA = 1. So, if one wants to approach
pt! 2(z; k) throughout some ”paths” within the space of densities, natural restriction is as
follows. Take b = /g and disturb b by b, € B, b, — by. Let {t,} be a real sequence tending
to 0. Then we require: for large n, [b -+ t,b,)° is a probability density [with respect to A in

12
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our setting]. Equivalently, [;[b + £,b,]2d\ = 1 for large n. This implies that by has to satisfy
Jr bobdX = 0 or alternatively [; by, /gdA = 0. Therefore, for a given fixed b € B we introduce
ByCcB

(B.9) By = {bo €B: /I bobd\ = o} .

Analogously, setting ¢ = /f and asking [c + tncq]?, ¢ = ¢, T — 0 to be a probability
density obeying model assumptions < M[0]1 > we get the following set Cy of directions from
which we can approach the given fixed element ¢ € C.

(B.10) Co = {co eC: [ coodr= [ icyedr = [ JileoedA = o},

where ¢ is the identity function introduced in (A.12). Since no further restrictions on ag and
8o are necessary, we finally define 2 = A x By x Cy X S.

Complete now the model assumptions < M[0]1 > imposed in Introduction by the follow-
ing ones

: £112
< M[0]2 > F'(v) existsforall ye R, J = / T < oo /R [”;] d\ < co.

Take now f and g satisfying < M[0]1 > and < M[0]2 > and

w=r= (05 /f9).

Moreover, consider a sequence {wp} C £, wy = wo € Oy and t, — 0. The assumption
< M|0]2 > ensures that Theorem B.6 is applicable for w = . Therefore we can write

L 1p2(e: o2y — Lo [ T@n) T ag
(Bll) thp (')K'+tnwﬂ) p (.,h}) 2tn %plﬂ(‘;lﬁ) p ('7”)”%'-)0-

(B.11) shows that ¥, (e)/[5p'/(e; )] is the standard form of Hadamard derivative of p'/?(s; k),
according to the convention accepted in most of statistical literature [cf. van der Vaart (1991),
e.g.]. Let us denote this derivative by p,.. So, we have

. \i’ie(’)
(B.12) De(e) = W

Following van der Vaart (1991) we like to emphasize also that (B.11) ”is related to but

weaker than the assumption of Hellinger differentiability in Begun, Hall, Huang and Wellner

(1983)... The condition in Begun, Hall, Huang and Wellner is Fréchet differentiability.”
Finally observe that (B.8) yields for any woy € Qp

(B.13) Pre(wo) = AwaTs (—[w-ao] H’}e 4 [1 Hf’] oot 3_0_ +\/}T)

We summarize the above as follows.

Theorem B.7. Under < M[0]1 > and < M[0]2 > p'/?(e; ) is Hadamard differentiable
with the derivative g, given by (B.13).

13



Remark B.8. The linear operator p,(e) is defined by the vector
fl ! .fl 1 1
(B.14 Ay T (—u[—— v =l e (1+i=|,—=,— |.
) wale {7017 7 ARV
We shall call (B.14) the score vector. Observe that the form of (B.14) is not effected by the
restrictions on directions {2y from which we can approach the model density.

Remark B.9. Note that p,(wo) € T, where T is the tangent space defined on p. 376 of
Schick (1997). The fact that the tangent space is spanned by the restricted set of directions
o plays essential role when calculating projections of some components of (B.14) onto the
subspace spanned by the remaining components of (B.14). This point shall be treated in
Section CI[0].1.

We close this section by the following remark concerning projections.

Remark B.10. The argument relating ¥, to Dy shows also that to calculate projections
of components of (B.14) onto some sets in Ly(I X R, p), .
du/dX\ X X = p(e; k), it is enough to calculate projections of ¥, onto related subspaces in
H = Ly(I x R, A x A) and, at a final stage, to divide the resulting expressions by 1p'/2(e; ).
We shall proceed in this way in Section C.

