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Abstract

The data driven Neyman statistic consists of two elements: a score statistic in a finite dimensional
submodel and a selection rule to determine the best fitted submodel. For instance, Schwarz BIC and Akaike
AIC rules are often applied in such constructions. For moderate sample sizes AIC is sensitive in detecting
complex models, while BIC works well for relatively simple structures. When the sample size is moderate,
the choice of selection rule for determining a best fitted model from a number of models has a substantial
influence on the power of the related data driven Neyman test. This paper proposes a new solution, in which
the type of penalty (AIC or BIC) is chosen on the basis of the data. The resulting refined data driven test
combines the advantages of these two selection rules.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Data driven Neyman tests are based on two elements: Neyman’s smooth statistic (or equiva-
lently, score statistic) in a finite dimensional submodel and a selection rule to choose the appro-
priate submodel. Ledwina [20] introduced such a construction for the case of testing uniformity,
proposing to use Schwarz [24] BIC criterion as the selection rule. There was clear motivation
for such a choice. The smooth statistic can be naturally related to some testing problem in a
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finite dimensional exponential family, while the Schwarz rule was simply designed to select
the dimension of the exponential model. Obviously, some extensions of the original Schwarz
rule were available at that time, allowing for a large range of penalties (cf. [9, Remark 1.2]).
However, an appealing feature of Schwarz’s solution was the large penalty, which results in the
selection rule behaving nicely for “small” models, using the handy formulation of Shen and Ye
[25]. This guarantees that the construction of the related test is consistent with the following,
often very natural, assumption. A researcher has some knowledge about the phenomenon under
investigation and this is reflected by the form of the null model. Consequently, small, rather
than large departures, from the null model are expected. This postulate is silently assumed in
many simulation studies. For illustration, almost every alternative to normality listed in [22] can
be considered as a small departure (as explained in Sections 2 and 5) from the null model. In
contrast, large departures from normality could be defined by multimodal mixtures or heavy
tailed distributions.

In recent years, many other penalized statistics with smaller penalties, such as Akaike [2] or
modified forms of BIC, have been proposed. In particular, such an approach appeared in goodness-
of-fit tests for some regression problems. See [1,7,8] for some examples and further references.
Such a choice is motivated by the greater complexity of the underlying models and imprecise
knowledge regarding the null and alternative distributions. It seems that the terminology lack of
fit test, often used in the context of regression, instead of goodness of fit test, typically associated
with fitting distributions, also reflects the greater uncertainty related to some regression problems.
Since small penalties are associated with detecting “large” models, again using the terminology
of Shen and Ye [25], the effect is that the related tests are less powerful for small departures (from
the null hypothesis) than those related to BIC.

This paper aims to propose a solution that has the advantages of both types of penalty. For
conciseness we restrict attention to testing uniformity and two (simplified) selection rules: BIC
and AIC. Roughly speaking, the basic idea is, given the data, to decide which penalty should be
used to select the number of terms in the score statistic. The new solution, together with some
optimality properties, is described in Section 2. Section 3 presents a simulation study showing the
advantages of the refined version of the data driven test. Section 4 briefly discusses the asymptotic
behaviour of new test statistic under the null hypothesis. In Section 5 some possible extensions
are indicated.

2. The new test

We start with some notation and discussion. For brevity we only consider Neyman’s original
test related to the Legendre system. Let b1, b2, . . . be orthonormal Legendre polynomials with
respect to Lebesgue measure defined on [0, 1]. Let X1, . . . , Xn be i.i.d. each distributed according
to a continuous distribution with density p(x) with respect to Lebesgue measure on [0, 1]. The
null hypothesis H0 asserts that p = p0, where p0(x) ≡ 1 for x ∈ [0, 1]. Denote the distribution
corresponding to p0 by P0.

