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Young diagrams

Definition
A partition λ of the integer n
(λ ` n): finite non-increasing
sequence of positive integers
λ1 ≥ λ2 ≥ · · · ≥ λk , such that
|λ| :=

∑
i λi = n;

Graphical representation by a
Young diagram of size n (with n
boxes).

Young diagrams are important objects in
symmetric functions theory,
representation theory.
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Young diagrams

Definition
A partition λ of the integer n
(λ ` n): finite non-increasing
sequence of positive integers
λ1 ≥ λ2 ≥ · · · ≥ λk , such that
|λ| :=

∑
i λi = n;

Graphical representation by a
Young diagram of size n (with n
boxes).

λ1

λ2

λ3

λ4

λ5

Young diagrams are important objects in
symmetric functions theory,
representation theory.
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Young diagrams

Example

λ = (7, 7, 4, 4, 2) ` 24,
m7(λ) = 2,m4(λ) = 2,m2(λ) =
1,mi (λ) = 0 for i /∈ {2, 4, 7},
where mi (λ) denotes the number
of parts of λ equal to i ,
`(λ) = 5, where `(λ) denotes the
number of rows of λ.

Young diagrams are important objects in
symmetric functions theory,
representation theory.
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Young diagrams

Definition
A partition λ of the integer n
(λ ` n): finite non-increasing
sequence of positive integers
λ1 ≥ λ2 ≥ · · · ≥ λk , such that
|λ| :=

∑
i λi = n;

Graphical representation by a
Young diagram of size n (with n
boxes).

Young diagrams are important objects in
symmetric functions theory,
representation theory.
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Symmetric functions

Definition
A symmetric function f is a symmetric polynomial in infinitely many
variables x1, x2, . . . , i.e.

f =
∑

J=(j1,j2,... )∈NN

|J|:=j1+j+2+···<K

cJx
J , cJ ∈ Q, xJ = x j11 x j22 · · · ;

f (x1, x2, . . . , xk , 0, 0, . . . ) is a symmetric polynomial, i. e. for any
permutation σ ∈ Sk polynomial f (x1, x2, . . . , xk , 0, 0, . . . ) is equal to
f (xσ(1), xσ(2), . . . , xσ(k), 0, 0, . . . ).

Example

f = (x2
1 + x2

2 + x2
3 + · · · )(x1 + x2 + x3 + · · · )

= x3
1 + x3

2 + x3
3 + · · ·

+ x2
1 x2 + x1x

2
2 + x2

1 x3 + x1x
2
3 + · · · .
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Symmetric functions

Definition
A symmetric function f is a symmetric polynomial in infinitely many
variables x1, x2, . . . , i.e.

f =
∑

J=(j1,j2,... )∈NN

|J|:=j1+j+2+···<K

cJx
J , cJ ∈ Q, xJ = x j11 x j22 · · · ;

f (x1, x2, . . . , xk , 0, 0, . . . ) is a symmetric polynomial, i. e. for any
permutation σ ∈ Sk polynomial f (x1, x2, . . . , xk , 0, 0, . . . ) is equal to
f (xσ(1), xσ(2), . . . , xσ(k), 0, 0, . . . ).

Example

p(2,1) = (x2
1 + x2

2 + x2
3 + · · · )(x1 + x2 + x3 + · · · )

= x3
1 + x3

2 + x3
3 + · · · (= m(3))

+ x2
1 x2 + x1x

2
2 + x2

1 x3 + x1x
2
3 + · · · (= m(2,1)).
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Symmetric functions

Definition
A symmetric function f is a symmetric polynomial in infinitely many
variables x1, x2, . . . , i.e.

f =
∑

J=(j1,j2,... )∈NN

|J|:=j1+j+2+···<K

cJx
J , cJ ∈ Q, xJ = x j11 x j22 · · · ;

f (x1, x2, . . . , xk , 0, 0, . . . ) is a symmetric polynomial, i. e. for any
permutation σ ∈ Sk polynomial f (x1, x2, . . . , xk , 0, 0, . . . ) is equal to
f (xσ(1), xσ(2), . . . , xσ(k), 0, 0, . . . ).

