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Hurwitz's problem

Problem: Classify/count all the branched coverings of
the sphere S?

Hurwitz’s observation: Classifying/counting all the
branched coverings of the sphere S? = counting
factorizations:

0'1“'O-k:id

0) ._ " k+2 _ (i

Where pz(a-) = Hc: cycle in O'pgz)c)

Example: (1245)(3) - (1)(23)(4)(5) - = id
P ((1245)(3))p) (1)(23)(4) (5)p) =i (")) py”
% log T,io) - g.f. of transitive k-factorizations modulo conjugation = g.f. of

branched coverings
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Branched coverings vs. maps

Example: 4

(34)(12)(24) = (1234) 1\/\‘

9 3

Special case of a tau function: Grothendieck dessins d’enfants

e k=1p" =p,p® =q,p® =r, (0e0o0n=id) = (0e0, =07")

Grothendieck dessins d'enfants = bipartite maps
Summary:

(0) . pe(M)
o (p,q,r) = M (M) Llv,ev,y (M) Pdeg(ve) Lluv,ev, (M) Qdeg(vo) Llfe p(ar) Tdeg(£)/2

sum over orientable, labeled and possibly disconnected maps

0 e
Z_Cf log 7_1( )(pv q, I') — ZM ¢ () Hv. cVe (M) pdeg(’v.) H’Uo eVo (M) Qdeg(vo) erF(M) rdeg(f)/Q

sum over orientable, rooted and connected maps
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Branched coverings & symmetric functions

Power-sum and Schur symmetric functions: Recall that:

o p; = Zj a:; - power-sum symmetric function
e X\ - character of the irreducible repr. py of the symmetric group = Tr(px(+))
° sx(p) == 5 D vean) Xalo)p(o) - Schur symmetric function

Frobenius character formula:

e (), - conjugacy class of permutatios of a cycle type p, i.e. p(o) =]]._; Pu;-

e ¢, = Zaecua

ey o = 4 30, e

dim(px)F 2

Corollary (cool formula):

n im k ~ ~ n!
70 = P " D S TE 50 (p9) | where 5y 1= gt sy

Proof: Definition + Frobenius formula



Non-oriented maps - representation theory & symmetric functions

Question: Can we encode non-oriented bipartite maps in an analogous way
(representation theory/symmetric functions theory)?



Non-oriented maps - representation theory & symmetric functions

Question: Can we encode non-oriented bipartite maps in an analogous way
(representation theory/symmetric functions theory)?

YES!
orientable maps non-oriented maps
rep. theory Rep. the.ory of the Re.p. theory of the ([E.HeaLEnSctlembridge
symmetric group &(n) pair (6(2n), H(n)) Stanley ‘02 ’
symmetric normalized Schur s Zonal polynomials 2
function [Goulden, Jackson '96]
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Question: Can we encode non-oriented bipartite maps in an analogous way
(representation theory/symmetric functions theory)?

YES!
orientable maps non-oriented maps
rep. theory Rep. the.ory of the Re.p. theory of the ([E.HeaLEnSctlembridge
symmetric group &(n) pair (6(2n), H(n)) Stanley ‘02 ’
symmetric normalized Schur s Zonal polynomials 2
function [Goulden, Jackson '96]

1
2% log 7‘1( )(p, q,r) =

DM teth HU.EV.(M) Pdeg(ve) HvoeVO(M) deg(vo) HfGF(M)

f

sum over non-oriented, rooted and connected maps

Then  mV(par) =3, 50" i, L2 7, (p) Zy (q) Za (1)

Tdeg(f)/2
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Jack symmetric functions and the b-conjecture

So far we know that: ¢ f. of orientable
* Uiogr? = Ulog Y, o0 t" Xy, L5, (p)5x(A)5A(X)  maps

. 2td log 7 (1) ._ 2td og Y020t s dir(réslpf!,\) Z\(p)Z (q)ZA(r)il;.pgf non-oriented

If you are an expert in symmetric functions theory you can recognise that:

~ 1 1 dim 2
° SA °)(\ )7 H“( )H(l) (n()p';\) (@)
2 2 di 5 Where J iS d Jack polynomial
° Z>\ _ ]>(\ )7 H ]( )H(z) m(QS;O)!A) b