Consider the following probabilistic model for departures from p0:

pk(x; θ) = p0(x)


ck(θ) exp




k∑
j=1

θj bj (x)





 , (1)

where θ = (θ1, . . . , θk) and ck(θ) is the normalizing factor. Obviously, EP0bj (X1) = 0 and
EP0bi(X1)bj (X1) = δij , i, j = 1, 2, . . ., where δij is the Kronecker delta.
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The score statistic for testing θ1 = · · · = θk = 0 in (1) is of the form

Nk =
k∑

j=1

{√nb̂j }2, where b̂j = 1

n

n∑
i=1

bj (Xi).

Obviously, the same score test would be obtained when considering any other type of departure
with approximate structure 1 + ∑k

i=1 θj bj (x) for θ1, . . . , θk close to 0.
The simplified BIC and AIC are defined by

S1 = min
{
1 � k � d(n) : Nk − k log n � Nj − j log n, j = 1, . . . , d(n)

}
and

A1 = min
{
1 � k � d(n) : Nk − 2k � Nj − 2j, j = 1, . . . , d(n)

}
,

where d(n) is the number of models in the list. As seen, the simplification relies on replacing
the maximized loglikelihood for (1) by (1/2)Nk , which is the standard approximation resulting
from the delta method. The original versions of AIC and BIC could be considered as well, with
the outcome expected to be similar, but we prefer to consider the simplest set-up. A1 and S1 are
examples of so called score-based selection rules, while NA1 and NS1 are data driven Neyman’s
tests.

The asymptotic properties of NS1 were studied by Inglot [10] and Inglot and Ledwina [12]. In
these papers the notation S2 was used for the simplified Schwarz rule. Kallenberg [15] considered
a large class of data driven tests corresponding to a variety of penalties, including A1 and S1 as
special cases. In particular, Kallenberg [15] proved that tests based on NA1 and NS1 are locally
optimal in the sense of vanishing shortcoming (cf. his Theorem 4.7 and the comment following
it). However, local asymptotic optimality does not exclude the situation that for moderate sample
sizes, fixed alternatives and significance levels, the powers of NA1 and NS1 may be substantially
different. Some evidence is presented in Tables 2–4 of Section 3. An explanation is given below.
Note that, as typical for penalized criteria, in many cases the argument is understood in relation
to the actual sample size.

Akaike’s small penalty results in the inconsistency of the criterion (cf. [27]) and, as a conse-
quence, in large critical values (see Table 1 for illustration). Hence, for “small” models, such as
those defined mainly by three or four not very large, low order Fourier coefficients, NA1 is much
weaker than NS1, as the critical value is overestimated in the context of real data (remember that
Nk is the score statistic in (1)). On the other hand, Schwarz’s large penalty causes oversmoothing
for moderate n. Hence, the power of NS1 for models with relatively large higher order Fourier
coefficients is much smaller than that of NA1, as large components are not included in the test
statistic for relatively small n’s. However, a large penalty is profitable in the sense that the critical
value is small in comparison to the critical value obtained using AIC. This enables attaining high
power for models with relatively large low order Fourier coefficients. For illustration, see the
cases j = 1 and j = 8 in Table 2.

We propose to balance these two extreme tendencies as follows: use A1 only when an alternative
is very distant from the null distribution, otherwise use S1. Using such an approach, the only
missing element is an indication of how to decide whether we are close to the null model or not.
To address this question, we propose to use the simple threshold rule described below.

Set

In(c) = 1
(

max
1�j�d(n)

|√nb̂j | �
√

c log n

)
, (2)
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where 1(•) is the indicator of the set •. Observe that under the null hypothesis
√

nb̂1, . . . ,
√

nb̂n

are uncorrelated and approximately N(0, 1). Moreover, asymptotically they have i.i.d. N(0, 1)

distributions. The threshold
√

c log n, c � 2, is an adaptation of the standard solution for a white
noise sequence of independent and identically distributed N(0, 1) variables Z1, . . . , Zn for which

