A bijection for rooted maps on general surfaces

Maciej Dołęga, LIAFA, Université Paris Diderot \&
Uniwersytet Wrocławski

joint work with
Guillaume Chapuy, CNRS \& LIAFA, Université Paris Diderot
I. Maps

Maps

$=$ graphs embedded into a surface in a way that the complement of the image is homeomorphic to the collection of open discs called faces

Maps

$=$ graphs embedded into a surface in a way that the complement of the image is homeomorphic to the collection of open discs called faces

Projective plane

Torus

Maps

$=$ graphs embedded into a surface in a way that the complement of the image is homeomorphic to the collection of open discs called faces

This is a map

This is not a map!

Maps

$=$ graphs embedded into a surface in a way that the complement of the image is homeomorphic to the collection of open discs called faces

This is a map

This is a map too.

Maps

$=$ graphs embedded into a surface in a way that the complement of the image is homeomorphic to the collection of open discs called faces

This is a map
$=$

This is a map too.
$=$

Orientable vs. non-orientable

Surfaces are classified by their Euler characterisitc: $\chi(\mathbb{S})$. The number g is the type of surface \mathbb{S} if $\chi(\mathbb{S})=2-2 g$. Surfaces can be:

Orientable vs. non-orientable

Surfaces are classified by their Euler characterisitc: $\chi(\mathbb{S})$. The number g is the type of surface \mathbb{S} if $\chi(\mathbb{S})=2-2 g$. Surfaces can be:

- orientable

Orientable vs. non-orientable

Surfaces are classified by their Euler characterisitc: $\chi(\mathbb{S})$. The number g is the type of surface \mathbb{S} if $\chi(\mathbb{S})=2-2 g$. Surfaces can be:

- non-orientable

Orientable vs. non-orientable

Surfaces are classified by their Euler characterisitc: $\chi(\mathbb{S})$. The number g is the type of surface \mathbb{S} if $\chi(\mathbb{S})=2-2 g$. Surfaces can be:

- orientable,
- non-orientable.

We will say that a map M is orientable/non-orientable of type g if the underlying surface is orientable/non-orientable of type g.

Orientable vs. non-orientable

Surfaces are classified by their Euler characterisitc: $\chi(\mathbb{S})$. The number g is the type of surface \mathbb{S} if $\chi(\mathbb{S})=2-2 g$. Surfaces can be:

- orientable,
- non-orientable.

We will say that a map M is orientable/non-orientable of type g if the underlying surface is orientable/non-orientable of type g.

Non-orientable map of type $1 / 2$

Orientable map of type 1

Orientable vs. non-orientable

Surfaces are classified by their Euler characterisitc: $\chi(\mathbb{S})$. The number g is the type of surface \mathbb{S} if $\chi(\mathbb{S})=2-2 g$. Surfaces can be:

- orientable,
- non-orientable.

We will say that a map M is orientable/non-orientable of type g if the underlying surface is orientable/non-orientable of type g.

$\chi(M)=$?

$$
\chi(M)=2-2 g
$$

$\chi(M)=?$

Orientable vs. non-orientable

Surfaces are classified by their Euler characterisitc: $\chi(\mathbb{S})$. The number g is the type of surface \mathbb{S} if $\chi(\mathbb{S})=2-2 g$. Surfaces can be:

- orientable,
- non-orientable.

We will say that a map M is orientable/non-orientable of type g if the underlying surface is orientable/non-orientable of type g.

$\chi(M)=1$

$$
\chi(M)=2-2 g
$$

$$
=|F(M)|-|E(M)|+|V(M)|
$$

faces of M
edges of M
vertices of M

$\chi(M)=0$

Rooted maps

Each edge consists of two half-edges.

Rooted maps

Each edge consists of two half-edges. A region between two consecutive half-edges attached to a vertex is called corner.

Rooted maps

Each edge consists of two half-edges. A region between two consecutive half-edges attached to a vertex is called corner. A map is rooted if it is equipped with a distinguished half-edge (called the root), together with a distinguished side of this half-edge.

Rooted maps

Each edge consists of two half-edges. A region between two consecutive half-edges attached to a vertex is called corner. A map is rooted if it is equipped with a distinguished half-edge (called the root), together with a distinguished side of this half-edge.

Degree of the:

- vertex is the number of half-edges incident to it,
- face is the number of edges that belong to that face (some edges can be counted twice!) $=$ number of corners that belong to that face.

$$
\begin{aligned}
& \text { Remark: } \\
& \sum_{f \in F(M)} \operatorname{deg}(f)=\sum_{v \in V(M)} \operatorname{deg}(v)=2|E(M)| .
\end{aligned}
$$

Rooted maps

Each edge consists of two half-edges. A region between two consecutive half-edges attached to a vertex is called corner. A map is rooted if it is equipped with a distinguished half-edge (called the root), together with a distinguished side of this half-edge.

Degree of the:

- vertex is the number of half-edges incident to it,
- face is the number of edges that belong to that face (some edges can be counted twice!) $=$ number of corners that belong to that face.

Remark:

Tutte noticed that maps are much simpler to enumerate, when rooted, because of the lack of symmetry. From now on, all maps will be rooted!

Maps with n edges vs. bipartite quardangulations with n faces

Map M is bipartite if vertices can be colored by two different colors $\left(V_{\bullet}(M)\right.$ set of black vertices, $V_{0}(M)$ - set of white vertices, root vertex is black by convention) such that each edge connects two vertices of different colors.
Quadrangulation is a map with all faces of degree 4.