Two-lines crash-course on Jack polynomials:

o J>(\O‘) — hooky, (\)m + Zu<>\ aﬁ(&)mm af;(oz) c Q(a) (uppertriangularity)
\ A

o (' I 4y = 6,42 hooky (A) hooky (A’ (orthogonality)
where (px,Pu)(a) = 5M,A\C,\\a£<>‘)

a-deformations of classical hook products

Think: Jack polynomials are symmetric functions obtained by applying
Gram-Schmidt orthogonalization process to the monomial basis
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So far we know that:

o td n JITO) () JOFD (q) g0 (1) g.f. of orientable
(14 0)g log ano t" D arn ||;§1+0) E > maps

o td n JITD (p) gD (q) ) (1) g.f. of non-oriented
(I+1)g1og) 5o t" 2 orpn = H;}(\1+1) E . maps

Conjecture (the b-conjecture) [Goulden,Jackson '96]

140 14b 14b
Z tnz J§+)(P)J§+)(Q)J§+)(r)
n>0 AFn HJ>(\1+b)H2

There exists a statistic MON
(Measure Of Non-orientability) such that
MON(M) c ZZO and

MON(M) = 0 if and only if M is orientable

= land Tl(b) is the generating series of non-oriented maps:

(b) _ e(M) .MON (M
=2 ut (M (M) HU.EV.(M) Pdeg(ve) HUOEVO(M) ddeg(vo) HfEF(M) Tdeg(f)/2

Many special cases proved: [Burchardt, D., Feray, Goulden, Jackson, Kanunnikov, La Croix, Promyslov,
Vassilieva,Visentin|, Still wide open in general...
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The most fundamental function in the field: many beautiful properties; natural

b_deformed tau funCtlon appearence in enumerative geometry, probability, mathematical physics [Eynard, i

Harnad, Okounkov, Orlov Pandhari{_and(eI many.others...]

oda hierarchy

Keep first two infinite set of variables — tau function of the

. 2
) =3 Lot e TS s (p)Ea(a) TIE, 5a (i), where w; = (uz,us, - ..

n!
e pi) =py) =p§ = =,

Inspired by Goulden and Jackson's b-conjecture define the b-deformed tau function:

1+0b6 b 1+b6
7_(b) _ Z n Z T ()T (@) TR, TV ()
k. n>0 AFn ||J>(\1+b>|| .

(1+b)

Theorem [Chapuy, D. '20]

b .
1+ ) logr” =5 g, m(f)EFIMON), s /.

/4

rooted generalized branched coverings f of the sphere S by a connected
compact surface, orientable or not, with k + 2 ramification points

u?lil(f) - u?];k(f)

k() = PRt apo

/ N

ramification profile of ramification profile of
the first point the second point
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appearence in enumerative geometry, probability, mathematical physics [Eynard,
) L ] Harnad, Okounkov, Orloy, Pandharipande, many others.. ]
Keep first two infinite set of variables — tau function of the Toda hierarchy
(0) _ n dim(px) ? (D)3 koo _
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1+4+b b 1+4+b
A0 5 s BTG ) T S ()
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Theorem [Chapuy, D. "20]

(1+ b)g—‘z log T]ib) — ZMk ﬁ;(Mk)t'Mk‘bMON(M’f),

rooted k-constellations, orientable or not

K(Mg) = 11 rcraa,) Pace(r) Lvevy vy Gaeg) Tliz wi™ "
i1
. L 1 k—1
Z o \\° 1 ? Lo
({E‘ ;Efé ! A:< k1
. 1 —1 "‘,/’
2 Sl | vkt




Weighted Hurwitz numbers

Observation: (essentially Weyl's dimension formula)
§>\(H) = HDEA(U - C(D))

content of a box:

Corollary:

0 n dim(py) 2 k
= ot e TS (0)x () [T Tmen (ui + c(0))
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Let G(z) = Hle(l +a; - 2) H2:1(1 —b; - 2)~ L. We define the tau function of
G-weighted Hurwitz numbers as:
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Weighted Hurwitz numbers

Definition: [Harnad, Guay-Paquet '15]
Let G(z) = Hle(l +a; - 2) H2:1(1 —b; - 2)~ L. We define the tau function of
G-weighted Hurwitz numbers as:

O =5 et s s (p)aa(a) TTE, TToey Glie(D))

