
Description

Here we provide the computer programs which let one compute the values of the statistics M_d, Q_T and Q_S, the standardized empirical Fourier coefficients L_j's as well as the values of the rules T and S.

The notations in the program are consistent with or similar to those used in the paper. Let $x = (x_1, \ldots, x_m)$ and $y = (y_1, \ldots, y_n)$ denote the two samples of sizes m and n, respectively, and set $N = m + n$. In the program we rename the functions l_j and L_j to $l.j$ and $L.j$. Similarly, $k.N$ and $d.N$ stand there for the quantities $k(N)$ and $d(N)$. The choice of $k.N$ and thereby $d.N$ belongs to the user and should reflect the individual aims and needs. Some authors' recommendation is given in Section 5.2.

The code starts with the definition of the functions $l.j$ and $L.j$. The procedure test.M.d returns the values of the statistic M_d and the vector of standardized empirical Fourier coefficients $L_j = \sqrt{mn/N} \hat{\gamma}_j$, while, given the tuning parameter t, the routine test.Q yields the values of the data-driven statistics Q_T and Q_S as well as the dimensions selected by the rules T and S.

Calculation of M_d, Q_T and other quantities

```r
l.j = function(k,i,z){
  a.j = (2*i-1)/2^k
  left = -sqrt((1-a.j)/a.j)
  right = sqrt(a.j/(1-a.j))
  score = ifelse(z < a.j, left, right)
  return(score)
}

L.j = function(k,i,x,y,m,n){
  N = m + n
  H = ecdf(c(x,y))
  rx = H(x) - 1/(2*N)
  ry = H(y) - 1/(2*N)
  cx = sum(l.j(k,i,rx))/m
  cy = sum(l.j(k,i,ry))/n
  score = (cy - cx)*sqrt(m*n/N)
  return(score)
}
```


test.M.d = function(x,y,m,n,k.N){
 N = m+n
 d.N = 2^(k.N+1)-1
 L.vec = matrix(0,1,d.N)
 for(k in 0:k.N){
 for(i in 1:(2^k)){
 j = 2^k - 1 + i
 L.vec[1,j] = L.j(k,i,x,y,m,n)
 }
 }
 M.d = min(L.vec[1,])
 result = c(M.d,L.vec)
 return(result)
}

test.Q = function(x,y,m,n,k.N,t){
 N = m+n
 d.N = 2^(k.N+1)-1
 L.vec = matrix(0,1,d.N)
 L.vec.trun = matrix(0,1,d.N)
 for(k in 0:k.N){
 for(i in 1:(2^k)){
 j = 2^k - 1 + i
 L.vec[1,j] = L.j(k,i,x,y,m,n)
 L.vec.trun[1,j] = max(-L.vec[1,j], 0)
 }
 }
 Q.d.vec = matrix(0,1,k.N+1)
 D.vec = 2^(0:k.N+1) - 1
 for(k in 1:(k.N+1)){
 Q.d.vec[1,k] = L.vec.trun[1,1:D.vec[k]] %*% L.vec.trun[1,1:D.vec[k]]
 }
 S = which.max(Q.d.vec[1,] - D.vec*log(N))
 M = which.max(Q.d.vec[1,])
 if(max(-L.vec[1,]) <= sqrt(t*log(N))){
 T = S
 }else{
 T = M
 }
 Q.S = Q.d.vec[1,S]
 Q.T = Q.d.vec[1,T]
 result = c(Q.T,Q.S,T,S)
 return(result)
}