Maps with n edges vs. bipartite quardangulations with n faces

Map M is bipartite if vertices can be colored by two different colors $\left(V_{\bullet}(M)\right.$ set of black vertices, $V_{0}(M)$ - set of white vertices, root vertex is black by convention) such that each edge connects two vertices of different colors.

Quadrangulation is a map with all faces of degree 4.
Theorem [Tutte 1960]
There is a bijection between

- the set of rooted maps on \mathbb{S} with n edges, l vertices and k faces of degree
$\lambda_{1}, \ldots, \lambda_{k}$,
- the set of rooted, bipartite quadrangulations on \mathbb{S} with n faces, l black vertices and k white vertices of degree $\lambda_{1}, \ldots, \lambda_{k}$.

Maps with n edges vs. bipartite quardangulations with n faces

Map M is bipartite if vertices can be colored by two different colors $\left(V_{\bullet}(M)\right.$ set of black vertices, $V_{0}(M)$ - set of white vertices, root vertex is black by convention) such that each edge connects two vertices of different colors.

Quadrangulation is a map with all faces of degree 4.
Theorem [Tutte 1960]
There is a bijection between

- the set of rooted maps on \mathbb{S} with n edges, l vertices and k faces of degree $\lambda_{1}, \ldots, \lambda_{k}$,
- the set of rooted, bipartite quadrangulations on \mathbb{S} with n faces, l black vertices and k white vertices of degree $\lambda_{1}, \ldots, \lambda_{k}$.

Maps with n edges vs. bipartite quardangulations with n faces

Map M is bipartite if vertices can be colored by two different colors $\left(V_{\bullet}(M)\right.$ set of black vertices, $V_{0}(M)$ - set of white vertices, root vertex is black by convention) such that each edge connects two vertices of different colors.

Quadrangulation is a map with all faces of degree 4.
Theorem [Tutte 1960]
There is a bijection between

- the set of rooted maps on \mathbb{S} with n edges, l vertices and k faces of degree $\lambda_{1}, \ldots, \lambda_{k}$,
- the set of rooted, bipartite quadrangulations on \mathbb{S} with n faces, l black vertices and k white vertices of degree $\lambda_{1}, \ldots, \lambda_{k}$.

Maps with n edges vs. bipartite quardangulations with n faces

Map M is bipartite if vertices can be colored by two different colors $\left(V_{\bullet}(M)\right.$ set of black vertices, $V_{0}(M)$ - set of white vertices, root vertex is black by convention) such that each edge connects two vertices of different colors.

Quadrangulation is a map with all faces of degree 4.
Theorem [Tutte 1960]
There is a bijection between

- the set of rooted maps on \mathbb{S} with n edges, l vertices and k faces of degree $\lambda_{1}, \ldots, \lambda_{k}$,
- the set of rooted, bipartite quadrangulations on \mathbb{S} with n faces, l black vertices and k white vertices of degree $\lambda_{1}, \ldots, \lambda_{k}$.

Maps with n edges vs. bipartite quardangulations with n faces

Map M is bipartite if vertices can be colored by two different colors $\left(V_{\bullet}(M)\right.$ set of black vertices, $V_{0}(M)$ - set of white vertices, root vertex is black by convention) such that each edge connects two vertices of different colors.

Quadrangulation is a map with all faces of degree 4.
Theorem [Tutte 1960]
There is a bijection between

- the set of rooted maps on \mathbb{S} with n edges, l vertices and k faces of degree $\lambda_{1}, \ldots, \lambda_{k}$,
- the set of rooted, bipartite quadrangulations on \mathbb{S} with n faces, l black vertices and k white vertices of degree $\lambda_{1}, \ldots, \lambda_{k}$.

Maps with n edges vs. bipartite quardangulations with n faces

Map M is bipartite if vertices can be colored by two different colors $\left(V_{\bullet}(M)\right.$ set of black vertices, $V_{0}(M)$ - set of white vertices, root vertex is black by convention) such that each edge connects two vertices of different colors.

Quadrangulation is a map with all faces of degree 4.
Theorem [Tutte 1960]
There is a bijection between

- the set of rooted maps on \mathbb{S} with n edges, l vertices and k faces of degree $\lambda_{1}, \ldots, \lambda_{k}$,
- the set of rooted, bipartite quadrangulations on \mathbb{S} with n faces, l black vertices and k white vertices of degree $\lambda_{1}, \ldots, \lambda_{k}$.

Maps with n edges vs. bipartite quardangulations with n faces

Map M is bipartite if vertices can be colored by two different colors $\left(V_{\bullet}(M)\right.$ set of black vertices, $V_{0}(M)$ - set of white vertices, root vertex is black by convention) such that each edge connects two vertices of different colors.

Quadrangulation is a map with all faces of degree 4.
Theorem [Tutte 1960]
There is a bijection between

- the set of rooted maps on \mathbb{S} with n edges, l vertices and k faces of degree $\lambda_{1}, \ldots, \lambda_{k}$,
- the set of rooted, bipartite quadrangulations on \mathbb{S} with n faces, l black vertices and k white vertices of degree $\lambda_{1}, \ldots, \lambda_{k}$.

