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Where pz(a-) = Hc: cycle in O'pgz)c)

Example: (1245)(3) - (1)(23)(4)(5) - = id
P ((1245)(3))p) (1)(23)(4) (5)p) =i (")) py”
% log T,io) - g.f. of transitive k-factorizations modulo conjugation = g.f. of

branched coverings
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Branched coverings & symmetric functions

Power-sum and Schur symmetric functions: Recall that:

° pi =), a:; - power-sum symmetric function
e ) - character of the irreducible repr. p) of the symmetric group

e s\(p):i= D vean) Xalo)p(o) - Schur symmetric function

Frobenius character formula:

e (), - conjugacy class of permutatios of a cycle type p, i.e. p(o)

e ¢, = Zaecua

o

dim(px)F 2

Corollary (cool formula):

Proof: Definition + Frobenius formula

|

— Hi:l Pu; -

n im k ~ ~ n!
70 = P " D S TE 50 (p9) | where 5y 1= gt sy
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Branched coverings vs. maps

Two important special cases of 7 functions:

e pM=p p? =q,p"? = (uj,u,...) fori > 0.

Tli()) — TIEO) (pv q, Uy, ... ,Uk).

Multiparametric tau function of Hurwitz numbers; tau function of the KP

(or more generally, Toda) hierarchy, fundamental function in the field
[Okounkov,Orlov,Pandariphande]
—1

e k=1,pW =p,p?® =q,p® =r, (0e0.0p=id) = (0e0, =075")

Grothendieck dessins d'enfants = bipartite maps
Summary:

(0) . pe(M)
o (p,q,r) = M (M) Llv,ev,y (M) Pdeg(ve) Lluv,ev, (M) Qdeg(vo) Llfe p(ar) Tdeg(£)/2

sum over orientable, labeled and possibly disconnected maps

0 e
Z_Cf log 7_1( )(pv q, I') — ZM ¢ () Hv. cVe (M) pdeg(’v.) H’Uo eVo (M) Qdeg(vo) erF(M) rdeg(f)/Q

sum over orientable, rooted and connected maps

What about non-orientable maps?
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1
2% log 7‘1( )(p, q,r) =

DM teth HU.EV.(M) Pdeg(ve) HvoeVO(M) deg(vo) HfGF(M)

f

sum over non-oriented, rooted and connected maps

Then  mV(par) =3, 50" i, L2 7, (p) Zy (q) Za (1)

Tdeg(f)/2
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o
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So far we know that: ¢ f. of orientable
* Uiogr? = Ulog Y, o0 t" Xy, L5, (p)5x(A)5A(X)  maps

. 2td log 7 (1) ._ 2td og Y020t s dir(réslpf!,\) Z\(p)Z (q)ZA(r)il;.pgf non-oriented

If you are an expert in symmetric functions theory you can recognise that:

~ 1 1 dim 2
° SA °)(\ )7 H“( )H(l) (n()p';\) (@)
2 2 di 5 Where J iS d Jack polynomial
° Z>\ _ ]>(\ )7 H ]( )H(z) m(QS;O)!A) b

Two-lines crash-course on Jack polynomials:

o J>(\O‘) — hooky, (\)m + Zu<>\ aﬁ(&)mm af;(oz) c Q(a) (uppertriangularity)
\ A

o (' I 4y = 6,42 hooky (A) hooky (A’ (orthogonality)
where (px,Pu)(a) = 5M,A\C,\\a£<>‘)

a-deformations of classical hook products

Think: Jack polynomials are symmetric functions obtained by applying
Gram-Schmidt orthogonalization process to the monomial basis
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140 14b 14b
Z tnz J§+)(P)J§+)(Q)J§+)(r)
n>0 AFn HJ>(\1+b)H2

There exists a statistic MON
(Measure Of Non-orientability) such that
MON(M) c ZZO and

MON(M) = 0 if and only if M is orientable

= land Tl(b) is the generating series of non-oriented maps:
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Many special cases proved: [Burchardt, D., Feray, Goulden, Jackson, Kanunnikov, La Croix, Promyslov,
Vassilieva,Visentin|, Still wide open in general...



b-deformed tau function

Recall the general tau-function of the Toda hierarchy of branched coverings with
k + 2 branch points:
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1+0b6 b 1+b6
7_(b) _ Z n Z T ()T (@) TR, TV ()
k. n>0 AFn ||J>(\1+b) .

(1+0)

Theorem [Chapuy, D. "20]

(1+) log Z}M () IMOND), s [
rooted generalized branched coverings f of the sphere S by a connected
compact surface, orientable or not, with k + 2 ramification points

5(f) = peeregpoges

[N

ramification profile of ramification profile of
the first point the second point




b-deformed tau function

Recall the general tau-function of the Toda hierarchy of branched coverings with
k 4+ 2 branch points:

PO 5 gndimie) s~ g0y E s (w). where wr = (w.
k= Z2an>0 n en SA(P)Sa(a) [ [;q Sx(us), where uy = (u, uy, . . .)