Example

Monomial symmetric functions mλ:

mλ =
∑
J∈NN

xJ ,

summation over all J ∈ NN equal to λ after reordering its parts.
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Symmetric functions

Definition
A symmetric function f is a symmetric polynomial in infinitely many
variables x1, x2, . . . , i.e.

f =
∑

J=(j1,j2,... )∈NN

|J|:=j1+j+2+···<K

cJx
J , cJ ∈ Q, xJ = x j11 x j22 · · · ;

f (x1, x2, . . . , xk , 0, 0, . . . ) is a symmetric polynomial, i. e. for any
permutation σ ∈ Sk polynomial f (x1, x2, . . . , xk , 0, 0, . . . ) is equal to
f (xσ(1), xσ(2), . . . , xσ(k), 0, 0, . . . ).

Example

m(1) =
∑

i xi ,

m(2) =
∑

i x
2
i ,

m(1,1) =
∑

i<j xixj .
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Symmetric functions

Definition
A symmetric function f is a symmetric polynomial in infinitely many
variables x1, x2, . . . , i.e.

f =
∑

J=(j1,j2,... )∈NN

|J|:=j1+j+2+···<K

cJx
J , cJ ∈ Q, xJ = x j11 x j22 · · · ;

f (x1, x2, . . . , xk , 0, 0, . . . ) is a symmetric polynomial, i. e. for any
permutation σ ∈ Sk polynomial f (x1, x2, . . . , xk , 0, 0, . . . ) is equal to
f (xσ(1), xσ(2), . . . , xσ(k), 0, 0, . . . ).

Example

Power-sum symmetric functions pλ:

pk =
∑
i

xki , pλ =
∏
i

pλi .
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Symmetric functions

Definition
A symmetric function f is a symmetric polynomial in infinitely many
variables x1, x2, . . . , i.e.

f =
∑

J=(j1,j2,... )∈NN

|J|:=j1+j+2+···<K

cJx
J , cJ ∈ Q, xJ = x j11 x j22 · · · ;

f (x1, x2, . . . , xk , 0, 0, . . . ) is a symmetric polynomial, i. e. for any
permutation σ ∈ Sk polynomial f (x1, x2, . . . , xk , 0, 0, . . . ) is equal to
f (xσ(1), xσ(2), . . . , xσ(k), 0, 0, . . . ).

Example

p(1) =
∑

i xi ,

p(2) =
∑

i x
2
i ,

p(1,1) = (
∑

i xi )
2.
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Symmetric functions

Definition
A symmetric function f is a symmetric polynomial in infinitely many
variables x1, x2, . . . , i.e.

f =
∑

J=(j1,j2,... )∈NN

|J|:=j1+j+2+···<K

cJx
J , cJ ∈ Q, xJ = x j11 x j22 · · · ;

f (x1, x2, . . . , xk , 0, 0, . . . ) is a symmetric polynomial, i. e. for any
permutation σ ∈ Sk polynomial f (x1, x2, . . . , xk , 0, 0, . . . ) is equal to
f (xσ(1), xσ(2), . . . , xσ(k), 0, 0, . . . ).

Example

p(1) =
∑

i xi = m(1),

p(2) =
∑

i x
2
i = m(2),

p(1,1) = (
∑

i xi )
2 =

∑
i x

2
i + 2

∑
i<j xixj = m(2) + 2m(1,1).
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Schur symmetric functions

Definition
Hall scalar product:

〈pλ, pµ〉 = δλ,µzλ,

where zλ =
∏

i mi (λ)!imi (λ).

Schur symmetric functions sλ:
obtained from monomial symmetric functions ordered by
lexicographic order by Gram-Schmidt orthonormalization process.

Example

(1, 1) < (2).
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Schur symmetric functions

Definition
Hall scalar product:

〈pλ, pµ〉 = δλ,µzλ,

where zλ =
∏

i mi (λ)!imi (λ).

Schur symmetric functions sλ:
obtained from monomial symmetric functions ordered by
lexicographic order by Gram-Schmidt orthonormalization process.

Example

(1, 1) < (2).
s(1,1) =

m(1,1)

‖m(1,1)‖
=

m(1,1)

‖1/2(p(1,1)−p(2))‖ = m(1,1)
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Schur symmetric functions

Definition
Hall scalar product:

〈pλ, pµ〉 = δλ,µzλ,

where zλ =
∏

i mi (λ)!imi (λ).