Maps with n edges vs. bipartite quardangulations with n faces

Map M is bipartite if vertices can be colored by two different colors $\left(V_{\bullet}(M)\right.$ set of black vertices, $V_{0}(M)$ - set of white vertices, root vertex is black by convention) such that each edge connects two vertices of different colors.

Quadrangulation is a map with all faces of degree 4.
Theorem [Tutte 1960]
There is a bijection between

- the set of rooted maps on \mathbb{S} with n edges, l vertices and k faces of degree $\lambda_{1}, \ldots, \lambda_{k}$,
- the set of rooted, bipartite quadrangulations on \mathbb{S} with n faces, l black vertices and k white vertices of degree $\lambda_{1}, \ldots, \lambda_{k}$.

II. Bijections for bipartite quadrangulations

Labeled and well-labeled maps

A map is called labeled if its vertices are labeled by integers such that:

- the root vertex has label 1 ;
- if two vertices are linked by an edge, their labels differ by at most 1 .

If in addition we have:

- all the vertex labels are positive,
then the unicellular map is called well-labeled.

Labeled and well-labeled maps

A map is called labeled if its vertices are labeled by integers such that:

- the root vertex has label 1 ;
- if two vertices are linked by an edge, their labels differ by at most 1 . If in addition we have:
- all the vertex labels are positive, then the unicellular map is called well-labeled.

Labeled and well-labeled maps

A map is called labeled if its vertices are labeled by integers such that:

- the root vertex has label 1 ;
- if two vertices are linked by an edge, their labels differ by at most 1 .

If in addition we have:

- all the vertex labels are positive, then the unicellular map is called well-labeled.

labeled map on a torus

Labeled and well-labeled maps

A map is called labeled if its vertices are labeled by integers such that:

- the root vertex has label 1 ;
- if two vertices are linked by an edge, their labels differ by at most 1 .

If in addition we have:

- all the vertex labels are positive, then the unicellular map is called well-labeled.

well-labeled map on a torus

Orientable case

Theorem [Marcus, Schaeffer 2009]
There is a bijection between:

- rooted, bipartite quadrangulations on ORIENTABLE surface \mathbb{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ORIENTABLE surface \mathbb{S} with n edges and N_{i} vertices of label $i(i \geq 1)$;

Orientable case

Theorem [Marcus, Schaeffer 2009]
There is a bijection between:

- rooted, bipartite quadrangulations on ORIENTABLE surface \mathbb{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ORIENTABLE surface \mathbb{S} with n edges and N_{i} vertices of label $i(i \geq 1)$;

Orientable case

Theorem [Marcus, Schaeffer 2009]
There is a bijection between:

- rooted, bipartite quadrangulations on ORIENTABLE surface \mathbb{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ORIENTABLE surface \mathbb{S} with n edges and N_{i} vertices of label $i(i \geq 1)$;

Orientable case

Theorem [Marcus, Schaeffer 2009]
There is a bijection between:

- rooted, bipartite quadrangulations on ORIENTABLE surface \mathbb{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ORIENTABLE surface \mathbb{S} with n edges and N_{i} vertices of label $i(i \geq 1)$;

Orientable case

Theorem [Marcus, Schaeffer 2009]
There is a bijection between:

- rooted, bipartite quadrangulations on ORIENTABLE surface \mathbb{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ORIENTABLE surface \mathbb{S} with n edges and N_{i} vertices of label $i(i \geq 1)$;

Orientable case

Theorem [Marcus, Schaeffer 2009]
There is a bijection between:

- rooted, bipartite quadrangulations on ORIENTABLE surface \mathbb{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ORIENTABLE surface \mathbb{S} with n edges and N_{i} vertices of label $i(i \geq 1)$;

Orientable case

Theorem [Marcus, Schaeffer 2009]
There is a bijection between:

- rooted, bipartite quadrangulations on ORIENTABLE surface \mathbb{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ORIENTABLE surface \mathbb{S} with n edges and N_{i} vertices of label $i(i \geq 1)$;

Orientable case

Theorem [Marcus, Schaeffer 2009]
There is a bijection between:

- rooted, bipartite quadrangulations on ORIENTABLE surface \mathbb{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ORIENTABLE surface \mathbb{S} with n edges and N_{i} vertices of label $i(i \geq 1)$;

Orientable case

Theorem [Marcus, Schaeffer 2009]
There is a bijection between:

- rooted, bipartite quadrangulations on ORIENTABLE surface \mathbb{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ORIENTABLE surface \mathbb{S} with n edges and N_{i} vertices of label $i(i \geq 1)$;

Orientable case

Theorem [Marcus, Schaeffer 2009]
There is a bijection between:

- rooted, bipartite quadrangulations on ORIENTABLE surface \mathbb{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ORIENTABLE surface \mathbb{S} with n edges and N_{i} vertices of label $i(i \geq 1)$;

What about
non-orientable maps?

General case

Theorem [Chapuy, D. 2014]
There is a bijection between:

- rooted, bipartite quadrangulations on ANY surface \mathbb{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ANY surface \mathbb{S} with n edges and N_{i} vertices of label $i(i \geq 1)$;

General case

Theorem [Chapuy, D. 2014]
There is a bijection between:

- rooted, bipartite quadrangulations on ANY surface \mathbb{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ANY surface \mathbb{S} with n edges and N_{i} vertices of label $i(i \geq 1)$;

Idea:

To extend Marcus-Schaeffer bijection we have to use the same rules locally, but in non-orientable case we have to orient each face in some CANONICAL way.