Examples: (cover important classical cases)

o GG(z) = exp(2)
double Hurwitz numbers with ¢ simple branch points

E
log 7 Y = =2 n>1 " 2on uln 2050 H (X, 1) % RN

o G(Z) — (1 —I_ Z) Bipartite maps
log 76" = Ym1 1" Coaien gz Hy (A )R HWIT2072p g,

monotone:
fixed in Cy fixed in C, 7 = (a;,b;), 741 =

e G(z)=(1—-2)"1 a; z}b bi < bt

double monotone Hurwitz numbers = #{01 09T

log 7 Y = =2 n>1 8" 2o pen 2oes0 HITT (A, 1% al pkqu

(@it1,biv1),



Weighted Hurwitz numbers

+b+1 +b0+1

Theorem: [Stanley "89] ARYAN

TV (W) = Tgen (u + 6 (D))

b-content of a box:

0 14+b|2+2b

Definition: [Chapuy, D. '20]

Let G(z) = Hle(l +a; - 2) H2:1(1 —b; - 2)~ L. We define the tau function of
GG-weighted b-deformed Hurwitz numbers as:

L0 5 gy BRI @) e, Gla@)
G n>0 AFn g(1+0)
” A ||(1—|—b)




Weighted Hurwitz numbers
+b+1 +b+1

Theorem: [Stanley "89]
I () = Toes(w + o/(0)

b-content of a box:

0 1+b|2+2b

Definition: [Chapuy, D. '20]
Let G(z) = Hle(l +a; - 2) H2:1(1 —b; - 2)~ L. We define the tau function of

GG-weighted b-deformed Hurwitz numbers as:

A ey AT @ pey Gve (@)
G n>0 AFn g(1+0b)
” A ||(1—|—b)

Theorem [Chapuy, D. '20]

(14 0)§log 7" = Sy s (Mag)tM<IpMONME-),
\ similar weight as before (degrees of faces

rooted infinite-constellations . .
_ | ’ + degrees of vertices labeled 0) which
orientable or not with some regular »
o additionally depends on G
condition



Il. Integrable hierarchies and
matrix models



KP hierarchy

Kadomtsev—Petriashvili hierarchy of partial differential equations (PDE):
o [5o— F31+ 1—12F1,1,1,1 + %Flzl =
© Fyo—Fu1+ 3111+ F-Fi1=0,

1 1 1 72 1 122
® [yo—F51+ ZF3,1,1,1 — mF1 11111 +F31-F11+ §F2,1 — §F1,1,1 —

1 _
St11F1,11,1 =0,

° L oF
Ce where F L= F.
11,4...51K apil‘“apik

The function exp(F') is called a tau function of the KP hierarchy
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Kadomtsev—Petriashvili hierarchy of partial differential equations (PDE):
o [5o— F31+ 1—12F1,1,1,1 + %Ffl =0,
® F3o9—Fyq+ %Fz,l,l,l + Foq - F11 =0,

1 1 1 12 1 2
® Fuo—Fsi+ 3F3111 — 50f1110000 31 Fia+5F5, — b1 —

1 _
St11F1,11,1 =0,

° o ok
e where F; S— F.
11 yeeeylk Opiy -Opi,

The function exp(F') is called a tau function of the KP hierarchy

physics: studying
colliding ocean waves

mathematical physics:
Witten—Kontsevich
theorem — the g.f. of
intersection numbers is a
tau-function of KdV

hierarchy (KP which
depends only on

P1,P3,P5, - - )
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Kadomtsev—Petriashvili hierarchy of partial differential equations (PDE):
o [5o— F31+ 1—12F1,1,1,1 + %F121 =0,
© Fyo—Fu1+ 3111+ F-Fi1=0,

1 1 1 12 1 2
® Fuo—Fsi+ 3F3111 — 50f11100010 31 Fia+5F5 —gFi11—

1 _
St11F1,11,1 =0,

° L oF
Ce where F L= F.
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The function exp(F') is called a tau function of the KP hierarchy

Theorem: [Okounkov, '00, Orlov '00] 4 [Harnad,, Guay-Paquet '15]

f

7'6(,9) is a tau function of the KP 7'((;0) is a tau function of the KP
ﬂerarchy. hierarchy.
Theorem: [Kazarian, Lando m this result implies

Witten—Kontsevich theorem.