Schur symmetric functions sλ:
obtained from monomial symmetric functions ordered by
lexicographic order by Gram-Schmidt orthonormalization process.

Example

(1, 1) < (2).
s(2) =

(
m(2) − 〈s(1,1),m(2)〉s(1,1)

)
/‖
(
m(2) − 〈s(1,1),m(2)〉s(1,1)

)
‖



Symmetric functions and representation theory Dual combinatorics Young diagrams and bipartite graphs Maps

Schur symmetric functions

Definition
Hall scalar product:

〈pλ, pµ〉 = δλ,µzλ,

where zλ =
∏

i mi (λ)!imi (λ).

Schur symmetric functions sλ:
obtained from monomial symmetric functions ordered by
lexicographic order by Gram-Schmidt orthonormalization process.

Example

(1, 1) < (2).
s(2) =

(
m(2) − 〈s(1,1),m(2)〉s(1,1)

)
/‖
(
m(2) − 〈s(1,1),m(2)〉s(1,1)

)
‖ =

. . .
(
〈s(1,1),m(2)〉 = 〈1/2(p(1,1) − p(2)), p(2))〉 = −1

)
. . .
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Schur symmetric functions

Definition
Hall scalar product:

〈pλ, pµ〉 = δλ,µzλ,

where zλ =
∏

i mi (λ)!imi (λ).

Schur symmetric functions sλ:
obtained from monomial symmetric functions ordered by
lexicographic order by Gram-Schmidt orthonormalization process.

Example

(1, 1) < (2).
s(2) =

(
m(2) − 〈s(1,1),m(2)〉s(1,1)

)
/‖
(
m(2) − 〈s(1,1),m(2)〉s(1,1)

)
‖ =

. . .
(
〈s(1,1),m(2)〉 = 〈1/2(p(1,1) − p(2)), p(2))〉 = −1

)
. . . =(

m(2) + m(1,1)

)
/‖m(2) + m(1,1)‖ = m(2) + m(1,1).
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Representation theory of the symmetric groups

Definition
Let G be a finite group and V be a finite dimensional linear space over
C.

A homomorphism ρ : G → End(V ) is called representation.
Representation ρ is called irreducible (irrep for short) if
ρ(G )W *W for any 0  W  V linear subspace.
A function χ : G → C given by χ(g) = Tr(ρ(g)) is called character
(conjugacy invariant).

Fact
There is a one to one correspondence between:

partitions of n and conjugacy classes of a permutation group Sn;
partitions of n and irreps of a permutation group Sn;

Character χλ(µ) := Tr(ρλ(πµ)) is indexed by a pair (λ, µ) of partitions of
n, where πµ is any permutation from the conjugacy class given by µ.
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Representation theory of the symmetric groups

Definition
Let G be a finite group and V be a finite dimensional linear space over
C.

A homomorphism ρ : G → End(V ) is called representation.
Representation ρ is called irreducible (irrep for short) if
ρ(G )W *W for any 0  W  V linear subspace.
A function χ : G → C given by χ(g) = Tr(ρ(g)) is called character
(conjugacy invariant).

Fact
There is a one to one correspondence between:

partitions of n and conjugacy classes of a permutation group Sn;
partitions of n and irreps of a permutation group Sn;

Character χλ(µ) := Tr(ρλ(πµ)) is indexed by a pair (λ, µ) of partitions of
n, where πµ is any permutation from the conjugacy class given by µ.
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Representation theory vs. symmetric functions theory

Let us consider an expansion of Schur symmetric function of degree n in
power-sum basis:

sλ =
∑
µ`n

cµ(λ)pµ.

Theorem (Frobenius formula)

For any pair (λ, µ) of partitions of n one has

cµ(λ) =
χλ(µ)

zµ
,

where zµ =
∏

i mi (µ)!imi (µ) is a standard numerical factor.
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Jack symmetric functions

Definition
Deformation of Hall scalar product:

〈pλ, pµ〉α = α`(λ)δλ,µzλ,

where zλ =
∏

i mi (λ)!imi (λ).