General case

Theorem [Chapuy, D. 2014]
There is a bijection between:

- rooted, bipartite quadrangulations on ANY surface \mathbb{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ANY surface \mathbb{S} with n edges and N_{i} vertices of label $i(i \geq 1)$;

Idea:

To extend Marcus-Schaeffer bijection we have to use the same rules locally, but in non-orientable case we have to orient each face in some CANONICAL way.

General case

Theorem [Chapuy, D. 2014]
There is a bijection between:

- rooted, bipartite quadrangulations on ANY surface \mathbb{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ANY surface \mathbb{S} with n edges and N_{i} vertices of label $i(i \geq 1)$;

Idea:

To extend Marcus-Schaeffer bijection we have to use the same rules locally, but in non-orientable case we have to orient each face in some CANONICAL way.

General case

Theorem [Chapuy, D. 2014]
There is a bijection between:

- rooted, bipartite quadrangulations on ANY surface \mathbb{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)$;
- rooted, one-face, well-labeled maps on ANY surface \mathbb{S} with n edges and N_{i} vertices of label $i(i \geq 1)$;

Idea:

To extend Marcus-Schaeffer bijection we have to use the same rules locally, but in non-orientable case we have to orient each face in some CANONICAL way.

General case (II)

We are going to orient faces of a quadrangulation \mathfrak{q} by constructing recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:

General case (II)

We are going to orient faces of a quadrangulation \mathfrak{q} by constructing recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:

General case (II)

We are going to orient faces of a quadrangulation \mathfrak{q} by constructing recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:

Step 0: Initialization

General case (II)

We are going to orient faces of a quadrangulation \mathfrak{q} by constructing recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:

Step 0: Initialization

General case (II)

We are going to orient faces of a quadrangulation \mathfrak{q} by constructing recursively a Dual Exploration Graph $\nabla(\mathfrak{q})(\mathrm{DEG})$ on the same surface:

General case (II)

We are going to orient faces of a quadrangulation \mathfrak{q} by constructing recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:

Step 1: Choosing where to start

- we perform the tour of the blue graph, starting from the LVC. We stop as soon as we visit a face F having the following properties: F is of type $(i-1, i, i+1, i)$, and F has exactly one blue vertex already placed inside it.
- we choose an edge e in F by the following rule:

General case (II)

We are going to orient faces of a quadrangulation \mathfrak{q} by constructing recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:

Step 2: Attaching a new branch of blue edges labeled by i starting across e

General case (II)

We are going to orient faces of a quadrangulation \mathfrak{q} by constructing recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:

Step 2: Attaching a new branch of blue edges labeled by i starting across e

General case (II)

We are going to orient faces of a quadrangulation \mathfrak{q} by constructing recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:

Step 1: Choosing where to start

- we perform the tour of the blue graph, starting from the LVC. We stop as soon as we visit a face F having the following properties: F is of type $(i-1, i, i+1, i)$, and F has exactly one blue vertex already placed inside it.
- we choose an edge e in F by the following rule:

General case (II)

We are going to orient faces of a quadrangulation \mathfrak{q} by constructing recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:

Step 2: Attaching a new branch of blue edges labeled by i starting across e

General case (II)

We are going to orient faces of a quadrangulation \mathfrak{q} by constructing recursively a Dual Exploration Graph $\nabla(\mathfrak{q})(\mathrm{DEG})$ on the same surface:

General case (II)

We are going to orient faces of a quadrangulation \mathfrak{q} by constructing recursively a Dual Exploration Graph $\nabla(\mathfrak{q})(\mathrm{DEG})$ on the same surface:

General case (II)

We are going to orient faces of a quadrangulation \mathfrak{q} by constructing recursively a Dual Exploration Graph $\nabla(\mathfrak{q})(\mathrm{DEG})$ on the same surface:

General case (II)

We are going to orient faces of a quadrangulation \mathfrak{q} by constructing recursively a Dual Exploration Graph $\nabla(\mathfrak{q})(\mathrm{DEG})$ on the same surface:

General case (II)

We are going to orient faces of a quadrangulation \mathfrak{q} by constructing recursively a Dual Exploration Graph $\nabla(\mathfrak{q})(\mathrm{DEG})$ on the same surface:

General case (II)

We are going to orient faces of a quadrangulation \mathfrak{q} by constructing recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:

General case (II)

We are going to orient faces of a quadrangulation \mathfrak{q} by constructing recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:

Step 2: Attaching a new branch of blue edges labeled by i starting across e

General case (II)

We are going to orient faces of a quadrangulation \mathfrak{q} by constructing recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:

General case (II)

We are going to orient faces of a quadrangulation \mathfrak{q} by constructing recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:

Proposition:

DEG $\nabla(\mathfrak{q})$ is formed by a unique oriented cycle encircling root vertex v_{0}, to which oriented trees are attached. After the construction of $\nabla(\mathfrak{q})$ is complete, each face of \mathfrak{q} is of one of the two types:

General case (II)

We are going to orient faces of a quadrangulation \mathfrak{q} by constructing recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:

Proposition:

DEG $\nabla(\mathfrak{q})$ is formed by a unique oriented cycle encircling root vertex v_{0}, to which oriented trees are attached. After the construction of $\nabla(\mathfrak{q})$ is complete, each face of \mathfrak{q} is of one of the two types:

General case (II)