B[1]. Homoscedastic regression

We shall exploit notations, ideas and results of Section B[0] whenever possible.
B[1].1. Hadamard differentiability of &

Set
B.15 Qu=AxBxC, @:Qn—H, W)= Ay.a(bc).
[1] (1]

Additionally set
W : Q= Ax H, 3 (a,b,c) = (a,bc),

O AxH = H, (g, h)=Ayyh.
Hence ® = ®®) o0 &) and arguing similarly as in the case of (B.5) and (B.7) we get
Theorem B.11. The map & = ®® o ®W : Q;; — H is Hadamard differentiable at
each point wyy) = (@, b, ¢) such that ¢(y) is differentiable for every y € R and [3[c']*d) < .
Moreover, for any (ao, bo, co) € Q) it holds that

(B'16) é(aybyc) (aO, bO’ CO) = é(q?()l)(a,b’c) ° égizb)c) (a07 b(), CO) =

Ay.q (b w - ag] + boc + bey) -

B[1].2. Hadamard differentiability of p'/?(z; k)

14
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Now the model is: Y = a[w(X)]¥ +¢, a= (6, 8), and the basic assumptions are listed in
Introduction under the label < M[1]1 >. Arguing as in Section B[0].2 we get the following
sets of directions from which we can approach b= ,/g and c = +/f

Boz{boeB:/Ibobd)\zo},

Copy={c0 €C: /Rcocd)\:: /chocd/\=0}.
Take now Qg = A X By x Copyj and wopy) € Qopyy- Additionally to < M[1]1 > assume

n2
< MJ[1]2 > f'(y) exists forall ye R and J = /R [i—f]—-d/\ < 00.

Under such assumptions Theorem B.11 holds for wyy = (9, 8, /9, Vf) = Kyy. Hence

(B.17) ﬁn[ll(wom) = Ay.a (—[w . ao]-?’ + —% -+ %) .

The above yields

Theorem B.12. Under < M[1]1 > and < M[1]2 > p/2(:; kyy) is Hellinger differentiable
with the derivative given in (B.17). Therefore the related score vector has the form

N ]
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C. PROJECTIONS AND EFFICIENT SCORE VECTORS
C[0]. General heteroscedastic model

Take now a = (9, 8), k = (8,m), 1= (8,/3,VF,s). Recall that the score vector (B.14)
has the form

(c.1) AuwaTs (—-'u, [_fi] ¢ —v [?'] e 11+ ’ffl ! % %)

where i(y) = y, y € R. Moreover, observe that under the null hypothesis # = 0 we have
a=(0,8) in (C.1).

As in a parametric case, under a = (0, 8), we are searching for the projection of com-
ponents of Aw.aTs(~—u[=’;]es) onto the space spanned by the remaining components of (C.1).
To find them we shall apply Remark B.10 and find first related projections in . Obviously,
the considerations shall be restricted to elements of  satisfying model assumptions, only.
So, first of all we are reformulating < M[0]1 > and < M[0]2 > in terms of functions b,¢, s,
where b € B = Ly(I,\), c € C = Ly(R,)), s € S = Loo(I,A). For completeness recall also
that A = RFt? while H = Ly(R X I, A x A).

Throughout the Section C[0] we assume that given b € B and ¢ € C satisfy

<Al> b>0 A-ae., /de,\=1.
I
<A2> c>0 A-ae., /czd/\-—-l.
. R
. 2 . o 2 — 2 2 .
<A3> /chdA_o,/Rmcd/\_l,/chd,\_fr,fre(o,oo).
< A4 > d(y) exists forally € R, ¢ € C and ¢, € C, where
1
(C.2) Cy = ic + 50.

Moreover, given functions uy(2), ..., ux(z), v1(z), ..., vg(z) and the function o(z), = € I,
satisfy

< A5 > Ui, -ey Uk, V1, ..., Ug are linearly independent and belong to S,

s=—logo €8S.

