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Problem: Classify/count all the branched coverings of
the sphere S2

Hurwitz’s observation: Classifying/counting all the
branched coverings of the sphere S2 ≡ counting

factorizations:

σ1 · · ·σk = id

where pi(σ) :=
∏
c: cycle in σ p

(i)
`(c)

td
dt log τ

(0)
k - g.f. of transitive k-factorizations modulo conjugation ≡ g.f. of

branched coverings

Example: (1245)(3) · (1)(23)(4)(5) · (54321) = id

p(1)((1245)(3))p(2)(1)(23)(4)(5)p(3)(54321) = p
(1)
1 p

(1)
4 (p

(2)
1 )3p

(2)
2 p

(3)
5

τ
(0)
k :=

∑
n≥0

tn

n!

∑
σ1···σk+2=id∈S(n)

∏k+2
i=1 p(i)(σi)
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Power-sum and Schur symmetric functions: Recall that:

pi :=
∑
j x

i
j - power-sum symmetric function

χλ - character of the irreducible repr. ρλ of the symmetric group
sλ(p) :=

1
n!

∑
σ∈S(n) χλ(σ)p(σ) - Schur symmetric function

•
•
•

Frobenius character formula:

Cµ - conjugacy class of permutatios of a cycle type µ, i.e. p(σ) =
∏
i=1 pµi .•

cµ =
∑
σ∈Cµ σ•

[id]cµ1 · · · cµk = 1
n!

∑
λ

χλ(cµ1 )···χλ(cµk )
dim(ρλ)k−2

Corollary (cool formula):

τ
(0)
k =

∑
n≥0 t

n
∑
λ`n

dim(ρλ)
n!

2 ∏k+2
i=1 s̃λ(p

(i)) where s̃λ := n!
dim(ρλ)

sλ

Proof: Definition + Frobenius formula
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Branched coverings vs. maps

Two important special cases of τ functions:

p(1) = p,p(2) = q,p(i+2) = (ui, ui, . . . ) for i > 0.•

τ
(0)
k = τ

(0)
k (p,q, u1, . . . , uk).

Multiparametric tau function of Hurwitz numbers; tau function of the KP
(or more generally, Toda) hierarchy, fundamental function in the field

[Okounkov,Orlov,Pandariphande]

k = 1,p(1) = p,p(2) = q,p(3) = r, (σ•σ◦σ� = id) ≡ (σ•σ◦ = σ−1� )•
Grothendieck dessins d’enfants ≡ bipartite maps

Summary:

τ
(0)
1 (p,q, r) =

∑
M

te(M)

e(M)!

∏
v•∈V•(M) pdeg(v•)

∏
v◦∈V◦(M) qdeg(v◦)

∏
f∈F (M) rdeg(f)/2

sum over orientable, labeled and possibly disconnected maps

td
dt log τ

(0)
1 (p,q, r) =

∑
M te(M)

∏
v•∈V•(M) pdeg(v•)

∏
v◦∈V◦(M) qdeg(v◦)

∏
f∈F (M) rdeg(f)/2

sum over orientable, rooted and connected maps

What about non-orientable maps?
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∑
M te(M)

∏
v•∈V•(M) pdeg(v•)

∏
v◦∈V◦(M) qdeg(v◦)

∏
f∈F (M) rdeg(f)/2

sum over non-oriented, rooted and connected maps

2 tddt log τ
(1)
1 (p,q, r) :=

τ
(1)
1 (p,q, r) :=

∑
n≥0 t

n
∑
λ`n

dim(ρ2λ)
(2n)! Zλ(p)Zλ(q)Zλ(r)Then
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td
dt log τ

(0)
1 := td

dt log
∑
n≥0 t

n
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If you are an expert in symmetric functions theory you can recognise that:

• s̃λ = J
(1)
λ , ‖J (1)

λ ‖2(1) =
dim(ρλ)