KP hierarchy

Kadomtsev—Petriashvili hierarchy of partial differential equations (PDE):
o [5o— F31+ 1—12F1,1,1,1 + %F121 =0,
© Fyo—Fu1+ 3111+ F-Fi1=0,

1 1 1 72 1 122
® [yo—F51+ ZF3,1,1,1 — mF1 11111 +F31-F11+ §F2,1 — §F1,1,1 —

1 _
St11F1,11,1 =0,

° L oF
Ce where F L= F.
11,4...51K apil‘“apik

The function exp(F') is called a tau function of the KP hierarchy

Theorem: [Okounkov, '00, Orlov '00] 4 [Harnad,, Guay-Paquet '15]

(0) #

7'6(,9) is a tau function of the KP T¢,  is a tau function of the KP
hierarchy. hierarchy.

Question: |s there a similar result for Tc(;b)? Or at least for some special choices

of G?7 Or at least for some special choices of G and b # 0777



BKP hierarchy

e for general b we don't know any integrable hierarchy that will work...

e Interesting case is b = 1:

— for the classical case of bipartite maps G(z) = 1 + z the specialization
¢; = 0;—o corresponds to maps and has a "matrix model":

h=1/N

b \ z
¢ )( = 0i=2) = CNp " Jpw H] 1 eXp(2—|—2b + Zz>1 T )H1<z<3<N @i — xj‘Q/(Hb)dx
Gaussian 3 Ensemble |[Okounkov '97]




BKP hierarchy

e for general b we don't know any integrable hierarchy that will work...

e Interesting case is b = 1:

— for the classical case of bipartite maps G(z) = 1 + z the specialization
¢; = 0;—o corresponds to maps and has a "matrix model":

h=1/N .

b \
¢ )( = 0i=2) = CNp " Jpw H] 1 eXp(2—|—2b + Zz>1 T )H1<z<3<N @i — xj‘Q/(Hb)dx
Gaussian 3 Ensemble |[Okounkov '97]

— for b = 1 this corresponds to moments of Gaussian Orthogonal Ensembles:

1

(1)( = Siss) = CNb - f?—L(N) eXp(_TriH ) _|_ZZ_21 pi-Tr.(H@))dH

random symmetric matrices with i.i.d. normal entries



BKP hierarchy

e for general b we don't know any integrable hierarchy that will work...

e Interesting case is b = 1:

— for the classical case of bipartite maps G(z) = 1 + z the specialization
¢; = 0;—o corresponds to maps and has a "matrix model":

h=1/N .

b \
TC(J)(Q%' = 0i=2) = cNb * Jpn H =1 exp(2+2b T Zz>1 i )H1<z<J<N 2y — a2/ dy
Gaussian 3 Ensemble |[Okounkov '97]

Theorem: [van de Leur '01]
™~ (p) i=dy 75 (2P, 6 = b2, h = 1/N)
is a tau function of the BKP hierarchy.
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e for general b we don't know any integrable hierarchy that will work...

e Interesting case is b = 1:

— for the classical case of bipartite maps G(z) = 1 + z the specialization
¢; = 0;—o corresponds to maps and has a "matrix model":

h=1/N .

b \
7 )( i = 0i=2) = CNpb - fRN HJ 1 eXp(2—|—2b + Zz>1 5 )Hl<z<]<N @i — xj‘Q/(Hb)dx
Gaussian 3 Ensemble |[Okounkov '97]

Theorem: [van de Leur '01]
™~ (p) i= dn - 75 (2P, s = Gi=2, h = 1/N)
is a tau function of the BKP hierarchy.

Theorem: [Bonzom, Chapuy, D. 21| (but essentially [van de Leur '01])
TN(p) c— EN ()(zpaqz_N}Hgah:l/N)
is a tau function of the BKP hierarchy.



BKP hierarchy

e for general b we don't know any integrable hierarchy that will work...

e Interesting case is b = 1:

— for the classical case of bipartite maps G(z) = 1 + z the specialization
¢; = 0;—o corresponds to maps and has a "matrix model":

h=1/N

b \ z
7 )( i = 0i=2) = CNpb - fRN HJ 1 eXp(2—|—2b + Zz>1 5 )Hl<z<]<N @i — xj‘Q/(Hb)dx
Gaussian 3 Ensemble |[Okounkov '97]

Theorem: [van de Leur '01]
™~ (p) i=dy 75 (2P, 6 = b2, h = 1/N)
is a tau function of the BKP hierarchy.

Theorem: [Bonzom, Chapuy, D. 21| (but essentially [van de Leur '01])
TN(p) c— EN ()(2p7qz_N}|_57h:1/N)
is a tau function of the BKP hierarchy.