Following Section B[0].2, Remark B.9, we shall restrict in C[0] our attention to the
directions from €y = A x By X Cy X &S, only, where

Bo={by € B:/Ibobd)\zo},

Co={coeC: /Rcocd/\:: /Rz'cocd)\= /R[z'lc(,cd)\z 0}.
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The assumption < A4 > allows to apply Theorem B.6 which yields [c¢f. (B.8) and (C.2)]
\il(a,b,c,s) (@0, bo, o, 50) = Ay Ls(—€°bc [w - ap] + beyso + beg + boc).
The structure of ¥ and our task suggest to introduce the following subspaces of #
J = {boc+ beo + beesg 2 by € By, o € Co, s € S}

Fi = {e*bcu- 0y : 6y € R¥} = {bc'f;‘- -0y : 0y € R¥},

Fa = {e*bcv - By : fo € R} = {bc’g - Bo: fo € R}
In Section C[0]1 we are searching for orthogonal projections of components of
—Ay.T (b L) onto the space Ay.pTs(J +F2). Since —A,.57T; is the isometry, it is therefore
enough to find
(C.3) H(bc’g—lj + Fa),

where II(- | -) denotes the projection of components of a given vector onto an indicated
space. The projection (C.3) shall be found in several steps. The basic problem of finding
II(bc'%|T) is solved in Section C[0].1.2.

To simplify further reading we first introduce some auxiliary notations and collect some
simple useful formulae.

C[0].1. Projections of chosen components of \if(a,b,c,s)
CJ[0].1.1. Notations and auxiliary facts

For short we shall abbreviate [ c(y)dy, [; [z h(z,y)dzdy, etc. or [pcd), [; [ hdA, etc.
to fpc, [ [igh etc. For h € H we set

(C.4) k= / [ hbe.

Define the measure y on I by

die 19
(C.5) L=,
and set
= w(X)= u(X) v(X) — (mem
(o et =5 (s () = )

By < A2 > it follows that ¢ and related ¢, [cf. (C.2)] are linearly independent. However,
this assumption can be weakened. For a discussion see Remark C.12. Hence the matrix

= ' Tt _ [ Ci1 €12
©) o= [ et e)= (2 2
is positive definite. Additionally set
(C.8) p= G2
Ca2
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Next define

(C.9) = /R ilile?
and
(C.10) T:(: Ti1>

The assumptions < A1 > - < A4 > and an elementary integration yield the relations
! . -2 . < 1 1
/cc=/c,.c=/zc*c=/zc'c=0, f|z|c*c=/zcc=—~«,
R R R R R R 2

C.11 /"':-—1,/2‘0’0 =c ,/z’c’2=c
( ) RZ|Z|CC R CO 22 R() 12,

| [ _} — : 2
[l =1ée= 34, 6= [ bign@)w)ay.
As follows from the begining of Section C[0] special role is played by the vector

(C.12) r=(r,rs) = (—bc'g—, ——bc'%) € HFe,
Set

r* = (ri,r3) =I(r|T) = 1I(r,|T), [(ra| T))
and define
(C.13) 0 =r—r*=(r],r).

We close this section by stating two simple propositions which shall be exploited in the

sequel.

Proposition C.1. Let ) be a Hilbert space and D its subspace [not necessary closed).
Let y, f1,..., fj € Y and set F = lin{f1, ...f;}, Yo =D+ F. Suppose there exist projections

d = I(y|D) and I(fi|D), i = 1,...,j. Define f? = fi — II(f;|D) and F° = lin{f}, ..., f7}.
Then, TI(y|)) exists and II(y|Vo) = I(y|D) + IL(y — d|FP).

Proof of this lemma, is similar to the proof of Theorem 5, p. 444, of Bickel et al. (1993)

[BKRW in what follows] and therefore omitted.