2

(n)!2

• Zλ = J
(2)
λ , ‖J (2)

λ ‖2(2) =
dim(ρ2λ)

(2n)!

where J (α)
λ is a Jack polynomial

Two-lines crash-course on Jack polynomials:

•

•

J
(α)
λ = hookα(λ)mλ +

∑
µ<λ a

λ
µ(α)mµ, a

λ
µ(α) ∈ Q(α)

〈J (α)
λ , J

(α)
µ 〉(α) = δµ,λ hookα(λ) hookα(λ)

′

where 〈pλ, pµ〉(α) := δµ,λ|Cλ|α`(λ)

(uppertriangularity)

(orthogonality)

α-deformations of classical hook products

Think: Jack polynomials are symmetric functions obtained by applying
Gram-Schmidt orthogonalization process to the monomial basis
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Conjecture (the b-conjecture) [Goulden,Jackson ’96]

τ
(b)
1 :=

∑
n≥0 t

n
∑
λ`n

J
(1+b)
λ (p)J

(1+b)
λ (q)J

(1+b)
λ (r)

‖J(1+b)
λ ‖2

Let

There exists a statistic MON
(Measure Of Non-orientability) such that
MON(M) ∈ Z≥0 and
MON(M) = 0 if and only if M is orientable

and τ (b)1 is the generating series of non-oriented maps:

(1 + b) td
dt

log τ
(b)
1 =

∑
M te(M)bMON(M) ∏

v•∈V•(M) pdeg(v•)
∏

v◦∈V◦(M) qdeg(v◦)
∏

f∈F (M) rdeg(f)/2
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(b)
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∑
n≥0 t
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λ`n

J
(1+b)
λ (p)J
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Let
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(Measure Of Non-orientability) such that
MON(M) ∈ Z≥0 and
MON(M) = 0 if and only if M is orientable

and τ (b)1 is the generating series of non-oriented maps:

(1 + b) td
dt

log τ
(b)
1 =

∑
M te(M)bMON(M) ∏

v•∈V•(M) pdeg(v•)
∏

v◦∈V◦(M) qdeg(v◦)
∏

f∈F (M) rdeg(f)/2

Many special cases proved: [Burchardt, D., Feŕay, Goulden, Jackson, Kanunnikov, La Croix, Promyslov,
Vassilieva,Visentin], Still wide open in general...



b-deformed tau function

Recall the general tau-function of the Toda hierarchy of branched coverings with
k + 2 branch points:

τ
(0)
k =

∑
n≥0 t

n dim(ρλ)
n!

2 ∑
λ`n s̃λ(p)s̃λ(q)

∏k
i=1 s̃λ(ui), where ui = (ui, ui, . . . )

τ
(b)
k =

∑
n≥0 t

n
∑
λ`n

J
(1+b)
λ (p)J

(1+b)
λ (q)

∏k
i=1 J

(1+b)
λ (ui)

‖J(1+b)
λ ‖(1+b)

.

Inspired by Goulden and Jackson’s b-conjecture define the b-deformed tau function:
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τ
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n dim(ρλ)
n!
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λ (q)
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.

Inspired by Goulden and Jackson’s b-conjecture define the b-deformed tau function:

Theorem [Chapuy, D. ’20]

(1 + b) tddt log τ
(b)
k =

∑
f :S→S+ κ(f)t

|f |bMON(f),

rooted generalized branched coverings f of the sphere S by a connected
compact surface, orientable or not, with k + 2 ramification points

κ(f) = pλ−1(f)qλ0(f)u
v1(f)
1 . . . u

vk(f)
k

ramification profile of
the first point

ramification profile of
the second point

0

1
1

2

−1S

S2+

0
1

2

−1

f



b-deformed tau function

Recall the general tau-function of the Toda hierarchy of branched coverings with
k + 2 branch points:

τ
(0)
k =

∑
n≥0 t

n dim(ρλ)
n!
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Inspired by Goulden and Jackson’s b-conjecture define the b-deformed tau function:

Theorem [Chapuy, D. ’20]

(1 + b) tddt log τ
(b)
k =

∑
Mk

κ(Mk)t
e(Mk)bMON(Mk),

rooted k-constellations, orientable or not

κ(Mk) :=
∏
f∈F (Mk)

pdeg(f)
∏
v∈V0(Mk)

qdeg(v)
∏k
i=1 u

vi(Mk)
i

i

i+ 1

i− 1

i+ 1

i− 1

i+ 1

0

1

1

1

1

1

k

k − 1

k − 1

k − 1

k − 1

k − 1

0

1

1

1

2

2

3

2

1

0



Idea of the proof

• remove the root edge and analyse how your map changed (classical ideas
[Tutte ’63, Lehman and Walsh ’72])

Maps experts:

• try to do the same with constallations: replace the root edge by a "rooted
branch" 0→ 1→ · · · → k - analysis is (much) harder but still possible!

• conclude that there exists a partial differential equation PDE1 satisfied by the
MON-weighted generating series of k-constellations, which uniquely
determines it.
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• conclude that there exists a partial differential equation PDE1 satisfied by the
MON-weighted generating series of k-constellations, which uniquely
determines it.

• use the fundamental fact [Stanley ’89] that Jack polynomials are
eigenfunctions of the Laplace-Beltrami operator (partial-differential operator)

Jack polynomials experts:

• play a lot with Pieri rule, Laplace-Beltrami operator and nested commutators
to build a PDE2 satisfied by the b-deformed tau function τ (b)k

• prove that PDE1 = PDE2 (very long and technical proof using heavy
algebraic manipulations and lifting original operators to much bigger spaces by
adding new variables to the picture)

A miracle!!!



Applications and problems

• we prove that the (logarithm of) tau function of weighted b-deformed Hurwitz
numbers:
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Applications and problems

• we prove that the (logarithm of) tau function of weighted b-deformed Hurwitz
numbers:

(1 + b) log
∑
n≥0 t

n
∑
λ`n

J
(1+b)
λ (p)J

(1+b)
λ (q)

∏
�∈λG(cb(�))

‖J(1+b)
λ ‖(1+b)

.

has nonnegative integer coefficients. It covers the case of
• b-deformed classical Hurwitz numbers (single or double)
• b-monotone Hurwitz numbers (aka topological expansion of b-deformed
HCIZ integral)

G(x) = 1 + g1x+ g2x
2 + g3x

3 + · · ·

b-deformed content

• Many questions: integrability (Virasoro constraints + BKP structure at b = 1
in some cases [Bonzom,Chapuy, D.])? the proof of the b-conjecture?
geometric interpretation (which moduli space? the meaning of MON?)



THANK
YOU!

• arXiv:2004.07824
• arXiv:2109.01499
• arXiv:2110.12834
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We will define MON by edge-delation process.
Types of edges:
• bridge - deleting it decomposes a map into two connected components,
• handle - deleting it increases the number of faces by 1,
• border - deleting it decreases the number of faces by 1,
• twisted edge - deleting it does not change the number of faces.
Definition of MON
• If M has no edges then MON(M) = 0.
• Otherwise, we delete a specific edge e and we produce one, or two rooted
maps:
◦ If e is a bridge, we obtain maps m1,m2, and MON(m) := MON(m1) +MON(m2),
◦ If e is not a bridge, we produce a single map m′:
− If e is a border then MON(m) := MON(m′),
− If e is a twisted then MON(m) := MON(m′) + 1,
− If e is a handle then there exists a second map σem obtained from m by
twisting the root edge e, such that the root edge of σem is a handle too.
We define {MON(m),MON(σem)} := {MON(m′),MON(m′) + 1}
chosen such that MON(m) = 0 and MON(σem) = 1 for m orientable.