Jack symmetric functions J
(α)
λ :

obtained from monomial symmetric functions ordered by
lexicographic order by Gram-Schmidt orthonormalization process and
multiplied by explicit constant c(α)(λ);
for any pair (λ, µ) of partitions of n we define Jack characters
θ

(α)
µ (λ) by

J
(α)
λ =

∑
µ`n

θ(α)
µ (λ)pµ.
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Jack symmetric functions

Definition
Deformation of Hall scalar product:

〈pλ, pµ〉α = α`(λ)δλ,µzλ,

where zλ =
∏

i mi (λ)!imi (λ).

Jack symmetric functions for α = 1 :
obtained from monomial symmetric functions ordered by
lexicographic order by Gram-Schmidt orthonormalization process and
multiplied by explicit constant c(1)(λ) = n!

dim(λ) ;

for any pair (λ, µ) of partitions of n we define Jack characters
θ

(1)
µ (λ) by

n!

dim(λ)
sλ = J

(1)
λ =

∑
µ`n

θ(1)
µ (λ)pµ;

hence θ(1)
µ (λ) = n!

zµ

χλ(πµ)
dim(λ) , where πµ - any permutation of type µ.
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Idea of dual picture

Typically, character χλ(µ) is considered as a function of variable µ, while
λ is fixed. Kerov and Olshanski introduced the dual combinatorics of
characters:

Definition (Kerov, Olshanski (α = 1))

Let µ ` k does not contain parts equal to 1. Then

Ch(1)
µ (λ) =

{
n!

(n−k)!

χλ(π
µ,1n−k )

dim(λ) = zµ θ
(1)
µ,1n−k (λ) if |λ| = n ≥ k;

0 if |λ| < k.

Problem
It seems that these objects have a rich and complicated combinatorial
structure. What can we say about this structure?
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Idea of dual picture

Typically, character χλ(µ) is considered as a function of variable µ, while
λ is fixed. Kerov and Olshanski introduced the dual combinatorics of
characters. Lassalle, generalized it for any α:

Definition (Kerov, Olshanski (α = 1), Lassalle (general α))

Let µ ` k does not contain parts equal to 1. Then

Ch(α)
µ (λ) =

{
α−

k−`(µ)
2 zµ θ

(α)
µ,1n−k (λ) if |λ| = n ≥ k;

0 if |λ| < k .

Problem
It seems that these objects have a rich and complicated combinatorial
structure. What can we say about this structure?
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Idea of dual picture

Typically, character χλ(µ) is considered as a function of variable µ, while
λ is fixed. Kerov and Olshanski introduced the dual combinatorics of
characters. Lassalle, generalized it for any α:

Definition (Kerov, Olshanski (α = 1), Lassalle (general α))

Let µ ` k does not contain parts equal to 1. Then

Ch(α)
µ (λ) =

{
α−

k−`(µ)
2 zµ θ

(α)
µ,1n−k (λ) if |λ| = n ≥ k;

0 if |λ| < k .

Problem
It seems that these objects have a rich and complicated combinatorial
structure. What can we say about this structure?
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Stanley coordinates and first conjecture of Lassalle

Let p = (p1, . . . , pk) and q = (q1, . . . , qk) denotes two lists of positive
integers (where q is non-increasing). We define a multirectangular Young
diagram:

λ(p,q) = (q1, . . . , q1︸ ︷︷ ︸
p1 times

, . . . , q`, . . . , q`︸ ︷︷ ︸
p` times

).

p1q1

p2

q2

p3q3
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Stanley coordinates and first conjecture of Lassalle

Let p = (p1, . . . , pk) and q = (q1, . . . , qk) denotes two lists of positive
integers (where q is non-increasing). We define a multirectangular Young
diagram:

λ(p,q) = (q1, . . . , q1︸ ︷︷ ︸
p1 times

, . . . , q`, . . . , q`︸ ︷︷ ︸
p` times

).

Proposition (Lassalle)

Let us fix µ ` k . Then Ch(α)
µ (λ(p,q)) is a polynomial in

(p1, p2, . . . , q1, q2, . . . ) of degree k + `(µ).
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Stanley coordinates and first conjecture of Lassalle

Let p = (p1, . . . , pk) and q = (q1, . . . , qk) denotes two lists of positive
integers (where q is non-increasing). We define a multirectangular Young
diagram:

λ(p,q) = (q1, . . . , q1︸ ︷︷ ︸
p1 times

, . . . , q`, . . . , q`︸ ︷︷ ︸
p` times

).