We are going to orient faces of a quadrangulation \mathfrak{q} by constructing recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:

Proposition:

DEG $\nabla(\mathfrak{q})$ is formed by a unique oriented cycle encircling root vertex v_{0}, to which oriented trees are attached. After the construction of $\nabla(\mathfrak{q})$ is complete, each face of \mathfrak{q} is of one of the two types:

General case (II)

We are going to orient faces of a quadrangulation \mathfrak{q} by constructing recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:

Proposition:

DEG $\nabla(\mathfrak{q})$ is formed by a unique oriented cycle encircling root vertex v_{0}, to which oriented trees are attached. After the construction of $\nabla(\mathfrak{q})$ is complete, each face of \mathfrak{q} is of one of the two types:

Corollary:
Red $\operatorname{map} \phi(\mathfrak{q})$ is a one-face well-labeled rooted map with n edges, where n is the number of faces of \mathfrak{q}.

General case (III)

$\left\{\right.$ rooted, bipartite quadrangulations on \mathbb{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)\}$
$\left\{\right.$ rooted, WELL-LABELED, one-face maps on \mathbb{S} with n edges and N_{i} vertices of label $i(i \geq 1)\}$

General case (III)

$\left\{\right.$ rooted, bipartite quadrangulations on \mathbb{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)\}$
$\left\{\right.$ rooted, WELL-LABELED, one-face maps on \mathbb{S} with n edges and N_{i} vertices of label $i(i \geq 1)\}$

$$
\Downarrow
$$

\{rooted, POINTED bipartite quadrangulations on \mathbb{S} with n faces and N_{i} vertices at distance i from the pointed vertex $\left.(i \geq 1)\right\}$

$$
\leftrightarrow
$$

\{rooted, LABELED, one-face maps on \mathbb{S} equipped with a sign $\epsilon \in\{+,-\}$ with N_{i} vertices of label $\left.i+\left(\ell_{\min }-1\right)(i \geq 1)\right\}$

General case (III)

\{rooted, bipartite quadrangulations on \mathbb{S} with n faces and N_{i} vertices at distance i from the root vertex $(i \geq 1)\}$
\leftrightarrow
$\left\{\right.$ rooted, WELL-LABELED, one-face maps on \mathbb{S} with n edges and N_{i} vertices of label $i(i \geq 1)\}$
\{rooted, POINTED bipartite quadrangulations on \mathbb{S} with n faces and N_{i} vertices at distance i from the pointed vertex $\left.(i \geq 1)\right\}$
\leftrightarrow
\{rooted, LABELED, one-face maps on \mathbb{S} equipped with a sign $\epsilon \in\{+,-\}$ with N_{i} vertices of label $\left.i+\left(\ell_{\min }-1\right)(i \geq 1)\right\}$

Double rooting trick and Hall's marriage theorem see next slide!

General case (IV)
$\left(\mathfrak{q}, v_{0}\right)$ - pointed, rooted quadrangulation

General case (IV)

General case (IV)

General case (IV)

General case (IV)

General case (IV)

choose a corner incident to v_{0} and declare as a

\mathfrak{q}^{\prime} - rerooted quadrangulation with marked corner (previous) root corner)
\mathfrak{q}^{\prime} has $4 n$ corners and map $\psi\left(\mathfrak{q}^{\prime}\right)$ has $2 n$ corners - use some canonical way to choosa a corner in $\psi\left(\mathfrak{q}^{\prime}\right)$ and a sign $\epsilon \in\{+,-\}$ (for example - unique corner u incident to the root e of \mathfrak{q} and sign depending on whether the label of u is smaller or greater than the other extremity of e)

General case (IV)

\mathfrak{q}^{\prime} - rerooted quadrangulation with marked corner (previous) root corner)
$\left(\psi\left(\mathfrak{q}^{\prime}\right)^{\prime}, \epsilon\right)$ - rooted, labeled (by shifting labels) to obtain 1 in marked corner that became a root corner) one-face map with a sign
\mathfrak{q}^{\prime} has $4 n$ corners and map $\psi\left(\mathfrak{q}^{\prime}\right)$ has $2 n$ corners - use some canonical way to choosa a corner in $\psi\left(\mathfrak{q}^{\prime}\right)$ and a sign $\epsilon \in\{+,-\}$ (for example - unique corner u incident to the root e of \mathfrak{q} and sign depending on whether the label of u is smaller or greater than the other extremity of e)

General case (IV)

 root corner) $\left(\psi\left(\mathfrak{q}^{\prime}\right), \epsilon\right)$ - rooted, well-labeled one-face map with marked corner and corner that became a root corner) one-face map with a sign
G - bipartite graph with the vertex set
$\mathcal{Q}_{\mathbb{S}, n, d} \biguplus \mathcal{U}_{\mathbb{S}, n, d}$, where
$\mathcal{Q}_{\mathbb{S}, n, d}$ - set of all rooted quadrangulation on \mathbb{S} with n faces and pointed vertex of degree d $\mathcal{U}_{\mathbb{S}, n, d}$ - set of all rooted labeled, one-face maps on \mathbb{S} with n edges in which there are d corners with minimum label and equiped with a sign $\epsilon \in\{+,-\}$

General case (IV)

