Central limit theorem for random Young diagrams with respect to Jack measure (joint work with Valentin Féray)

Maciej Dołęga

LIAFA, Université Paris Diderot, Instytut Matematyczny, Uniwersytet Wrocławski

12 II 2014

Young diagrams

Definition

A partition λ is a finite non-increasing sequence of positive integers $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k$. It can be represented by a Young diagram λ . The size of the Young diagram λ is defined by $|\lambda| := \sum_i \lambda_i$.

Problem

We want to investigate some asymptotic properties of Young diagrams as their size is tending to infinity. How to do it?

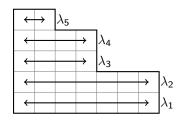
Solution

Look on 'large Young diagrams' from a 'large perspective' and treat these discrete objects as continuous ones!

Young diagrams

Definition

A partition λ is a finite non-increasing sequence of positive integers $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k$. It can be represented by a Young diagram λ . The size of the Young diagram λ is defined by $|\lambda| := \sum_i \lambda_i$.



Problem

We want to investigate some asymptotic properties of Young diagrams as their size is tending to infinity. How to do it?

Solution

Look on 'large Young diagrams' from a 'large perspective' and treat these discrete objects as continuous ones!

Young diagrams

Definition

A partition λ is a finite non-increasing sequence of positive integers $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k$. It can be represented by a Young diagram λ . The size of the Young diagram λ is defined by $|\lambda| := \sum_i \lambda_i$.

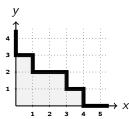
Problem

We want to investigate some asymptotic properties of Young diagrams as their size is tending to infinity. How to do it?

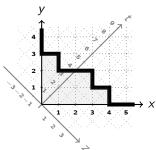
Solution

Look on 'large Young diagrams' from a 'large perspective' and treat these discrete objects as continuous ones!

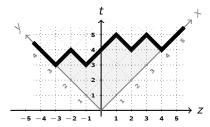
French convention:



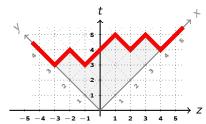
French convention:



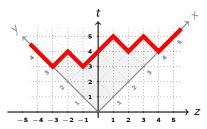
Russian convention:



Russian convention:



Russian convention:



Definition

A profile of a Young diagram λ is a function $\omega(\lambda): \mathbb{R} \to \mathbb{R}_+$ such that its graph is a profile of λ drawn in Russian convention.

Continuous Young diagrams

Definition

A continuous Young diagram is a function $\omega: \mathbb{R} \to \mathbb{R}_+$ such that

- $\omega(x) |x|$ has compact support;
- $|\omega(x_1) \omega(x_2)| \le |x_1 x_2|$ for any $x_1, x_2 \in \mathbb{R}$.

An area of a continuous Young diagram ω is given by:

$$\mathsf{Area}(\omega) := rac{1}{2} \int_{\mathbb{R}} |\omega(x) - |x|| \; dx.$$

Remark

Let λ - Young diagram with $|\lambda| = n$. Then

Area
$$(\omega(\lambda)) = n$$
.

Normalized Young diagrams

Problem

How to look on the 'large Young diagrams' from 'large perspective'?

Solution

Normalize them in a way that their areas are constant.

Definition

Let λ - Young diagram with $|\lambda|=n$. We define scaled (continuous) Young diagram

$$\omega(D_{\sqrt{n}^{-1}}(\lambda))(x) := \sqrt{n}^{-1}\omega(\lambda)(\sqrt{n}x).$$

Remark

Area
$$\left(\omega(D_{\sqrt{p}^{-1}}(\lambda))\right) = 1$$

Normalized Young diagrams

Problem

How to look on the 'large Young diagrams' from 'large perspective'?

Solution

Normalize them in a way that their areas are constant.

Definition

Let λ - Young diagram with $|\lambda|=n$. We define scaled (continuous) Young diagram

$$\omega(D_{\sqrt{n}^{-1}}(\lambda))(x) := \sqrt{n}^{-1}\omega(\lambda)(\sqrt{n}x).$$

Remark

Area
$$\left(\omega(D_{\sqrt{n}^{-1}}(\lambda))\right)=1.$$

Asymptotic shape of large Young diagrams

Let $(\lambda_{(n)})_{n\in\mathbb{N}_+}$ - sequence of Young diagrams with $|\lambda_{(n)}|=n$.