Conjecture (Lassalle)

Let us fix µ ` k . Then α
k−`(µ)

2 (−1)k Ch(α)
µ (λ(p,q)) is a polynomial in

(p1, p2, . . . ,−q1,−q2, . . . , α− 1) with non-negative, integer coefficients..
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Stanley coordinates and first conjecture of Lassalle

Let p = (p1, . . . , pk) and q = (q1, . . . , qk) denotes two lists of positive
integers (where q is non-increasing). We define a multirectangular Young
diagram:

λ(p,q) = (q1, . . . , q1︸ ︷︷ ︸
p1 times

, . . . , q`, . . . , q`︸ ︷︷ ︸
p` times

).

Conjecture (Lassalle)

Let us fix µ ` k . Then α
k−`(µ)

2 (−1)k Ch(α)
µ (λ(p,q)) is a polynomial in

(p1, p2, . . . ,−q1,−q2, . . . , α− 1) with non-negative, integer coefficients..

Partial result: it is polynomial in (p1, p2, . . . ,−q1,−q2, . . . , α− 1) with
rational coefficients (D., Féray 2012). Positivity and integrality suggests
combinatorial interpretation!
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Free cumulants

Proposition (Lassalle)

Let λ be given by Stanley coordinates: λ = (p,q). For any positive
integer n ≥ 1 we define dilated Young diagram
Dn(λ) := (np, nq) = (np1, . . . , npk , nq1, . . . , nqk).

free cumulant R(α)
k (λ) is defined by R

(α)
k (λ) := limn→∞

Ch(α)

(k)
(Dn(λ))

nk+1 ;

for any µ ` m there is a polynomial K (α)
µ (R

(α)
2 ,R

(α)
3 , . . . ) such that

K (α)
µ (R

(α)
2 (λ),R

(α)
3 (λ), . . . ) = Ch(α)

µ (λ).
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Kerov polynomials and second conjecture of Lassalle

Polynomials K (α)
µ are called Kerov polynomials. Kerov polynomials for

one-part partitions µ:

K
(α)
(1) = R2,

K
(α)
(2) = R3 + γR2,

K
(α)
(3) = R4 + 3γR3 + (1 + 2γ2)R2,

K
(α)
(4) = R5 + 6γR4 + γR2

2 + (5 + 11γ2)R3 + (7γ + 6γ3)R2,

K
(α)
(5) = R6 + 10γR5 + 5γR3R2 + (15 + 35γ2)R4 + (5 + 10γ2)R2

2

+ (55γ + 50γ3)R3 + (8 + 46γ2 + 24γ4)R2,

where γ =
√
α
−1 −

√
α.
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Kerov polynomials and second conjecture of Lassalle

Polynomials K (α)
µ are called Kerov polynomials. Kerov polynomials for

one-part partitions µ:

Conjecture (Lassalle)

Let k ≥ 1 be a positive integer. Then K
(α)
(k) is a polynomial in

γ,R
(α)
2 ,R

(α)
3 , . . . with positive, integer coefficients.
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Kerov polynomials and second conjecture of Lassalle

Polynomials K (α)
µ are called Kerov polynomials. Kerov polynomials for

one-part partitions µ:

Conjecture (Lassalle)

Let k ≥ 1 be a positive integer. Then K
(α)
(k) is a polynomial in

γ,R
(α)
2 ,R

(α)
3 , . . . with positive, integer coefficients.

Partial result: it is polynomial in γ,R(α)
2 ,R

(α)
3 , . . . with rational

coefficients (D., Féray 2012). Positivity and integrality suggests
combinatorial interpretation!