— tau function of k-constellations is not a tau function of the BKP hierarchy
for £ > 1! (reason: no matrix model?) Matrix model — monotone Hurwitz!



HCIZ and BGW integrals via monotone Hurwitz numbers
A, B,C € GLN(C), U(N) - unitary group

Harish-Chandra—ltzykson—Zuber integral (depends only on the eigenvalues
(a1,...,an) and (by,...,by) of A, B

o BGWy(n(C) = fU(N) exp(vt Tr(UC + CTUT))dU

Brézin—Gross—Witten integral (depends only on the eigenvalues (ci,...,cn) of C



HCIZ and BGW integrals via monotone Hurwitz numbers
A, B,C € GLN(C), U(N) - unitary group

Harish—Chandra—ltzykson—Zuber integral (depends only on the eigenvalues
(a1,...,an) and (by,...,by) of A, B

o BGWy(n(C) = fU(N) exp(vt Tr(UC + CTUT))dU

Brézin—Gross—Witten integral (depends only on the eigenvalues (ci,...,cn) of C

Theorem: [Harish-Chandra, Itzykson—Zuber| [Mironov—Mrozov—Semenoff]

We have the following explicit determinantal formulas:

Vandermonde determinant: [[;_;(z; — ;)

det ( exp(ta;b; ))

1<i,5< N—-1 .
HOIZy )0, I = J 2 T

det ((te;) ™2 In_;(24/%)
BGWU(N) (Cl, e ooy CN) — ( ﬁ/('CQt 2 t) )
2¢,...,¢2,

n — j-th modified Bessel function of the first kind

i N — 1
1<7,7<N H Z!



HCIZ and BGW integrals via monotone Hurwitz numbers
A, B,C € GLN(C), U(N) - unitary group

Harish-Chandra—ltzykson—Zuber integral (depends only on the eigenvalues
(a1,...,an) and (by,...,by) of A, B

o BGWy(n(C) = fU(N) exp(vt Tr(UC + CTUT))dU

Brézin—Gross—Witten integral (depends only on the eigenvalues (ci,...,cn) of C

Theorem: [Collins, Mironov—Mrozov—Semenoff, Novak]

Topological expansion of HCIZ and BGW integrals is given by double and single
monotone Hurwitz numbers:

HCIZU(N)(al, .., AN, bl, C e ey bN) ~
Dm0t Dauin 2o Hitd (A, u)(_;N)gpA(al, ey aN)qu(b1s ..., bN)

BGWU(N) (Cl, ceey CN) ~
ano t" ZA,,ul—n Zezo Hﬁfn()\a (1n))ﬁm(cla .-+, CN)



HCIZ and BGW integrals via monotone Hurwitz numbers

Let TC(;) be the tau function of b-deformed monotone Hurwitz numbers (i.e. G = 1 )

1—=2

Theorem: [Bonzom, Chapuy, D. "21]

Topological expansion of 5 — HCIZ and 8 — BGW integrals (introduced by
[Brézin—Hikami '03]) is given by double and single b-monotone Hurwitz numbers
with
o h = —
o =

|

)

*“"2
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Let TC(;) be the tau function of b-deformed monotone Hurwitz numbers (i.e. G = 1;)

Theorem: [Bonzom, Chapuy, D. "21]

Topological expansion of 5 — HCIZ and 8 — BGW integrals (introduced by
[Brézin—Hikami '03]) is given by double and single b-monotone Hurwitz numbers
with
o h = —
o =

|

)

*‘“’2

b=1=p0=1. A B e Symy(R),C € Mn(R), O(N) - orthogonal group

® HCIZO(N) (A B fO(N) exp( TI(AOBOT))CZO
® BGWO(N) C L= fO(N) eXp(\/%TI‘(CO))dO
Question: Is it true that BGW(n)(c1,...,cn) is a tau-function of the BKP

hierarchy?



HCIZ and BGW integrals via monotone Hurwitz numbers

Let TC(;) be the tau function of b-deformed monotone Hurwitz numbers (i.e. G = 1;)

Theorem: [Bonzom, Chapuy, D. "21]

Topological expansion of 5 — HCIZ and 8 — BGW integrals (introduced by
[Brézin—Hikami '03]) is given by double and single b-monotone Hurwitz numbers
with
o h = —
o =

|

)

*‘“’2

b=1=p0=1. A B e Symy(R),C € Mn(R), O(N) - orthogonal group

® HCIZO(N) (A B fO(N) exp( TI(AOBOT))CZO

® BGWO(N) C L= fO(N) eXp(\/%TI‘(CO))dO

Question: Is it true that BGW(n)(c1,...,cn) is a tau-function of the BKP
hierarchy?