Definition

We say that $(\lambda_{(n)})_{n\in\mathbb{N}_+}$ has a limit shape ω if

$$\left\|\omega(D_{\sqrt{n}^{-1}}(\lambda_{(n)}))-\omega\right\|\to 0,$$

as $n \to \infty$, where $||f|| = \sup_{x \in \mathbb{R}} |f(x)|$.

Asymptotic shape of large Young diagrams

Jack measure

Let $\left(\lambda_{(n)}\right)_{n\in\mathbb{N}_+}$ - sequence of Young diagrams with $|\lambda_{(n)}|=n$.

Definition

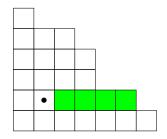
We say that $(\lambda_{(n)})_{n\in\mathbb{N}_+}$ has a limit shape ω if

$$\left\|\omega(D_{\sqrt{n}^{-1}}(\lambda_{(n)}))-\omega\right\|\to 0,$$

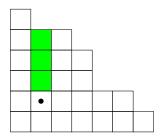
as $n \to \infty$, where $||f|| = \sup_{x \in \mathbb{R}} |f(x)|$.

Problem

Let us choose $(\lambda_{(n)})_{n\in\mathbb{N}_+}$ randomly according with some 'nice' distribution. Does it have a limit shape with a high probability? Is it unique? Can we say more about it?

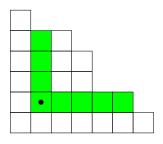


 $a(\bullet)$ = number of boxes to the right of the given box



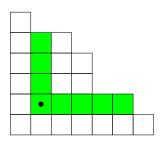
 $\ell(\bullet)$ = number of boxes above the given box

Jack characters



$$\mathsf{hook}^{(1)}(ullet) := \mathsf{a}(ullet) + \ell(ullet) + 1.$$

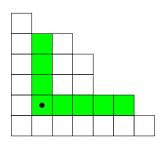
Jack characters



$$\mathbb{P}_n^{(1)}(\lambda) = \frac{\dim(\lambda)^2}{n!},$$

where (hook formula:)

$$\dim(\lambda) = \frac{n!}{\prod_{\square \in \lambda} \operatorname{hook}(\square)}.$$



$$\mathbb{P}_n^{(1)}(\lambda) = \frac{\dim(\lambda)^2}{n!},$$

where (hook formula:)

$$\dim(\lambda) = \frac{n!}{\prod_{\square \in \lambda} \mathsf{hook}(\square)}.$$

$$\mathbb{P}_n^{(1)}(\lambda) = \frac{n!}{\prod_{\square \in \lambda} (\mathsf{hook}(\square))^2}.$$

Plancherel measure $\mathbb{P}_n^{(1)}$ is a probability measure on the set \mathbb{Y}_n of Young diagrams of size n.

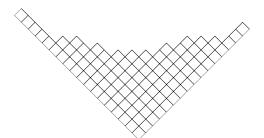


Figure: Scaled random Young diagram of size 100 distributed according with Plancherel measure

Figure: Scaled random Young diagram of size 1000 distributed according with Plancherel measure

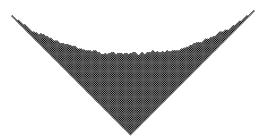


Figure: Scaled random Young diagram of size 5000 distributed according with Plancherel measure

Jack measure

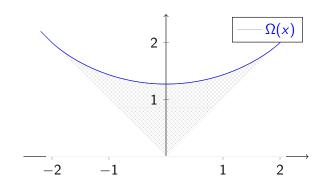
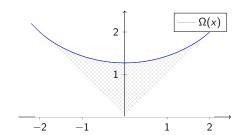


Figure:
$$\Omega(x) = \begin{cases} |x| & \text{if } |x| \geq 2; \\ \frac{2}{\pi} \left(x \cdot \arcsin \frac{x}{2} + \sqrt{4 - x^2} \right) & \text{otherwise.} \end{cases}$$



$$\Omega(x) = \begin{cases} |x| & \text{if } |x| \ge 2; \\ \frac{2}{\pi} \left(x \cdot \arcsin \frac{x}{2} + \sqrt{4 - x^2} \right) & \text{otherwise.} \end{cases}$$

Theorem (Vershik-Kerov, Logan-Shepp '77)

Let $\lambda_{(n)}$ be a random Young diagram of size n distributed with Plancherel measure $\mathbb{P}_n^{(1)}$. Then, in probability, as $n \to \infty$

$$\|\omega(D_{1/\sqrt{n}}(\lambda_{(n)})) - \Omega\| \to 0.$$

Second order asymptotic

Problem

Can we describe the second order asymptotic? What does it really mean?