G - bipartite graph with the vertex set
$\mathcal{Q}_{\mathbb{S}, n, d} \biguplus \mathcal{U}_{\mathbb{S}, n, d}$, where
$\mathcal{Q}_{\mathbb{S}, n, d}$ - set of all rooted quadrangulation on \mathbb{S} with n faces and pointed vertex of degree d $\mathcal{U}_{\mathbb{S}, n, d}$ - set of all rooted labeled, one-face maps on \mathbb{S} with n edges in which there are d corners with minimum label and equiped with a sign $\epsilon \in\{+,-\}$

General case (IV)

 quadrangulation with marked corner (previous) root corner)
$\left.\psi\left(\mathfrak{q}^{\prime}\right)^{\prime}, \epsilon\right)$ - rooted, labeled (by shifting labels) to obtain 1 in marked corner that became a root corner) one-face map with a sign
G - bipartite graph with the vertex set $\mathcal{Q}_{\mathbb{S}, n, d} \biguplus \mathcal{U}_{\mathbb{S}, n, d}$, where
$\mathcal{Q}_{\mathbb{S}, n, d}$ - set of all rooted quadrangulation on \mathbb{S} with n faces and pointed vertex of degree d $\mathcal{U}_{\mathbb{S}, n, d}$ - set of all rooted labeled, one-face maps on \mathbb{S} with n edges in which there are d corners with minimum label and equiped with a sign $\epsilon \in\{+,-\}$
$\left(\psi\left(\mathfrak{q}^{\prime}\right), \epsilon\right)$ - rooted well-labeled one-face map with marked corner and

III. Applications

Enumeration - toy example

Let us try to enumerate maps with n edges on the projective plane:

Enumeration - toy example

Let us try to enumerate maps with n edges on the projective plane:

- number of rooted maps on the projective plane with n edges $=$
- number of rooted quadrangulations on the projective plane with n faces $=$
\bullet (number of rooted, POINTED quadrangulations on the projective plane with n faces) $/($ number of vertices $=n+1)=$
$\bullet \frac{2}{n+1}$ (number of rooted, labeled, one-face maps on the projective plane with n edges)

Enumeration - toy example

Let us try to enumerate maps with n edges on the projective plane:

- number of rooted maps on the projective plane with n edges $=$
- number of rooted quadrangulations on the projective plane with n faces $=$
\bullet (number of rooted, POINTED quadrangulations on the projective plane with n faces) $/($ number of vertices $=n+1)=$
- $\frac{2}{n+1}$ (number of rooted, labeled, one-face maps on the projective plane with n edges

Enumeration - toy example

Let us try to enumerate maps with n edges on the projective plane:
-number of rooted maps on the projective plane with n edges $=$

- number of rooted quadrangulations on the projective plane with n faces $=$
\bullet (number of rooted, POINTED quadrangulations on the projective plane with n faces) $/($ number of vertices $=n+1)=$
$-\frac{2}{n+1}$ (number of rooted, labeled, one-face maps on the projective plane with n edges)

$$
m_{n}=\frac{2}{n+1} \sum_{k \geq 1} b_{k}
$$

Labeled cycle with k edges.

$$
b_{k}=\sum_{a+2 b=k}\binom{k}{a, b, b}
$$

Enumeration - toy example

Let us try to enumerate maps with n edges on the projective plane:

- number of rooted maps on the projective plane with n edges $=$
- number of rooted quadrangulations on the projective plane with n faces $=$
\bullet (number of rooted, POINTED quadrangulations on the projective plane with n faces) $/($ number of vertices $=n+1)=$
- $\frac{2}{n+1}$ (number of rooted, labeled, one-face maps on the projective plane with n edges)

Enumeration - toy example

Let us try to enumerate maps with n edges on the projective plane:

- number of rooted maps on the projective plane with n edges $=$
- number of rooted quadrangulations on the projective plane with n faces $=$
\bullet (number of rooted, POINTED quadrangulations on the projective plane with n faces) $/($ number of vertices $=n+1)=$
$\bullet \frac{2}{n+1}$ (number of rooted, labeled, one-face maps on the projective plane with n edges)

Enumeration - toy example

Let us try to enumerate maps with n edges on the projective plane:

- number of rooted maps on the projective plane with n edges $=$
- number of rooted quadrangulations on the projective plane with n faces $=$
\bullet (number of rooted, POINTED quadrangulations on the projective plane with n faces) $/($ number of vertices $=n+1)=$
$\bullet \frac{2}{n+1}$ (number of rooted, labeled, one-face maps on the projective plane with n edges)

Enumeration

Theorem [Bender, Canfield 1986]
Let

$$
Q_{\mathbb{S}}(t):=\sum_{n \geq 0} \overrightarrow{q_{\mathbb{S}}, t^{n}}=\sum_{n \geq 0}(n+2-2 h) \vec{q}_{\mathbb{S}}(n) t^{n}
$$

be the generating function of rooted maps of type g pointed at a vertex or a face, by the number of edges. Moreover let $U \equiv U(t)$ and $T \equiv T(t)$ be the two formal power series defined by: $T=1+3 t T^{2}, \quad U=t T^{2}\left(1+U+U^{2}\right)$. Then $Q_{\mathbb{S}}(t)$ is a rational function in U.