Proposition C.2. Let ®; = (fi,...f;) and @3 = (fj41, ... fi) be two vectors with compo-

nents from a Hilbert space ). Suppose the matrix of scalar products
Fi1 Fia
F = ((®,®,), (91,0 =
(( 1 2)7( 1 2))y ( Fyy Foy )

is positive definite. Set F, = lin{fj41,..., fi}. Then II(®:|F) = Dy Fop 1.
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C[0].1.2. Derivation of II(r|J)
The space J is not a closed subspace of . Therefore extend S to
So = Ly (I, ),
with p defined by (C.4), and introduce the space
= {boc + bey + bewso : by € By, ¢g € Co, 80 € So}
and the following subspaces of Jp
Hy = {boc: by € By},

HZ = {bco - Cp € CO}a
Hs = {bciso : 5o € S}

Obviously we have Jy = #1+Ha+ Hz. In succeeding steps we shall investigate properties of
the introduced spaces and find II(- |#4), II(: |H3), II(- |H1+Hs), II(- |H2). Finally II(- | 7o)
shall be derived as a combination of II(- |H; + #3) and II(- |Hz). An observation that for
r given in (C.12) it holds II(r |J) € J [see (C.24), below] obviously implies r* = II(r |J)
exists [¢f. (C.13)] and 7* = II(r | Jo)-

Lemma C.3. Subspaces H;, 7 = 1,2, 3 are closed in . Moreover, H; L Hi, Hi1 L Hs
and H2 N Hs = {0}.

Proof. Since b € B and ¢ satifies < A4 >, it follows that By and C, are closed in B and
C, respectively. This and completeness of Sy imply that the spaces #;, 7 = 1,2, 3 are closed

in #H.
//IR(boC)(bc*So) = /I bobso] [/Rc*c] =0.

By (C.11),
So, H1 1L Hs. Moreover, by the definition of By and Cj
[ [ myoeo) = [ [ 3] [ [ o =0
This proves H; L Ho.

Suppose now h € Hs N Hj. Hence h = be,sg = bey A X A-a.e. for some sy € Sy and
co € Co. So, on the set {b > 0} we have c,590 = ¢y A X A-a.e. This, however, implies that sq is
constant on {b > 0} and ¢, = (const)c,. By (C.11), [ |é|cic = —% which means that ¢, ¢ Cg
and the only allowable sy and ¢q are such that ¢y = 0, bsy = 0. Hence, Ho NH3 = {0}. O

Lemma C.4. For any h € H we have

14 T(h[H,) = [ he — Eb] ,
(C.14) (RIH1) [R c—Tb| e
where A is defined in (C.3),

(C.15) TI(h|Hs) = [/ Wb —he— (i, ({=DR) TG, |il - 17|
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1
C.16 il - [ ] .,
(C.16) (i#s) = — | [ hed]
where cq2 is given in (C.7),
(C.17) II(h|H1 & Hs) = IL(h|H1) + IL(h|Hs3).

_Proof. Observe that B = By © lin{b}. Let B : B — 7 be a linear operator given by
Bb = bc. Then the range of B has the form Hp = #; @ lin{bc}. Therefore II(h|Hp) can
be easily derived by use Theorem 2, p. 428 of BKRW and Proposition 3, p. 427 of BKRW.
The relations (C.15) and (C.16) follow in a similar way. Note only that proving (C.15) we
deal with lin{be, ibe, |i|bc} instead of lin{bc} in the case of (C.14). O

Corollary C.5. The subspace Jp = Ha + (H1 @ H3) is closed in H.
Proof. By Proposition 2, point B, p. 441 of BKRW, it is enough to check that

[I(Hy |H1 & Hs3) is finite dimensional. Indeed, for any bey € Hs, in view of (C.14), (C.16)
and (C.17), we get

— 1
TI{beo s @ Hs) = —(Beo)be+ — [ /R c,,co] be, € lin{be, b, ).
22

The proof is complete. |

Theorem C.6. The vector of projections of components of 7 onto J, has the form

w , 1.

(C.18) II(r|J%) = —[pbc*]; — [(c — pc)b+ Ezbc]m,
where p, m and 7 are given by (C.8), (C.5) and < A3 >, respectively.

Proof. To simplify the notation we shall consider projections of 7 - ap, where qg is any
vector in R*¥*? and, in particular, any element of the standard basis in RFt4.