Solution

We should look on the fluctuations around the limit shape.

Let $\lambda_{(n)}$ - random Young diagram distributed according with $\mathbb{P}_n^{(1)}$

- We know that $\left\|\omega\left(D_{1/\sqrt{n}}(\lambda_{(n)})\right)-\Omega\right\| o 0$ in probability.
- We would like to investigate behaviour of random variables:

$$m_k(\lambda_{(n)}) := \int_{\mathbb{R}} x^k \Delta(\lambda_{(n)})(x) \ dx,$$

where

$$\Delta(\lambda)(x) := \sqrt{n} \frac{\omega(D_{1/\sqrt{n}}(\lambda))(x) - \Omega(x)}{2}$$

Second order asymptotic

Problem

Can we describe the second order asymptotic? What does it really mean?

Solution

We should look on the fluctuations around the limit shape.

Let $\lambda_{(n)}$ - random Young diagram distributed according with $\mathbb{P}_n^{(1)}$.

- We know that $\|\omega(D_{1/\sqrt{n}}(\lambda_{(n)})) \Omega\| \to 0$ in probability.
- We would like to investigate behaviour of random variables:

$$m_k(\lambda_{(n)}) := \int_{\mathbb{R}} x^k \Delta(\lambda_{(n)})(x) \ dx,$$

where

$$\Delta(\lambda)(x) := \sqrt{n} \frac{\omega(D_{1/\sqrt{n}}(\lambda))(x) - \Omega(x)}{2}.$$

•
$$u_k(x) = U_k(x/2) = \sum_{0 < j < \lfloor k/2 \rfloor} (-1)^j {k-j \choose j} x^{k-2j};$$

- $u_k(2\cos(\theta)) = \frac{\sin((k+1)\theta)}{\sin(\theta)}$;
- $u_k(\lambda) = \int_{\mathbb{R}} u_k(x) \Delta(\lambda)(x) dx$.

Theorem (Kerov, 1993)

Choose a sequence $(\Xi_k)_{k=2,3,...}$ of independent standard Gaussian random variables and let $\lambda_{(n)}$ be a random Young diagram of size n distributed with Plancherel measure. As $n \to \infty$, we have:

$$\left(u_k(\lambda_{(n)})\right)_{k=1,2,\ldots} \xrightarrow{d} \left(\frac{\Xi_{k+1}}{\sqrt{k+1}}\right)_{k=1,2,\ldots}$$

Second order asymptotic = 'central limit theorem'

•
$$u_k(x) = U_k(x/2) = \sum_{0 \le j \le |k/2|} (-1)^j {k-j \choose j} x^{k-2j};$$

- $u_k(2\cos(\theta)) = \frac{\sin((k+1)\theta)}{\sin(\theta)}$;
- $u_k(\lambda) = \int_{\mathbb{D}} u_k(x) \Delta(\lambda)(x) dx$.

Theorem (Kerov, 1993)

Choose a sequence $(\Xi_k)_{k=2,3,...}$ of independent standard Gaussian random variables and let $\lambda_{(n)}$ be a random Young diagram of size n distributed with Plancherel measure. As $n \to \infty$, we have:

$$(u_k(\lambda_{(n)}))_{k=1,2,\dots} \xrightarrow{d} \left(\frac{\Xi_{k+1}}{\sqrt{k+1}}\right)_{k=1,2,\dots}.$$

Let us recall that

$$\mathsf{hook}(\square) = \mathsf{a}(\square) + \ell(\square) + 1.$$

Jack characters

•
$$\operatorname{hook}^{(\alpha)}(\square) := \sqrt{\alpha}(\mathfrak{a}(\square) + 1) + \sqrt{\alpha}^{-1}\ell(\square),$$

$$\bullet \ \left(\mathsf{hook}^{(\alpha)}\right)'(\square) := \sqrt{\alpha} \mathsf{a}(\square) + \sqrt{\alpha}^{-1}(\ell(\square) + 1).$$

$$\mathbb{P}_n(\lambda) := \frac{n!}{\prod_{\square \in \lambda} (\mathsf{hook}(\square) \, (\mathsf{hook})' \, (\square)}$$