YES



BKP hierarchy
BKP hierarchy of [van de Leur, Kac '97] of partial differential equations (PDE):
o —F31(N)+Fp(N)+3F2(N)*+5Fa(N) = So(N)T(N-2)7(N+2)7(N) 2,

® —2F4,1(N)—|—2F3,2(N)—|—2F2,1(N)F12 (N)+%F2,13 (N) =

Sy (N) TR (Fy (N42) — Fi(N-2)),

 6F51(N)+4F42(N)+2F35(N)+4F51(N )F12( )+2F5 13(N)+4F2 1 (N)?+
2F52(N)Fy2(N)+Fy2 12(N)+ 2 Fi2(N)3+ 2 Fya(N) Fy2 (N )+ 155 Fis (N

) —
Sy (N )TW@;)(;‘LQ) (Fi2(N42) + Fi2(N-2) + 2F5(N42) — 2F5(N-2) + (F1 (N+

2) — F1(N-2))?),

The function 7(N) := exp(F’) is called a tau function of the BKP hierarchy



BKP hierarchy
BKP hierarchy of [van de Leur, Kac '97] of partial differential equations (PDE):
o —F31(N)+Fp(N)+3F2(N)*+5Fa(N) = So(N)T(N-2)7(N+2)7(N) 2, \

® —2F4,1<N)—|—2F3,2(N)—|—2F2,1(N)F12 (N)+%F2,13 (N) =

Sy (N) TR (Fy (N42) — Fi(N-2)),

® —GF51(N)+4F,o(N)+2F5:(N)+4F31(N)Fi2(N)+£F;, 13(N)+4F2 1 (N)?+
2F52(N)Fy2(N)+Fy2 12(N)+ 2 Fi2(N)3+ 2 Fya(N) Fy2 (N )+ 155 Fis (N

) —
Sy (N )T“ﬁ};)@@) (Fi2(N42) + Fi2(N-2) + 2F5(N42) — 2F5(N-2) + (F1 (N+

2) — F1(N-2))?),

The function 7(N) := exp(F’) is called a tau function of the BKP hierarchy J
S

Step 1 check that you function satisfies the BKP equation| (computer simulation). If
yes, there is a big chance you have a tau function of the BKP hierarchy, but how to

prove it?




BKP hierarchy

BKP hierarchy of [van de Leur, Kac '97] of partial differential equations (PDE):
o [ (N)+Fy (N)-|-%F12 (N)2—|—1—12F14 (N) = So(N)T(N=-2)7(N+2)7(N) ™2,
 2Fy1(N)+2F55(N)+2F,1(N)Fi2(N)+5F513(N) =

Sy (N) TR (Fy (N42) — Fi(N-2)),

 6F51(N)+4F42(N)+2F35(N)+4F51(N )F12( )+2F5 13(N)+4F2 1 (N)?+
2F52(N)Fy2(N)+Fy2 12(N)+ 2 Fi2(N)3+ 2 Fya(N) Fy2 (N )+ 155 Fis (N

) —
Sy (N )TW@;)(;‘LQ) (Fi2(N42) + Fi2(N-2) + 2F5(N42) — 2F5(N-2) + (F1 (N+

2) — F1(N-2))?),

Proposition: [Bonzom, Chapuy, D. '21] (folklore?)

Let T(N) — Z)\ OJ)\(N)SAﬂM < (C[p][[t]] and (Ai,j)i,jEZ S.t.
Pf(AAi—I—N—i,quLN—j)1§i,j§N for N even,
ax(N) =
Pf<A)\7;—|—N—7L,>\j—|—N—j)1§i,j§]\7—|—1 for N odd.
Then 7(INV) is a tau function of the BKP hierarchy.

V(A <N



Ptathian
Theorem: [Cayley '1848]

Let A = (a; j)1<ij<2n be a skew-symmetric 2n x 2n matrix (i.e. AT = —A).
There exists a polynomial Pf(A) € Cla; ; : 1 <1i4,7 < 2n] s.t.

det(A) = Pf(A)2.