By Proposition 1, p. 439 of BKRW, II(r - ag|Jy) = h% + h}, provided that the functions
h% € Hy and b} € Ha = Hi © H; satisfy two following equations

(C.19) hy =1I(r - ap — hy|Hs)
and
(C.20) R = TI(r - ag — R Ha).

Write h% and A} in the form h} = bc§, hj = byc + be.sy for some ¢ € Cp, b5 € By and
s§ € Sy. Since, by Lemma C.3, H, is closed, then using (C.11), (C.16) and the definition of
Co, (C.20) can be written in the equivalent form as

w - ay

— X pe,,

(C.21) hy = bjc + be.sg = —[pbe.]
g Ca2

where x = [Ridc}. Since H4 = H1 @ Hs the representation of A} is unique and therefore we
infer that

w-ap X

o Caz2 ’

(C.22) =0, s=—p
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Inserting (C.21) and (C.22) into (C.19) and applying (C.15) we obtain the following equiv-
alent form of (C.19)

beh =b {-—[m - ag) {C' — pce + %(1, ¢—p)T7'(, |i| - I)TC] +

X [c,,+%(o YT, Jif - 7]}

Ca2

(C.23) +
Dividing both sides of (C.23) by b [¢f. < Al >], multiplying by ic¢’ and integrating over R,
by (C.10) and (C.11) we get the following relation

X Y
E;=[m'ao][¢—/?“;]-

This formula, the expressions for bf, sj and cj and simple algebra yield the required form of
hy + hj. O

Corollary C.7. Observe that, by the above,

II(r - ao|Jo) = {—-[pbc*]g— —[(c = pe. )b+ ~2—17—:z'bc]m} - ag = boc+ bey + be.so

with w ¢
by =0, 30=—[P;:"(¢‘“P“;)m]'ao,
1. 9
co=c'——pc*+gzc—(¢——p—-’-r—)c*.

By < A5 > it implies sy € S. Moreover, by (C.11) we infer that ¢y € Cp. This proves
that

(C.24) O(r|J) = r* = (r|T).

By Theorem C.6 and Corollary C.7 it follows

W=r—r= (E-‘m) [PC*'-C']b"'m['}“ibc]'
o 27

, 9
for the model under consideration, with the vector map L; introduced on p. 375 of Schick

(1997) [cf. also p. 382, ibidem]. Note also that Bua¥a2? s the efficient score in the

AwaTer/Tg

Remark C.8. Note that for the choice b = /g, ¢=+/f, the expression \2/’;- coincides,

terminology of our paper.
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C[0].1.3. Projections of components of  onto J + F»

Recall that for r = (11, 7) = —(bc'%, b L) we set 7* =II(r|J) and r° =7 —r* = (r], r3)
[cf. (C.13)]. Define 7Y to be the space spanned by the components of 3. By Propositions
C.1 and C.2 we infer
(C.25) M(r]J + %) = 0(ri|T) + L(r{|F3), (| F7) = r§ VM,

where the matrices M and V are blocks of
U M7T
(C.26) W = / ), 'rQ)T (r?, ) = ( MV ) .
Theorem C.6 implies the following result:

Proposition C.9. The matrix W defined in (C.26) has the form

T
W= det CE'” (-ui - m) (_“_{ - m) + —Lme.
Caz g g 4T

< Al >, < A5 > and (C.5) ensure that W is positive definite and V! exists. Therefore
(C.25) follows by Proposition C.2.

Set now

(C.27) w:(a,a):ﬂ—m=(9—ml,g-—m2).

Corollary C.10. By (C.18), (C.24), (C.25) and (C.26) we get
B =r —(r|T +Fo) =1 —r§V M =1 - V'M)" =

= blpe, — ¢)(@ — HVIM) + %bc(ml — meV™IM),

where I is k¥ X k identity matrix.
C[0].2. Efficient score vector for testing 6 = 0 in P

Following comments given at the begining of Section C[0], take b = /g, ¢ = +/f and
0 defined with the use of them. Recall also that & = (6,n), n = (8,/7,V/f,s) and set

= (O, 7’]).