Let us recall that

$$\mathsf{hook}(\square) = a(\square) + \ell(\square) + 1.$$

Jack characters

Let $\alpha \in \mathbb{R}_+$. α -deformations of hook length:

- hook^(α)(\square) := $\sqrt{\alpha}(a(\square) + 1) + \sqrt{\alpha}^{-1}\ell(\square)$,
- $\bullet \left(\mathsf{hook}^{(\alpha)}\right)'(\square) := \sqrt{\alpha} \mathsf{a}(\square) + \sqrt{\alpha}^{-1}(\ell(\square) + 1).$

$$\mathbb{P}_{n}(\lambda) := \frac{n!}{\prod_{\square \in \lambda} (\mathsf{hook}(\square) \, (\mathsf{hook})' \, (\square)}$$

Jack measure

Let us recall that

$$\mathsf{hook}(\square) = \mathsf{a}(\square) + \ell(\square) + 1.$$

Let $\alpha \in \mathbb{R}_+$. α -deformations of hook length:

- $\mathsf{hook}^{(\alpha)}(\square) := \sqrt{\alpha}(\mathsf{a}(\square) + 1) + \sqrt{\alpha}^{-1}\ell(\square),$
- $\bullet \ \left(\mathsf{hook}^{(\alpha)}\right)'(\square) := \sqrt{\alpha} \mathsf{a}(\square) + \sqrt{\alpha}^{-1}(\ell(\square) + 1).$

Definition

Jack measure is a probability measure $\mathbb{P}_n^{(\alpha)}$ on the set \mathbb{Y}_n defined by

$$\mathbb{P}_n^{(\alpha)}(\lambda) := \frac{n!}{\prod_{\square \in \lambda} (\mathsf{hook}^{(\alpha)}(\square) \left(\mathsf{hook}^{(\alpha)}\right)'(\square)},$$

where $\alpha \in \mathbb{R}_+$.

Let us recall that

$$\mathsf{hook}(\square) = \mathsf{a}(\square) + \ell(\square) + 1.$$

Let $\alpha \in \mathbb{R}_+$. α -deformations of hook length:

- $\mathsf{hook}^{(\alpha)}(\square) := \sqrt{\alpha}(\mathsf{a}(\square) + 1) + \sqrt{\alpha}^{-1}\ell(\square),$
- $\bullet \ \left(\mathsf{hook}^{(\alpha)}\right)'(\square) := \sqrt{\alpha} \mathsf{a}(\square) + \sqrt{\alpha}^{-1}(\ell(\square) + 1).$

Definition

Plancherel measure is a probability measure $\mathbb{P}_n^{(1)}$ on the set \mathbb{Y}_n defined by

$$\mathbb{P}_n^{(1)}(\lambda) := \frac{n!}{\prod_{\square \in \lambda} (\mathsf{hook}^{(1)}(\square) \left(\mathsf{hook}^{(1)}\right)'(\square)} = \frac{n!}{\prod_{\square \in \lambda} (\mathsf{hook}(\square))^2}$$

• for $\alpha = 1$ Jack measure \equiv Plancherel measure.

α -anisotropic Young diagrams

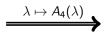
Let λ be a Young diagram.

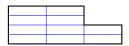
Definition

$$\lambda \mapsto A_4(\lambda)$$

Let λ be a Young diagram.

Definition

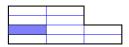




Let λ be a Young diagram.

Definition

$$\xrightarrow{\lambda \mapsto A_4(\lambda)}$$

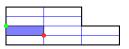


α -anisotropic Young diagrams

Let λ be a Young diagram.

Definition

$$\xrightarrow{\lambda \mapsto A_4(\lambda)}$$



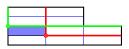
α -anisotropic Young diagrams

Let λ be a Young diagram.

Definition

 α -anisotropic Young diagram $A_{\alpha}(\lambda)$ (for $\alpha \in \mathbb{R}_+$) - continuous Young diagram obtained from λ (considered in French convention) by a horizontal stretching of ratio $\sqrt{\alpha}$ and a vertical stretching of ratio $\sqrt{\alpha}^{-1}$.

$$\xrightarrow{\lambda \mapsto A_4(\lambda)}$$



α -anisotropic Young diagrams

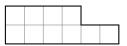
Let λ be a Young diagram.