PI(A) = > ses,, s8n(0) [im1 toi-1).0(20)-
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How to prove that your function is a tau function of the BKP?
Step 1 check that you function satisfies the BKP equation (computer simulation). \/

Step 2 expand your function into Schur (computer simulation) and try to prove that
the coefficients are Pfaffians.
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Theorem: [Cayley '1848]

Let A = (a; j)1<ij<2n be a skew-symmetric 2n x 2n matrix (i.e. AT = —A).
There exists a polynomial Pf(A) € Cla; ; : 1 <1i4,7 < 2n] s.t.

det(A) = Pf(A)2.

PI(A) = > ses,, s8n(0) [im1 toi-1).0(20)-

How to prove that your function is a tau function of the BKP?
Step 1 check that you function satisfies the BKP equation (computer simulation). \/

Step 2 expand your function into Schur (computer simulation) and try to prove that
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Ptathian
Theorem: [Cayley '1848]

Let A = (a; j)1<ij<2n be a skew-symmetric 2n x 2n matrix (i.e. AT = —A).
There exists a polynomial Pf(A) € Cla; ; : 1 <1i4,7 < 2n] s.t.

det(A) = Pf(A)2.

PI(A) = > ses,, s8n(0) [im1 toi-1).0(20)-

How to prove that your function is a tau function of the BKP?
Step 1 check that you function satisfies the BKP equation (computer simulation). \/

Step 2 expand your function into Schur (computer simulation) and try to prove that
the coefficients are Pfaffians.

Step 3 find a good reason why these coefficients are Pfaffians (use your imagination).\/

Step 4 stare for hours at your function until you guess what the coefficients are:

(1) _ Z(p) 1 \_/ n 5:(p/2)
¢ — ZnZO t" Z)\I—n ho>(\)kp2>\ HDEA z4c1 (L) anot Z)\I—n hooﬁi ox(17)

the dimension of the irreducible representation of the orthogonal

group O(z) as a rational function of z



Ptathian
Theorem: [Cayley '1848]

Let A = (a; j)1<ij<2n be a skew-symmetric 2n x 2n matrix (i.e. AT = —A).
There exists a polynomial Pf(A) € Cla; ; : 1 <1i4,7 < 2n] s.t.

det(A) = Pf(A)2.

PI(A) = > ses,, s8n(0) [im1 toi-1).0(20)-

How to prove that your function is a tau function of the BKP?
Step 1 check that you function satisfies the BKP equation (computer simulation). \/

Step 2 expand your function into Schur (computer simulation) and try to prove that
the coefficients are Pfaffians.

Step 3 find a good reason why these coefficients are Pfaffians (use your imagination).\/

Step 4 stare for hours at your function until you guess what the coefficients are:

(p) 1 \/ sx(p/2)

(1) _ n Zx N n
¢ — ZnZO t Z)\I—n hooks ) HDEA z4+c1 (L) anot Z)\I—n hook3 o (17)

Step 5 prove the formula you've guessed!



almost the end of the story...

Theorem: [Bonzom, Chapuy, D. '21] (BKP hierarchy for non-oriented monotone Hurwitz numbers)
N—=Li9:\1—1 Zx(2p) 1

is a 7(IN) function of the BKP hierarchy (with an explicit formula).
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is a 7(IN) function of the BKP hierarchy (with an explicit formula).

Theorem: [Harish-Chandra '57]

e (. compact, connected semisimple Lie group:;
e z,y € b (Cartan of Lie(G)),

e IW: the associated Weyl group.

e (,): Ad-invariant inner product.
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almost the end of the story...

Theorem: [Bonzom, Chapuy, D. '21] (BKP hierarchy for non-oriented monotone Hurwitz numbers)
N—=Li9:\1—1 Zx(2p) 1

is a 7(IN) function of the BKP hierarchy (with an explicit formula).

Theorem: [Harish-Chandra '57]

e (G: compact, connected semisimple Lie group;
e z,y € b (Cartan of Lie(G)),

e IW: the associated Weyl group. * G =U(N) = Lie(G)c = My(C)

e (,): Ad-invariant inner product.

o Ag() = [Taco, (02

Ag(@)Ag(y) [ exp ((Adg ) dg = <8 S sen(w) exp ((w(x), y)




almost the end of the story...