Remark
Originally, conjecture of Lassalle was stated rather vaguely, since he used
a different normalization of Kerov polynomials and he suggested that
there is a was to write it as a polynomial in free cumulants and
α, β := 1− α with non-negative, integer coefficients.
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Embeddings of bipartite graphs into Young diagrams

Idea: in order to understand a structure of Jack characters we have to
describe them using very simple functions of Young diagrams.
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Embeddings of bipartite graphs into Young diagrams

Definition
Bipartite graph is a graph G with the set of vertices V = V◦ ∪V• being a
disjoin sum of white vertices V◦ and black vertices V• such that each
edge have endpoints with two different colors.
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Embeddings of bipartite graphs into Young diagrams

Definition
Bipartite graph is a graph G with the set of vertices V = V◦ ∪V• being a
disjoin sum of white vertices V◦ and black vertices V• such that each
edge have endpoints with two different colors.
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Embeddings of bipartite graphs into Young diagrams

Definition
An embedding of the bipartite graph G into Young diagram λ is a
function h : V◦ ∪ V• → N such that (h(v1), h(v2)) ∈ λ whenever
(v1, v2) ∈ V◦ × V• is an edge in G .

4

3

5

1

2

a b c

α

β
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Embeddings of bipartite graphs into Young diagrams

Definition
An embedding of the bipartite graph G into Young diagram λ is a
function h : V◦ ∪ V• → N such that (h(v1), h(v2)) ∈ λ whenever
(v1, v2) ∈ V◦ × V• is an edge in G .

Π

Σ

4

3

5

1

2

Σ

Π

a b c

α

β
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Embeddings of bipartite graphs into Young diagrams

Definition
An embedding of the bipartite graph G into Young diagram λ is a
function h : V◦ ∪ V• → N such that (h(v1), h(v2)) ∈ λ whenever
(v1, v2) ∈ V◦ × V• is an edge in G .

Π

Σ

W

V

4

3

5

1

2

Σ

Π W

V

a b c

α

β
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Embeddings of bipartite graphs into Young diagrams

Definition
An embedding of the bipartite graph G into Young diagram λ is a
function h : V◦ ∪ V• → N such that (h(v1), h(v2)) ∈ λ whenever
(v1, v2) ∈ V◦ × V• is an edge in G .

Π

Σ

W

V

4

3

5

1

2

Σ

Π W

V

a b c

α

β

32, 5

1, 4
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Simple function = number of embeddings

Definition
Let G be a bipartite graph. We define a function NG on the set of Young
diagrams, by setting:

NG (λ) = number of embeddings of G into λ.

Example

Let G = . Then NG (λ(p,q)) =
∑

i piqi = |λ(p,q)|.

Let G = . Then

NG (λ(p,q)) = 2
∑

i

∑
j<i qipipj +

∑
i qip

2
i .

Let G = . Then NG (λ(p,q)) =
∑

i piq
2
i .
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Simple function = number of embeddings

Definition
Let G be a bipartite graph. We define a function NG on the set of Young
diagrams, by setting:

NG (λ) = number of embeddings of G into λ.

Proposition

We know that, there exists some collection of bipartite graphs G such that

Ch(α)
µ (λ) = (−1)`(µ)

∑
G∈G

(
− 1√

α

)|V•(G)| (√
α
)|V◦(G)|

fG (γ)NG (λ),

where fG is a polynomial with rational coefficients and γ =
√
α
−1 −

√
α.
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Jack characters and number of embeddings

Theorem (D. Féray, Śniady)

Assume, that there exists some collection of bipartite graphs G such that

Ch(α)
µ (λ) = (−1)|`(µ)

∑
G∈G

(
− 1√

α

)|V•(G)| (√
α
)|V◦(G)|

fG (γ)NG (λ),

where fG is a polynomial with positive, integer coefficients. Then,
answers for both conjectures of Lassalle are positive and there is a
combinatorial interpretation of those coefficients.

Problem
Number of embeddings are not linearly independent, hence there are
many possibilities for choosing a class G and polynomials fG . Is there
some canonical candidate?
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Maps

(Bipartite) map M is a connected (bipartite) graph embedded into a
surface in a way that the complement of the image is homeomorphic
to the collection of open discs called faces.
Map is rooted if there is a ditingueshed corner of the map.
Length `(F ) of the face F is the number of edges lying on its
border. Type of the bipartite map with n edges and k faces is a
partition λ ` n, `(λ) = k given by λ = (`(F1)/2, . . . , `(Fk)).
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Maps

(Bipartite) map M is a connected (bipartite) graph embedded into a
surface in a way that the complement of the image is homeomorphic
to the collection of open discs called faces.
Map is rooted if there is a ditingueshed corner of the map.
Length `(F ) of the face F is the number of edges lying on its
border. Type of the bipartite map with n edges and k faces is a
partition λ ` n, `(λ) = k given by λ = (`(F1)/2, . . . , `(Fk)).
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Orientable vs. non-orientable

Map M is orientable if the underlying surface is orientable.
Special case - α = 1:

Theorem (Féray, Śniady)

Let us fix partition µ ` k . Then

Ch(1)
µ (λ) = (−1)`(µ)

∑
M

(−1)|V•(M)| NM(λ),

where the summation is over all orientable bipartite maps M with
face-type µ.