Recall that hitherto needed model assumptions < M[0]1 > and < M[0]2 > were stated in
Introduction and Section B[0].2, respectively. Now, we impose the following one [cf. < A1 >
and < A2 >].

< M[0]3 > g>0 A—ae, f>0 A—ae.
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Theorem C.11. Suppose the assumptions < M[0]1 >, < M[0]2 > and
< MJ0]3 > hold. Then the efficient score vector for testing x = r in P is given by

(C.28) = _A_Aﬁ%%% _
Consequently,

(5 0) = [0, 0) () ~ 50)v=0) + L0 o — i),
where

% and ¥ are given in (C.27) while m = (m1,ma) by (C.6).

Remark C.12. The assumption f > 0 A-a.e. [cf. < A2 > and < M[0]3 >] guarantees
that with ¢ = +/f, ¢ and the related c, [see (C.2)] are linearly independent and the matrix
C given in (C.7) is positive definite. However, this assumption can be considerably relaxed.
Indeed, suppose there exist oy, as € R such that aid + opce = 0. Consider the set
C* ={y € R:c(y) >0} On C* an equivalent form of the above equation is

1
aucc + agce, = 3 [(al + agz’)cz]l = 0.

This yields (a1 + aai)c® to be constant A-a.e. on each interval contained in C*. Therefore,
as long as f = ¢ # ap/(cu + agi) on some intervalcontained in CF, we are getting a
contradiction. The above yields e.g. that Theorem C.11 holds for all error distributions with
compact support on R and densities different from a homographic function o/ (cu + cay)
on some interval for any constant ag.

The assumption g > 0 ) -a.e. implies < Al > which was needed for the existence of

V! [ef. Proposition C.9].

In what follows E, stands for the expectation calculated under the distribution F.
Straightforward calculation yield

Et*(Z; ko) = 0,

(C30) Bl (23 k)" (Z:0) = 4 [ [AT14] = 4(U - MTV™'M).

Remark C.13. If < M[0]3 > holds then by Proposition C.9 the matrix W defined in
(C.26) is positive definite. Hence W~ is positive definite as well and it holds

11 12 _
W= ( % gm ) with Wi = (U - M V™M) "

[cf. Rao 1973, Exercise 1, Ch. 1]. This shows that the covariance matrix of £*(Z; ko) defined
in (C.30) is positive definite.
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Set

L= {Bulf(Z )¢ (Zim)} " = WL

Corollary C.14. Suppose the assumptions of Theorem C.11 hold. Let Z, ..., Z, beii.d.
with distribution F,. Set

W};(Iﬁ)o) == {% i:lg*(Zj; I‘Go)} L {% é!ﬂ*(Zj; Eo)} .

By (C.30), Remark C.13 and multivariate central limit theorem it holds under Hy : k = K¢ =
(0,7) that

(C.31) Wi(ro) 2 X3,

where X2 denotes a random variable with central chi-square distribution with k degrees of
freedom.

C[1]. Homoscedastic model

Below we are keeping the notations and the scheme of the Section C[0] whenever possible.
These notations which have to be changed have added the label [1]..

C[1].1. Projection of chosen components of é(a,b,c)

We keep the assumptions < Al > — < A2 > of Section C[0] while < A3 > - < A5 > are
restricted to

< A3[1] > LiCQdA =0, /RiQCQd/\ =7, 7 € (0,00).
< A4[1] > c'(y) exists forall y € R and ¢ €C.
< A5[1] > the functions wui,...ux,v1,...; Y4 are linearly independent

and belong to S.

As before we consider

Bo={boeB:/Ibob=0} and #; = {boc: by € Bo}.

We set
CO[l] = {Co € C : /;{Coc = /I‘{ZCQC = 0}, Hg[l] = {bCo 1 Cy € Com}

By the definition of By we have Hy 1 Hypy. We put
Ty = Hi ® Hopy = {bey + boc : by € By, ¢ € Copyy}
.7'-1[1] = {bc'[u . 90] 16 € Rk},
.772[1] = {bc’[v . ,80] : ,30 € Rq}.