Enumeration

Theorem [Bender, Canfield 1986]
Let

$$
Q_{\mathbb{S}}(t):=\sum_{n \geq 0} \overrightarrow{q_{\mathbb{S}}, t^{n}}=\sum_{n \geq 0}(n+2-2 h) \vec{q}_{\mathbb{S}}(n) t^{n}
$$

be the generating function of rooted maps of type g pointed at a vertex or a face, by the number of edges. Moreover let $U \equiv U(t)$ and $T \equiv T(t)$ be the two formal power series defined by: $T=1+3 t T^{2}, \quad U=t T^{2}\left(1+U+U^{2}\right)$. Then $Q_{\mathbb{S}}(t)$ is a rational function in U.

Corollary [Bender, Canfield 1986]

For each $g \in\left\{\frac{1}{2}, 1, \frac{3}{2}, 2, \ldots\right\}$, there exists a constant p_{g} such that the number of rooted maps with n edges on the non-orientable surface of type g satisfies:

$$
m_{g}(n) \sim p_{g} 12^{n} n^{\frac{5(g-1)}{2}}
$$

Enumeration

Theorem [Bender, Canfield 1986]
Let

$$
Q_{\mathbb{S}}(t):=\sum_{n \geq 0} \overrightarrow{q_{\mathbb{S}}, t^{n}}=\sum_{n \geq 0}(n+2-2 h) \vec{q}_{\mathbb{S}}(n) t^{n}
$$

be the generating function of rooted maps of type g pointed at a vertex or a face, by the number of edges. Moreover let $U \equiv U(t)$ and $T \equiv T(t)$ be the two formal power series defined by: $T=1+3 t T^{2}, \quad U=t T^{2}\left(1+U+U^{2}\right)$. Then $Q_{\mathbb{S}}(t)$ is a rational function in U.

Corollary [Bender, Canfield 1986]

For each $g \in\left\{\frac{1}{2}, 1, \frac{3}{2}, 2, \ldots\right\}$, there exists a constant p_{g} such that the number of rooted maps with n edges on the non-orientable surface of type g satisfies:

$$
m_{g}(n) \sim p_{g} 12^{n} n^{\frac{5(g-1)}{2}}
$$

Remark

Our main theorem allows us to recover Bender and Canfield results. In particular we can give some explicit (but very complicated) formula for the constant p_{g}.

Random maps

Let (\mathcal{M}, v) be a map with distinguished vertex v. We define:

- radius of a $\operatorname{map} \mathcal{M}$ centered at v by the quantity

$$
R(\mathcal{M}, v)=\max _{u \in V(\mathcal{M})} d_{\mathcal{M}}(v, u)
$$

- profile of distances from the distinguished point v (for any $r>0$) by:

$$
I_{(\mathcal{M}, v)}(r)=\#\left\{u \in V(\mathcal{M}): d_{\mathcal{M}}(v, u)=r\right\}
$$

Random maps

Let (\mathcal{M}, v) be a map with distinguished vertex v. We define:

- radius of a $\operatorname{map} \mathcal{M}$ centered at v by the quantity

$$
R(\mathcal{M}, v)=\max _{u \in V(\mathcal{M})} d_{\mathcal{M}}(v, u)
$$

- profile of distances from the distinguished point v (for any $r>0$) by:

$$
I_{(\mathcal{M}, v)}(r)=\#\left\{u \in V(\mathcal{M}): d_{\mathcal{M}}(v, u)=r\right\}
$$

Theorem [Chapuy, D. 2014]

Let q_{n} be uniformly distributed over the set of rooted, bipartite quadrangulations with n faces on \mathbb{S}, and let v_{0}, v_{*} be two independent uniformly chosen vertices of q_{n}. Then, there exists a continuous, centered Gaussian process $L^{\mathbb{S}}=\left(L_{t}^{\mathbb{S}}, 0 \leq t \leq 1\right)$ such that:
$\bullet \frac{9}{8 n}{ }^{1 / 4} R\left(q_{n}, v_{0}\right), \frac{9}{8 n}^{1 / 4} R\left(q_{n}, v_{*}\right) \rightarrow \sup L^{\mathbb{S}}-\inf L^{\mathbb{S}}$;
$\bullet \frac{9}{8 n}{ }^{1 / 4} d_{q_{n}}\left(v_{0}, v_{*}\right), \frac{9}{8 n}^{1 / 4} d_{q_{n}}\left(v_{*}, v_{* *}\right) \rightarrow \sup L^{\mathbb{S}}$;

- $\frac{I_{\left(q_{n}, v_{0}\right)}\left((8 n / 9)^{1 / 4} \cdot\right)}{n+2-2 h}, \frac{I_{\left(q_{n}, v_{*}\right)}\left((8 n / 9)^{1 / 4}\right)}{n+2-2 h} \rightarrow \mathcal{I}^{\mathbb{S}}$,
where $\mathcal{I}^{\mathbb{S}}$ is defined as follows: for every non-negative, measurable $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$,

$$
\left\langle\mathcal{I}^{\mathbb{S}}, g\right\rangle=\int_{0}^{1} d t g\left(L_{t}^{\mathbb{S}}-\inf L^{\mathbb{S}}\right) .
$$

Random maps (II)

Few words about the process $L^{\mathbb{S}}(\mathbb{S}=$ sphere for simplicity $)$.

Random maps (II)

Few words about the process $L^{\mathbb{S}}$ ($\mathbb{S}=$ sphere for simplicity).

- Contour process $c_{n}:[0,2 n] \rightarrow \mathbb{R}$ of the rooted, pointed quadrangulation
\mathfrak{q}_{n} with n faces: $c_{n}(i)=d_{\psi\left(\mathfrak{q}_{n}\right)}\left(v_{i}, v_{0}\right)$, where v_{0} - root vertex of $\psi\left(\mathfrak{q}_{n}\right), v_{i}$ vertex visited in the i-th step during the walk along the boundary of $\psi\left(\mathfrak{q}_{n}\right)$.