Definition

 α -anisotropic Young diagram $A_{\alpha}(\lambda)$ (for $\alpha \in \mathbb{R}_+$) - continuous Young diagram obtained from λ (considered in French convention) by a horizontal stretching of ratio $\sqrt{\alpha}$ and a vertical stretching of ratio $\sqrt{\alpha}^{-1}$.

Jack characters

$$\xrightarrow{\lambda \mapsto A_4(\lambda)}$$



First order asymptotic = 'law of large numbers'

Theorem (D., Féray)

Let $\lambda_{(n)}$ be a random Young diagram of size n distributed with Jack measure $\mathbb{P}_n^{(\alpha)}$. Then, in probability, as $n \to \infty$

$$\|\omega(D_{1/\sqrt{n}}(A_{\alpha}(\lambda_{(n)}))) - \Omega\| \to 0.$$

Remark

Plugging $\alpha=1$ we recover Vershik-Kerov, Logan-Shepp limit shape for Plancherel measure.

Theorem (D. Féray)

Choose a sequence $(\Xi_k)_{k=2,3,...}$ of independent standard Gaussian random variables and let $\lambda_{(n)}$ be a random Young diagram of size n distributed with Jack measure. As $n \to \infty$, we have:

$$\left(u_k^{(\alpha)}(\lambda_{(n)})\right)_{k=1,2,\ldots} \xrightarrow{d} \left(\frac{\Xi_{k+1}}{\sqrt{k+1}} - \frac{\gamma}{k+1} \left[k \text{ is odd}\right]\right)_{k=1,2,\ldots},$$

where $u_k^{(\alpha)}(\lambda) = \int_{\mathbb{R}} u_k(x) \Delta(A_{\alpha}(\lambda))(x) dx$, $\gamma := \sqrt{\alpha} - \sqrt{\alpha}^{-1}$, and we use the usual notation [condition] for the indicator function of the corresponding condition.

Remark

Plugging $\alpha=1$ we recover central limit theorem of Kerov for Plancherel measure.

Jack polynomials $J_{\lambda}^{(\alpha)}$:

- symmetric functions introduced by Jack;
- generalization of Schur symmetric function (for $\alpha = 1$);
- special case of Macdonald polynomials

Expand Jack polynomial in power-sum symmetric basis:

$$J_{\lambda}^{(\alpha)} = \sum_{\substack{\rho: \ |\rho| = |\lambda|}} \theta_{\rho}^{(\alpha)}(\lambda) p_{\rho}$$

We call quantities $\theta_{\rho}^{(\alpha)}(\lambda)$ Jack characters (for $\alpha=1$ they coincide with the irreducible characters of the symmetric groups up to some normalization constant).

Jack polynomials and Jack characters

Jack polynomials $J_{\lambda}^{(\alpha)}$:

- symmetric functions introduced by Jack;
- generalization of Schur symmetric function (for $\alpha = 1$);
- special case of Macdonald polynomials

Expand Jack polynomial in power-sum symmetric basis:

$$J_{\lambda}^{(lpha)} = \sum_{\substack{
ho:\ |
ho| = |\lambda|}} heta_{
ho}^{(lpha)}(\lambda) \ p_{
ho}.$$

We call quantities $\theta_{\rho}^{(\alpha)}(\lambda)$ Jack characters (for $\alpha=1$ they coincide with the irreducible characters of the symmetric groups up to some normalization constant).

Characterization of Jack measure

$$\mathbb{E}_{\mathbb{P}_n^{(\alpha)}}(\theta_{\mu}^{(\alpha)}) = \begin{cases} 1 & \text{if } \mu = \mathbf{1}^n, \\ 0 & \text{otherwise.} \end{cases}$$

Let $\lambda \in \mathbb{Y}_n$.

Proposition

 $\int_{\mathbb{R}} x^k \Delta(A_{\alpha}(\lambda))(x) dx$ can be expressed as a function of

$$\theta_{(1^n)}^{(\alpha)}, \theta_{(2,1^{n-2})}^{(\alpha)}, \ldots, \theta_{(k-1,1^{n-k+1})}^{(\alpha)}.$$

Corollary

Our central limit theorem has equivalent, algebraic version!