Theorem: [Bonzom, Chapuy, D. '21] (BKP hierarchy for non-oriented monotone Hurwitz numbers)
N—=Li9:\1—1 Zx(2p) 1

is a 7(IN) function of the BKP hierarchy (with an explicit formula).

Theorem: [Harish-Chandra '57]

e (. compact, connected semisimple Lie group:;
e z,y € bh (Cartan of Lie(G)),
e IW: the associated Weyl group.

e (,): Ad-invariant inner product. e G=0(N) — Lie(G) = {A: AT = - A}
o Ag(z) =1laea, (@ 2).

Ag(@)Ag(y) [ exp ((Adg ) dg = <8 S sen(w) exp ((w(x), y)

o G = U(N) — Lie(G)c = My(C)




almost the end of the story...

Theorem: [Bonzom, Chapuy, D. '21] (BKP hierarchy for non-oriented monotone Hurwitz numbers)
N—=Li9:\1—1 Zx(2p) 1

is a 7(IN) function of the BKP hierarchy (with an explicit formula).

Problem: [Eynard '07]

One of the most important problems in this business is to find a formula for
the O(N)-HCIZ and BGW integrals, when the external matrices are arbitrary
(not necessarily antisymmetric)



almost the end of the story...

Theorem: [Bonzom, Chapuy, D. '21] (BKP hierarchy for non-oriented monotone Hurwitz numbers)
N—=Li9:\1—1 Zx(2p) 1

is a 7(IN) function of the BKP hierarchy (with an explicit formula).

Problem: [Eynard '07]

One of the most important problems in this business is to find a formula for
the O(N)-HCIZ and BGW integrals, when the external matrices are arbitrary
(not necessarily antisymmetric)

Theorem: [Bonzom, Chapuy, D. '21]

Let C' € M5n(R) has a double spectrum: C = (¢1,¢1,¢2,¢2,...,CN,CN).
Then

explicit matrix involving modified Bessel functions of the first kind.

pr (M(t,c2,

)1<z <N ( )

BGWO(QN)(Cl,Cl,...,CN,CN) V( 2t t)



Something that we don’t understand

o Let C € GLy(R). We know that

o sx(p/2(Ccc™h)
fO(N) €eXP (\/ETI'(CO))dO — anot ZAI—n ;\lo((z)ki o)\(lN))

What is a direct explanation of this identity?

e We have the BKP hierarchy for three classical models of non-oriented
weighted Hurwitz numbers with very different proofs. What is a better reason

for the BKP? Where else it occurs?

e What about the integrability for arbitrary b?



THANK
YOU!

References:
e arXiv:2004.07824
o arXiv:2109.01499
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Measure Of Non-orientability (MON)

We will define MON by edge-delation process.

Types of edges:

e bridge - deleting it decomposes a map into two connected components,
e handle - deleting it increases the number of faces by 1,

e border - deleting it decreases the number of faces by 1,

e twisted edge - deleting it does not change the number of faces.
[Definition of MON
e If M has no edges then MON(M) = 0.

e Otherwise, we delete a specific edge e and we produce one, or two rooted
maps:
o If e is a bridge, we obtain maps m, ms, and MON(m) := MON(m;) + MON(ms),
o If e is not a bridge, we produce a single map m':
— If e is a border then MON(m) := MON(m/),




Measure Of Non-orientability (MON)

We will define MON by edge-delation process.

Types of edges:

e bridge - deleting it decomposes a map into two connected components,
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— If e is a handle then there exists a second map o.m obtained from m by
twisting the edge e, such that the root edge of o.m is a handle too.
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We will define MON by edge-delation process.

Types of edges:

e bridge - deleting it decomposes a map into two connected components,
e handle - deleting it increases the number of faces by 1,
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[Definition of MON
e If M has no edges then MON(M) = 0.

e Otherwise, we delete a specific edge e and we produce one, or two rooted
maps:
o If e is a bridge, we obtain maps m, ms, and MON(m) := MON(m;) + MON(ms),
o If e is not a bridge, we produce a single map m':
— If e is a border then MON(m) := MON(m/),
— If e is a twisted then MON(m) := MON(m') + 1,

— If e is a handle then there exists a second map o.m obtained from m by
twisting the root edge e, such that the root edge of o.m is a handle too.
We define {MON(m), MON(o.m)} := {MON(m'), MON(m') + 1}
chosen such that MON(m) = 0 and MON(o.m) = 1 for m orientable.