Pr

(
max

1�j�n
|Zi | >

√
2 log n

)
→ 0, as n → ∞

(cf. [5, p. 445], for such a choice of threshold). Therefore, an intuitive conclusion is that In(c) = 1
when c ≈ 2, c > 2, indicates that the distribution of observations is close to the null model. Some
simple, more formal, argument is provided in Appendix A. On the other hand, consider an alterna-
tive distribution P , absolutely continuous with respect to Lebesgue measure, as assumed before.
Then, there exists K = K(P ), such that EP b1(X1) = · · · = EP bK−1(X1) = 0 and EP bK(X1) /=
0, cf. [23, pp. 178, 191–192 with θ(x) = p(x) − 1]. Simultaneously,

{
max1�j�d(n) |√nb̂j | �√

c log n
} ⊃ {|√nb̂K |�√

c log n
}
, provided thatd(n) � K . Therefore, by WLLN, for any {d(n)},

such that d(n) → ∞ as n → ∞ and any positive c, under any arbitrary alternative P , it holds
that

lim
n→∞ P(In(c) = 0) = 1. (3)

In our simulation study we took c = c0 = 2.4. For some explanation of this choice see Section
3.

Now define the new penalty by

π(j, n) = {j log n}{In(c0)} + {2j}{1 − In(c0)}, (4)

and the new selection rule by

T 1 = min
{
1 � k � d(n) : Nk − π(k, n) � Nj − π(j, n), j = 1, . . . , d(n)

}
.

The new data driven statistic NT 1 is defined analogously to NS1 and NA1.
Since S1 � T 1 � A1 holds for n � 8, one gets NS1 � NT 1 � NA1. Therefore, local optimality

in the sense of vanishing shortcoming for NT 1 can be established by exploiting some known
auxiliary results for NA1 and NS1 (see [15]). We shall not derive and formulate a precise result.
Instead, in the next section we present a fragment of a simulation study, we performed to investigate
the power behaviour of NT 1 for finite samples and to compare it with a recently introduced test
based on the likelihood ratio (see [28]).

3. The performance of T 1 and NT 1 in the simulation study

Let us start with some comments on the choice of c in the definition of In(c) (cf. (2)). Obviously,
the choice of c is critical to the performance of T 1 and NT 1, both under the null and alternative
hypotheses, when the sample size is moderate. Roughly speaking, under the alternative, the
Schwarz rule is almost always selected for large c, while for small c Akaike penalty is frequently
preferred. There is also empirical evidence that T 1 and NT 1 change smoothly as c increases. For
illustration see Figs. 1 and 2. In Fig. 2, c = 0 corresponds to the application of AIC, while c = ∞
means BIC was used.

Our choice of the regularization is subjective. We focused on a value of c that allows AIC
to act only if really large departures from the null model are present. Our option c = c0 = 2.4
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Fig. 1. The behaviour of simulated critical values of NT 1 according to the switching constant c. n = 100, α = 0.05,
10,000 MC.

Fig. 2. The behaviour of simulated powers of NT 1 according to the switching constant c. n = 100, α = 0.05, 10,000
MC.

results in power comparable to that of NS1 when we have ‘smooth’ disturbances of the null model
in the rough sense formulated by Neyman [21], i.e. when up to 3 or 4 of the initial components
{√nb̂j }2, j = 1, 2, . . . are significantly large. For illustration see Fig. 2 and Tables 2–4. Our
choice also guarantees power comparable to that of NS1 if disturbances are small. On the other
hand, for alternatives very far from the null model, such as, e.g., highly oscillating alternatives,
the new solution essentially inherits the properties of NA1. Obviously, as in the case of A1 and
S1, when discussing T 1 the complexity and size of the disturbances is understood relative to the
sample size.

Throughout we consider n = 100, d(n) = 12 and significance level α = 0.05. Each MC exper-
iment was repeated 10,000 times.

Table 1 presents critical values of NA1, NS1 and NT 1 and empirical behaviour of the three
selection rules when the null hypothesis H0 is true. Note that in this experiment the number of
cases in which T 1 = S1 was 9858.