Algebraic central limit theorem

Theorem (D., Féray)

Choose a sequence $(\Xi_k)_{k=2,3,...}$ of independent standard Gaussian random variables. As $n \to \infty$, we have:

$$\left(\frac{\sqrt{k}\,\theta_{(k,1^{n-k})}^{(\alpha)}(\lambda_{(n)})}{n^{k/2}}\right)_{k=2,3,\ldots} \stackrel{d}{\to} (\Xi_k)_{k=2,3,\ldots},$$

where the distribution of $\lambda_{(n)}$ is Jack measure of size n and where $\stackrel{d}{\rightarrow}$ means convergence in distribution of the finite-dimensional law.

We can prove this theorem using algebraic methods (Jack characters after normalization span a very nice algebra)!

Polynomials functions

We define

$$\mathsf{Ch}_{\mu}^{(\alpha)}(\lambda) = \begin{cases} \alpha^{-\frac{|\mu| - \ell(\mu)}{2} \binom{|\lambda| - |\mu| + m_1(\mu)}{m_1(\mu)}} z_{\mu} \; \theta_{\mu, 1^{|\lambda| - |\mu|}}^{(\alpha)}(\lambda) & \text{if } |\lambda| \geq |\mu|; \\ 0 & \text{if } |\lambda| < |\mu|, \end{cases}$$

where

- $z_{\mu} = \mu_1 \mu_2 \cdots m_1(\mu)! m_2(\mu)! \cdots$
- $m_i(\mu)$ number of parts of μ equal to i.

Jack measure

Theorem (Lassalle, 2009)

The family $\left(\mathsf{Ch}_{\mu}^{(\alpha)}\right)_{..}$ span linearly an algebra $\Lambda_{\star}^{(\alpha)}$ of α -shifted symmetric functions.

What do we have and what do we miss?

In order to prove our main theorem:

- We want to estimate mixed moments of Jack characters;
- Expectation of the Jack characters is easy to compute;
- Suitably normalized Jack characters span linearly some nice algebra $\Lambda_{\star}^{(\alpha)}$:
- We want to expand a product:

$$\mathsf{Ch}_{\mu}^{(\alpha)}\,\mathsf{Ch}_{
u}^{(\alpha)} = \sum_{
ho} \mathbf{g}_{\mu,
u;\pi}^{(\alpha)}\,\mathsf{Ch}_{\pi}^{(\alpha)}$$

as a linear combination of suitably normalized Jack characters.

Problem

What can we say about $g_{\mu,\nu;\pi}^{(\alpha)}$?

Main result for structure constants

Theorem (D., Féray)

Let

$$\mathsf{Ch}_{\mu}^{(lpha)}\,\mathsf{Ch}_{
u}^{(lpha)} = \sum_{
ho} \mathsf{g}_{\mu,
u;\pi}^{(lpha)}\,\mathsf{Ch}_{\pi}^{(lpha)}\,.$$

Then, structure constants $g_{\mu,\nu;\pi}^{(\alpha)}$ are polynomials in $\gamma:=\alpha^{1/2}-\alpha^{-1/2}$ of degree less than

$$\min_{i=1,2,3} (n_i(\mu) + n_i(\nu) - n_i(\pi)),$$

with rational coefficients, where $n_i(\lambda)$ - natural valued function of λ .

- It is crucial for proving central limit theorem;
- It is applicable to different problems.

Projection on the set of Young diagrams of a fixed size

Let $\mu, \nu, \pi \in \mathbb{Y}_n$.

$$\theta_{\mu}^{(\alpha)}(\lambda)\theta_{\nu}^{(\alpha)}(\lambda) = \sum_{|\pi|=n} c_{\mu,\nu;\pi}^{(\alpha)}\theta_{\pi}^{(\alpha)}.$$

Hence

$$c_{\mu,\nu;\pi}^{(\alpha)} = \frac{\alpha^{d(\mu,\nu;\pi)/2}}{z_{\tilde{\mu}}z_{\tilde{\nu}}} \sum_{0 \leq i \leq m_1(\pi)} g_{\tilde{\mu},\tilde{\nu};\tilde{\pi}1^i}^{(\alpha)} \cdot z_{\tilde{\pi}} \cdot i! \cdot \binom{n-|\tilde{\pi}|}{i},$$

where

- ullet $ilde{\mu}$ is created from μ by removing all parts equal to 1,
- $d(\mu, \nu; \pi) = |\mu| \ell(\mu) + |\nu| \ell(\nu) (|\pi| \ell(\pi)).$