Inspired by Goulden and Jackson's b-conjecture define the b-deformed tau function:

1+0b6 b b
7_(b) _ Z n Z T (p) T (@) TR, TV ()
k. n>0 AFn g(1+0) '
|| bY ||(1—|—b)

Theorem [Chapuy, D. "20]

(1+0) 5 logm” = Sy, m(My )t (MOPMONML),

rooted k-constellations, orientable or not

K(Mg) = 11 rcraa,) Pace(r) Lvevy vy Gaeg) Tliz wi™ "
i+ 1
. L 1 k-1
Z o \ ? Y
%‘ o é 1 8 < -1
. 1—1 "‘,/’
i+1 g ® L ® k=1




Idea of the proof

Maps experts:
e remove the root edge and analyse how your map changed (classical ideas
[Tutte '63, Lehman and Walsh '72])

e try to do the same with constallations: replace the root edge by a "rooted
branch" 0 —+ 1 — --- — k - analysis is (much) harder but still possible!

e conclude that there exists a partial differential equation PDE1 satisfied by the
MON-weighted generating series of k-constellations, which uniquely
determines it.
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e remove the root edge and analyse how your map changed (classical ideas
[Tutte '63, Lehman and Walsh '72])

e try to do the same with constallations: replace the root edge by a "rooted
branch" 0 —+ 1 — --- — k - analysis is (much) harder but still possible!

e conclude that there exists a partial differential equation PDE1 satisfied by the
MON-weighted generating series of k-constellations, which uniquely
determines it.

Jack polynomials experts:

e use the fundamental fact [Stanley "89] that Jack polynomials are
eigenfunctions of the Laplace-Beltrami operator (partial-differential operator)

e play a lot with Pieri rule, Laplace-Beltrami operator and nested commutators
to build a PDE2 satisfied by the b-deformed tau function T,Eb)

A miraclel!!l

e prove that PDE1 = PDE2 (very long and technical proof using heavy
algebraic manipulations and lifting original operators to much bigger spaces by
adding new variables to the picture)



Applications and problems

e we prove that the (logarithm of) tau function of weighted b-deformed Hurwitz
numbers:
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has nonnegative integer coefficients. It covers the case of
e b-deformed classical Hurwitz numbers (single or double)

e b-monotone Hurwitz numbers (aka topological expansion of b-deformed
HCIZ integral)
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Applications and problems

e we prove that the (logarithm of) tau function of weighted b-deformed Hurwitz

numbel’S. G(x):1_|_llq1$+gzx2+ggx3+...

(1+b)log ) ,~ot" > ar L) 3 (@ e G(Cb%

1+b
1T (1)

b-deformed content

has nonnegative integer coefficients. It covers the case of
e b-deformed classical Hurwitz numbers (single or double)

e b-monotone Hurwitz numbers (aka topological expansion of b-deformed
HCIZ integral)

e Many questions: integrability (Virasoro constraints + BKP structure at b =1
in some cases [Bonzom,Chapuy, D.])? the proof of the b-conjecture?
geometric interpretation (which moduli space? the meaning of MON?)



THANK
YOU!
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We will define MON by edge-delation process.

Types of edges:

e bridge - deleting it decomposes a map into two connected components,
e handle - deleting it increases the number of faces by 1,

e border - deleting it decreases the number of faces by 1,

e twisted edge - deleting it does not change the number of faces.
[Definition of MON
e If M has no edges then MON(M) = 0.

e Otherwise, we delete a specific edge e and we produce one, or two rooted
maps:
o If e is a bridge, we obtain maps m, ms, and MON(m) := MON(m;) + MON(ms),
o If e is not a bridge, we produce a single map m':
— If e is a border then MON(m) := MON(m/),

— If e is a twisted then MON(m) := MON(m') + 1,

— If e is a handle then there exists a second map o.m obtained from m by
twisting the edge e, such that the root edge of o.m is a handle too.
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— If e is a handle then there exists a second map o.m obtained from m by
twisting the edge e, such that the root edge of o.m is a handle too.



Measure Of Non-orientability (MON)

We will define MON by edge-delation process.

Types of edges:

e bridge - deleting it decomposes a map into two connected components,
e handle - deleting it increases the number of faces by 1,

e border - deleting it decreases the number of faces by 1,

e twisted edge - deleting it does not change the number of faces.
[Definition of MON
e If M has no edges then MON(M) = 0.

e Otherwise, we delete a specific edge e and we produce one, or two rooted
maps:
o If e is a bridge, we obtain maps m, ms, and MON(m) := MON(m;) + MON(ms),
o If e is not a bridge, we produce a single map m':
— If e is a border then MON(m) := MON(m/),
— If e is a twisted then MON(m) := MON(m') + 1,

— If e is a handle then there exists a second map o.m obtained from m by
twisting the root edge e, such that the root edge of o.m is a handle too.
We define {MON(m), MON(o.m)} := {MON(m'), MON(m') + 1}
chosen such that MON(m) = 0 and MON(o.m) = 1 for m orientable.