We also present some empirical powers under three types of departures: gj (x; ρ) = 1 +
ρ cos(�jx), ρ ∈ (0, 1], j = 1, 2, . . . , pk(x; θ), θ ∈ Rk , k = 1, 2, . . ., given by (1) and
h(x; ε, p, q) = 1 − ε + εβp,q(x), ε ∈ [0, 1], p, q > 0, where βp,q(x) stands for the beta density.
To have some insight into the structure and magnitude of the alternatives, in each case we calculated
(using an MC method) d(n) = 12 Fourier coefficients (in the Legendre basis) of the underlying
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Table 1
Empirical behaviour of NA1, NS1, NT 1 and selection rules under uniformity

Statistic Critical Frequency in 10,000 simulations
value k

1 2 3 4 5 6 7 8 9 10 11 12

NA1 15.684 {A1 = k} 7201 1086 549 353 211 163 131 93 86 77 50 0
NS1 5.527 {S1 = k} 9613 323 47 14 1 1 0 0 1 0 0 0
NT 1 5.987 {T 1 = k} 9536 295 57 25 13 17 13 13 11 12 8 0

n = 100, d(n) = 12, α = 0.05, 10,000 MC runs.

Table 2
Empirical powers of Zhang’s test and tests based on NA1, NS1 and NT 1 under the alternative gj (x; ρ)

Parameters The five largest (in absolute value) Empirical powers Percentage
j ρ Fourier coefficients ×1000 (as percentages) of cases

ZA NA1 NS1 NT 1 T 1 = S1

1 0.45 [1]315 [3]39 [8]2 [12]1 [2]1 76 32 81 78 56
2 0.40 [2]273 [4]79 [6]6 [1]2 [8]2 18 34 70 68 71
3 0.50 [3]316 [5]149 [1]40 [7]23 [9]4 34 54 65 65 54
4 0.60 [4]335 [6]235 [2]102 [8]58 [10]8 17 86 64 71 37
5 0.70 [7]320 [5]317 [3]173 [9]108 [1]20 41 97 60 78 27
6 0.70 [8]347 [6]232 [4]209 [10]156 [2]53 14 98 46 77 27
7 0.75 [9]377 [5]238 [11]217 [7]147 [3]98 33 98 33 81 20
8 0.80 [10]385 [12]280 [6]245 [4]141 [8]50 13 99 34 90 11

n = 100, d(n) = 12, α = 0.05, 10,000 MC runs.

distributions. The five largest (from these 12) Fourier coefficients are presented in Tables 2–4.
We also display the percentage of cases in which T 1 = S1.

The results are encouraging. The new solution outperforms the power behaviour of NA1 for
smooth alternatives and is comparable to NS1 in these cases. For highly oscillating alternatives NT 1
is much more powerful than NS1 and not much less powerful than NA1. Also, NT 1 outperforms
the power behaviour of ZA, recently introduced by Zhang [28], as an improved construction
compared to traditional tests. For many cases considered in Tables 2–4, further comparisons with
the powers of the solution proposed by Bickel and Ritov [3], the classical chi-square test, as well
as many data driven versions of it, introduced and studied in [4], as well as in [11] are possible.
Simulations for the test of Bickel and Ritov [3] can be found in [16]. Again, such inspection shows
that the new test competes well with other procedures.

4. The limiting distribution of NT 1 under uniformity and consistency under alternatives

From (A.1) of Appendix A, when c � 2 and d(n) log3 n/n → 0 as n → ∞, we have P0(T 1 /=
S1) → 0 as n → ∞. Since P0(S1 = 1) → 1 (cf. [12, (2.4)], e.g., as mentioned earlier S1 is S2 in
that paper), we infer that the asymptotic null distribution of NT 1 is chi-square with one degree of
freedom. The convergence is rather slow. For example, in Table 1 the simulated critical value of
NT 1 is 5.987, while the limiting value is 3.841. A similar phenomenon was observed in the cases
of the original and simplified Schwarz rules. Kallenberg and Ledwina [17] described a simple,
nicely working approximation, which can serve to calculate p-values and which can be adopted to
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Table 3
Empirical powers of Zhang’s test and tests based on NA1, NS1 and NT 1 under the alternative pk(x; θ)