$\alpha = 1$ - Structure contants of the $Z(\mathbb{C}[\mathfrak{S}_n])$

Let $\mathbb{C}[\mathfrak{S}_n] := \{f : f : \mathfrak{S}_n \to \mathbb{C}\}$ be a group algebra of the symmetric group. This is algebra with the multiplication defined by:

$$f \cdot g(\sigma) := \sum_{\sigma_1 \sigma_2 = \sigma} f(\sigma_1) g(\sigma_2).$$

Let

$$Z(\mathbb{C}[\mathfrak{S}_n]) := \{ f \in \mathbb{C}[\mathfrak{S}_n] : \forall g \in \mathbb{C}[\mathfrak{S}_n], fg = gf \}$$

be the center of that algebra. It has a basis $(f_{\mu})_{|\mu|=n}$, where

$$f_{\mu}(\sigma) = egin{cases} 1 & ext{if } \sigma ext{ has cycle type } \mu, \ 0 & ext{otherwise}. \end{cases}$$

$\alpha=1$ - Structure contants of the $Z(\mathbb{C}[\mathfrak{S}_n])$

Let

$$f_{\mu}f_{\nu}=\sum_{|\rho|=n}c_{\mu,\nu;\rho}f_{\rho}.$$

Lemma

The structure constant $c_{\mu,\nu;\rho}$ is equal to the number of pairs of permutation (σ_1,σ_2) such that

- σ_1 has cycle type μ ,
- σ_2 has cycle type ν ,
- $\sigma_1 \sigma_2 = \sigma$, where σ is a fixed permutation of the cycle-type ρ .

$\alpha = 1$ - Structure contants of the $Z(\mathbb{C}[\mathfrak{S}_n])$

One has a following relation:

$$c_{\mu,\nu;\rho}^{(1)}=c_{\mu,\nu;\rho}.$$

Remark

From the previous theorem and a relation between $c^{(\alpha)}$ and $g^{(\alpha)}$ one can deduce a classical result of Farahat and Higman: $c_{\mu \mathbf{1}^{n-|\mu|},\nu \mathbf{1}^{n-|\nu|};\rho \mathbf{1}^{n-|\rho|}}$ is a polynomial in n.

$\alpha=2$ - Structure contants of the Hecke algebra of (\mathfrak{S}_{2n},H_n)

Let \mathfrak{S}_{2n} acts on the set $X_n:=\{1,\bar{1},\ldots,n,\bar{n}\}$ by permutations and let

$$\mathfrak{S}_{2n} > H_n := \{ \sigma \in \mathfrak{S}_{2n} : \forall i \in X_n \ \sigma(\overline{i}) = \sigma(\overline{i}) \}$$

be a hyperoctahedral subgroup.

Hecke algebra $\mathbb{C}[H_n \backslash \mathfrak{S}_{2n}/H_n] < \mathbb{C}[\mathfrak{S}_{2n}]$ of the pair (\mathfrak{S}_{2n}, H_n) is defined by:

$$\mathbb{C}[H_n \backslash \mathfrak{S}_{2n}/H_n] := \{ x \in \mathbb{C}[\mathfrak{S}_{2n}] : hxh' = x \forall h, h' \in H_n \}.$$

Double-cosets: equivalence classes for the relation $x \sim hxh'$ (for $x \in \mathfrak{S}_{2n}$ and $h, h' \in H_n$)

- naturally indexed by partitions of size *n*;
- $F_{\mu} = \sum_{x \text{ of type } \mu} \delta_x$ linear basis of $\mathbb{C}[H_n \backslash \mathfrak{S}_{2n}/H_n]$.

Let

$$F_{\mu}F_{\nu}=\sum_{|\rho|=n}\mathbf{h}_{\mu,\nu;\rho}F_{\rho}.$$

Then

$$c_{\mu,\nu;\rho}^{(2)} = \frac{h_{\mu,\nu;\rho}}{2^n n!}.$$

Remark

From the previous theorem and a relation between $c^{(\alpha)}$ and $g^{(\alpha)}$ one can deduce a result of Tout (2013):

$$\frac{h_{\mu 1^{n-|\mu|},\nu 1^{n-|\nu|};\pi 1^{n-|\pi|}}{n! \ 2^n}$$

is a polynomial in n.

Fin

MERCI