Random maps (II)

Few words about the process $L^{\mathbb{S}}(\mathbb{S}=$ sphere for simplicity $)$.

- Contour process $c_{n}:[0,2 n] \rightarrow \mathbb{R}$ of the rooted, pointed quadrangulation \mathfrak{q}_{n} with n faces: $c_{n}(i)=d_{\psi\left(\mathfrak{q}_{n}\right)}\left(v_{i}, v_{0}\right)$, where v_{0} - root vertex of $\psi\left(\mathfrak{q}_{n}\right), v_{i}$ vertex visited in the i-th step during the walk along the boundary of $\psi\left(\mathfrak{q}_{n}\right)$.
- after proper normalization, the contour of uniformly chosen random rooted tree with n edges converges in distribution to the co-called normalized Brownian excursion $c^{\mathbb{S}}$ (informally - standard Brownian motion conditioned to remain non-negative on $[0,1]$ and to take value 0 at the time 1).

Random maps (II)

Few words about the process $L^{\mathbb{S}}(\mathbb{S}=$ sphere for simplicity $)$.

- Contour process $c_{n}:[0,2 n] \rightarrow \mathbb{R}$ of the rooted, pointed quadrangulation \mathfrak{q}_{n} with n faces: $c_{n}(i)=d_{\psi\left(\mathfrak{q}_{n}\right)}\left(v_{i}, v_{0}\right)$, where v_{0} - root vertex of $\psi\left(\mathfrak{q}_{n}\right), v_{i}$ vertex visited in the i-th step during the walk along the boundary of $\psi\left(\mathfrak{q}_{n}\right)$.
- after proper normalization, the contour of uniformly chosen random rooted tree with n edges converges in distribution to the co-called normalized Brownian excursion $c^{\mathbb{S}}$ (informally - standard Brownian motion conditioned to remain non-negative on $[0,1]$ and to take value 0 at the time 1).
- Label process $L_{n}:[0,2 n] \rightarrow \mathbb{R}$ of the rooted, pointed quadrangulation \mathfrak{q}_{n} with n faces: $L_{n}(i)=\ell\left(c_{i}\right)$, where c_{0} - root corner of $\psi\left(\mathfrak{q}_{n}\right), c_{i}$ - corner visited in the i-th step during the walk along the boundary of $\psi\left(\mathfrak{q}_{n}\right)$.

Random maps (II)

Few words about the process $L^{\mathbb{S}}(\mathbb{S}=$ sphere for simplicity $)$.

- Contour process $c_{n}:[0,2 n] \rightarrow \mathbb{R}$ of the rooted, pointed quadrangulation \mathfrak{q}_{n} with n faces: $c_{n}(i)=d_{\psi\left(\mathfrak{q}_{n}\right)}\left(v_{i}, v_{0}\right)$, where v_{0} - root vertex of $\psi\left(\mathfrak{q}_{n}\right), v_{i}$ vertex visited in the i-th step during the walk along the boundary of $\psi\left(\mathfrak{q}_{n}\right)$.
- after proper normalization, the contour of uniformly chosen random rooted tree with n edges converges in distribution to the co-called normalized Brownian excursion $c^{\mathbb{S}}$ (informally - standard Brownian motion conditioned to remain non-negative on $[0,1]$ and to take value 0 at the time 1).
- Label process $L_{n}:[0,2 n] \rightarrow \mathbb{R}$ of the rooted, pointed quadrangulation \mathfrak{q}_{n} with n faces: $L_{n}(i)=\ell\left(c_{i}\right)$, where c_{0} - root corner of $\psi\left(\mathfrak{q}_{n}\right), c_{i}$ - corner visited in the i-th step during the walk along the boundary of $\psi\left(\mathfrak{q}_{n}\right)$.
- after normalization by $\frac{9}{8 n}^{1 / 4}$, label process of uniformly chosen pointed, rooted, planar quadrangulation with n faces converges to the so-called head of the Brownian snake $L^{\mathbb{S}}=\left(L_{t}^{\mathbb{S}}, 0 \leq t \leq 1\right)$ which is, conditionally on $c^{\mathbb{S}}$, continuous Gaussian process with covariance:

$$
\operatorname{Cov}\left(L_{s}^{\mathbb{S}}, L_{t}^{\mathbb{S}}\right)=\inf \left\{c_{u}^{\mathbb{S}}: \min (s, t,) \leq u \leq \max (s, t)\right\}
$$

IV. Further directions

- Generalization of the Bouttier-Di Francesco-Guitter bijection for nonorientable maps (bijection between bipartite $2 p$-angulations, or, more generally bipartite maps with n faces of prescribed degrees and some kind of nonorientable mobiles?)
- Generalization of the Bouttier-Di Francesco-Guitter bijection for nonorientable maps (bijection between bipartite $2 p$-angulations, or, more generally bipartite maps with n faces of prescribed degrees and some kind of nonorientable mobiles?)
- Studying random maps on ANY surface in Gromov-Hausdorff topology (convergence of bipartite quadrangulations up to extraction of SUBSEQUENCE is proved (Bettinelli, Chapuy, D.) - what about full convergance)?).

THANK
YOU!