Parameters The five largest (in absolute value) Empirical powers Percentage
k θ Fourier coefficients ×1000 (as percentages) of cases

ZA NA1 NS1 NT 1 T 1 = S1

1 0.3 [1]295 [2]38 [9]2 [12]1 [11]1 70 28 74 71 64
2 (−0.2, −0.3) [2]256 [1]151 [3]40 [4]31 [5]5 70 24 75 73 79
3 (0, 0, 0.4) [3]395 [6]66 [2]47 [4]44 [5]14 53 69 87 87 26
4 (0, −0.3, 0, −0.2) [2]223 [4]134 [6]42 [8]8 [10]2 66 14 52 48 89
4 (0.1, 0.15, −0.25, [4]335 [3]235 [1]150 [2]137 [7]68 47 86 85 86 39

−0.35)

5 (0, 0, 0, 0, 0.4) [5]397 [10]67 [2]48 [8]41 [4]40 31 77 56 76 25
6 (0.1, 0, 0, 0.1, [5]277 [6]272 [4]176 [1]165 [7]78 62 84 61 66 47

0.2, 0.2)

8 (0, 0, 0, 0, 0, 0, 0, [8]450 [2]55 [4]36 [12]26 [6]21 7 93 30 90 9
−0.5)

n = 100, d(n) = 12, α = 0.05, 10,000 MC runs.

Table 4
Empirical powers of Zhang’s test and tests based on NA1, NS1 and NT 1 under the alternative h(x; ε, p, q)

Parameters The five largest (in absolute value) Empirical powers Percentage
ε p q Fourier coefficients ×1000 (as percentages) of cases

ZA NA1 NS1 NT 1 T 1 = S1

1 1.5 1.5 [2]280 [4]46 [6]18 [8]8 [10]5 75 17 75 72 73
0.25 2.0 10.0 [1]289 [2]129 [4]116 [5]95 [6]49 63 47 76 73 64
0.25 10.0 20.0 [3]225 [2]161 [5]161 [1]143 [6]97 38 57 59 58 79
0.50 0.8 1.5 [1]263 [3]62 [2]59 [5]36 [4]34 66 28 64 61 74
0.50 0.8 0.5 [2]217 [1]199 [4]158 [3]144 [6]130 79 71 71 71 62
0.60 0.5 0.5 [2]334 [4]254 [6]211 [8]184 [10]166 89 86 88 88 33
0.20 0.2 0.2 [12]300 [10]296 [8]287 [6]281 [4]270 98 93 80 85 25
0.10 0.1 0.1 [12]273 [10]260 [8]244 [6]227 [4]201 97 84 58 68 40

n = 100, d(n) = 12, α = 0.05, 10,000 MC runs.

the present situation. The main idea of this approximation is also given in [18], where an extension
to the case in which some nuisance parameters are present is also shown.

From (3), under any alternative P we have P(T 1 = A1) → 1 as n → ∞. Therefore, the
question of the consistency of NT 1 is equivalent to establishing the consistency of NA1. This
problem was solved in [15], Section 3.

5. Discussion

In this paper we have proposed a method of extending the sensitivity of data driven Neyman
tests defined using a (simplified) Schwarz selection rule to determine the number of components.
Though, for brevity, we restricted attention to testing uniformity, it is clear that the same idea
can be applied to other problems where similar constructions have been proposed or to other
new applications. For illustration, let us mention three cases in which score statistics along with
(simplified) Schwarz selection rules have been successfully applied. Testing goodness-of-fit when
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some Euclidean nuisance parameters are present and a score based-selection rule applied has
been treated, e.g., in [19, see statistic (2.7) therein]. A nonparametric two-sample problem was
considered in [14, see (14) there]. Semiparametric linear regression was studied in [13, cf. Section
3.4 of that paper]. To make some more precise remarks, let us consider the first problem and testing
normality as a particular application. Since nuisance parameters are present, the score statistic is
of the following form:

Wk(v̂) = nVk(v̂){Mk(v̂)}VT
k (v̂),

where v = (EX, Var X) is the vector of nuisance parameters, v̂ is an appropriate estimator of
v, while Vk(v) is efficient score vector. Mk(v) is the inverse of the covariance matrix of Vk(v).
T denotes transposition. For a location-scale family and appropriate estimators of v the matrix
Mk(v) is independent of v and equals Mk , say. In particular, this is the case for testing normality
when MLEs are used. In such a case we have

Wk(v̂) = nVk(v̂){Mk}VT
k (v̂) =

k∑
j=1

{√nUj (v̂)}2,

where Uj(v̂) is the j th component of Vk(v̂)M
1/2
k . Under the null model

√
nU1(v̂), . . . ,

√
nUk(v̂)

are asymptotically i.i.d. N(0, 1). The data driven score statistic is of the form WS1(v̂)(v̂), where
S1(v̂) is defined as S1 in Section 2 with Wk(v̂) in place of Nk; cf. also (2.6) in [19]. Therefore,
it is clear that

√
nUj (v̂) can be used instead of

√
nb̂j in (2), to obtain a refined version of

WS1(v̂)(v̂).
To get some intuition regarding the behaviour of Uj(v̂), we inspected their (averaged over

10,000 MC runs) values in several cases taken from the extensive simulation study of Kallenberg
and Ledwina [19]. This study covers, among others, alternatives from [22]. In all the cases we
studied, except T U(0.7), we observed that the averaged Uj(v̂)’s follow the same pattern: the
component j = 2 or j = 3 is dominant. For T U(0.7) the dominant components are: j = 6, 4, 8
(in order of their magnitude). However, the empirical power when n = 100 and α = 0.05 is
0.90 in this case. So, there is no room for much improvement for samples of that size or larger.
T U(0.7) is an example of a distribution with a heavier tail than the normal distribution. Higher
order components are also dominant in cases of multimodal normal mixtures, for example. So,
this class of departures leaves room for some improvement.

Anyway, it is clear that the construction applies to more complex situations as well, where
some less regular disturbances may be expected. For example, Fan [6] constructed a two-sample
test focused on detecting local characters such as sharp peaks. Guerre and Lavergne [7] proposed
a test for regression, which is powerful in detecting highly oscillating alternatives. The refined
method proposed in this paper allows us to construct more universal solutions in such cases.
Such an application has been recently successfully introduced in [13]. For a practical compari-
son of Fan’s test to related data driven tests with a score-based selection rule incorporated, see
[14].
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Appendix A

Consider the event

An(c) =
{

max
1�j�d(n)

|√nb̂j | >
√

c log n

}

and assume throughout that c � 2 and d(n) log3 n/n → 0 as n → ∞. Since |bj (x)| �
√

2j + 1,

x ∈ [0, 1], from Bernstein’s inequality (cf. [26, p. 855]) applied with ϑj = 1, K = √
2j + 1 and

λ = √
c log n, we get

P0(An(c)) �
d(n)∑
j=1

P0
(|√nb̂j | �

√
c log n

)

� 2
d(n)∑
j=1

exp

[
−1

2
· c log n

{1 + (1/3)
√

(2j + 1)(c log n)/n}

]
.

Hence, by the assumption d(n) log3 n/n → 0, we obtain for large n and some positive constant
C

P0(An(c)) � {C}{d(n)}/{n1+ε}, ε =
( c

2
− 1

)
. (A.1)

(A.1) implies that limn→∞ P0(T 1 = S1) = 1.
Assuming additionally that c > 2, d(n) = O(nγ ), γ = γ (c) < ε, we get

∑∞
n=1 P0(An(c)) <

∞. Therefore, in this case the Borel–Cantelli lemma yields

P0

(
max

1�j�d(n)
|√nb̂j | >

√
c log n infinitely often

)
= 0. (A.2)

This shows that when c > 2, In(c) = 0 is highly unprobable under H0 for large n. When c 	 2,
(A.2) implies a lot of room for some shift in the means of b̂j ’s. Therefore, the result In(c) = 0
indicates that observations come from some distribution significantly different from P0.
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