24



By Lemma C.4, for any h € H = Ly(I x R, A x A) we have
.32 TI(A[#Hy) = [ ~% ]
(C.32) (hI#y) /R he — Bb| ¢,

where A is defined in (C.4). Analogusly as (C.15) we get

(C.33) TI([Hapm) = [ /R hb — Fic — -Tl-(z'_h)z'c] b.

C[1].1.1. Projections of components of ry

As before, for convenience, we shall find projections of —bc/[w-aq], where ag is an arbitrary
element of A= RFF, B
By (C.32), the property [ c'c =0 [cf. (C.11)] and the definition of & we infer that

II(—bc'[w - ag]|H1) = 0.
Hence
(C:34) T1(=be/fw - aoll i) = TL(=be'fw - ao] Hapy).
With u defined in (C.5) set now

miy = (magy], o) = Buw(X).

Taking into account the relations [rcc = 0 and [pidc = —3, [cf. (C.11)], the formulae

(C.33) and (C.34) yield

1 .
TI(—be'[w - ao)|Ty) = —[myz) - aolee’ — o~[myy - aolibe.

Set now 7py) = (ri[), Topyy) = —(ubd, vbc'). With these notations

1.
riy = W(ry|Jy) = —[bc' + —2-;zbc]m[1].

Additionally define
iy = T — Ty

Remark C.15. Note that taking b = /g, ¢ = /f we get

(0) = —(w — myp) H?,] (e —w-a)+ &:%u*ﬂmm,

where i(y) = y. This is efficient score in the terminology of the present paper. Our derivation
shows that in the formula L(z, 6, ) on p. 93 of Schick (1987) the expression wr(z, ¢) should
be replaced by Wr(z,)/o, in the notations of that paper. Observe also that, in contrast to
Schick (1997), the standardized function L(z,6,~) is named in Schick (1987) efficient score
function.

Aw‘azrf)l]
Ay.abe
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Introduce now

Recall that hitherto imposed model assumptions < M([1]1 > and < M[1]2 > can be found
in Introduction and Section B[1].2, respectively. Now, we introduce next model assumption
< M[1]3 >.

<M][1]3 > g>0 A—ae.

This assumption allows to apply Remark C.13.

Remark C.16. Since < A5[1] > and < M[1]3 > hold Wy is positive definite and
conclussions of Remark C.13 apply to Wy as well.

With the above notations, as in Section C[0].1.3, we define F3};; and calculate
Oy = ruy — 11 (Tl{l}lj[l] + F 2[1]) =7 — 7’2[1]V[—1]1 My =
—bd [ - 9yVy M[l]] + Lhe [mm] - mz[l]V"lM[l]]
o) . i M
where @y = (@, Bay) = (u — Mgy, v — mapy)-
C[1].2. Efficient score vector for testing § =0 in Py
Take b = /g, ¢ =T, ko = (0,m1)), My = (B, /8 VF)-

Theorem C.17. Assume < M[1]1 >, < M[1]2 > and < M[1]3 > hold. Then the
efficient score vector for testing k1 = Kofy) in P, is given by

" — Avﬁ2£1[1]

(1] Ay [f“g‘
Consequently,
12 o) = ~~—( — o(@)87)| [50 — 03V M|+ [y — 0()67] [magy = oy Vi M.
[1\%5 Rofy) y U Vg VL 1] 21 V1 M

Corollary C.18. Suppose the assumptions of Theorem C.17 hold. Let Z1, ..., Z, be i.i.d.
random variables with distribution P,,,. Set

1 inp
Ly = 7(Upy — My Vig M) ™

and

T
n 1 n .
Wk(ﬁ0[11)={ Z 1(Z33 o) }Lm{%_zlfm(zj;ﬁom)} :
J:
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O

Then, under HO[l] K= R = (0, 7}[1]) it holds that Eﬁo[l] fl] == 0, {E'io[l] [Eﬁ]]T [g;[kl]]}'—l = L[l]
and
W}g(lﬁom) B) Xz.
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