Remark
Both conjectures of Lassalle holds true for α = 1.
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Orientable vs. non-orientable

Map M is non-orientable if the underlying surface is non-orientable.
Special case - α = 2:

Theorem (Féray, Śniady)

Let us fix partition µ ` k . Then

Ch(2)
µ (λ) = (−1)`(µ)

∑
M

(
− 1√

2

)|V•(M)| (√
2
)|V◦(M)|

·
(
− 1√

2

)|π|+`(π)−|V (M)|

NM(λ),

where the summation is over all (orientable and non-orientable) bipartite
maps M with face-type µ.

Remark
Both conjectures of Lassalle holds true for α = 2.
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Orientable vs. non-orientable

General case:

Conjecture (D.,Féray, Śniady)

Let us fix partition µ ` k . Then

Ch(α)
µ (λ) = (−1)`(µ)

∑
M

(
− 1√

α

)|V•(M)|√
α
|V◦(M)|

fM(γ)NM(λ),

where the summation is over all bipartite maps M with face-type µ and
fM(γ) is a polynomial with non-negative rational coefficients (and some
extra restrictions for the degree).

Remark
Then both conjectures of Lassalle holds true for general α.
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Rectangular Young diagrams

Theorem (D., Féray, Śniady)

For any bipartite map M there exists polynomial fM(γ) that satisfies
conditions from the previous conjecture and the formula

Ch(α)
µ (λ) = (−1)`(µ)

∑
M

(
− 1√

α

)|V•(M)|√
α
|V◦(M)|

fM(γ)NM(λ),

holds for any rectangular Young diagram λ(p,q) = (p, q).

Idea: polynomial fM measures the non-orientability of a map M.

Remark
Computer experiments showed that those polynomials fM do not work in
general case. The smallest counterexample is µ = (9) and
λ(p,q) = (p1, p2, p3, q1, q2, q3)!
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How to measure non-orientability?

There are three types of edges:

straight twisted interface
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How to measure non-orientability?

There are three types of edges:

straight
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How to measure non-orientability?

There are three types of edges:

twisted
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How to measure non-orientability?

There are three types of edges:

straight twisted interface

There exists twisted edge in map M ⇒ map M is non-orientable.

Idea: how many twisted edges do we have to erase from a given map M
until we obtain an orientable map.
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Measure of non-orientability

Let e ∈ E (M).

monM(e) =


1 if e is straight,
γ if e is twisted,
1
2 if e is interface.

For a map M with n edges, we define a random variable:

XM(e1, . . . , en) =
∏

1≤i≤n

monMi (ei ),

where M1 = M,Mi = Mi−1 \ ei−1 and (e1, . . . , en) is a random vector of
pairwise distinct edges of M chosen uniformly (n! configurations).
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Measure of non-orientability

monM(e) =


1 if e is straight,
γ if e is twisted,
1
2 if e is interface.

XM(e1, . . . , en) =
∏

1≤i≤n

monMi (ei ),

where M1 = M,Mi = Mi−1 \ ei−1 and (e1, . . . , en) is a random vector of
pairwise distinct edges of M chosen uniformly (n! configurations).

Theorem (D., Féray, Śniady)

For any bipartite map M there exists polynomial fM(γ) = E(XM) with
positive rational coefficients such that for any rectangular Young diagram
λ(p,q) = (p, q) the following formula holds:

Ch(α)
µ (λ) = (−1)`(µ)

∑
M

(
− 1√

α

)|V•(M)|√
α
|V◦(M)|

fM(γ)NM(λ(p,q)).
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Perspectives

Many things to do!

Testing other weights (non-random ones);

Try to find a representation theoretic framework (seems hard!);

Understand a relation between our and others, very similar problems
(matching-Jack conjecture, b-conjecture);

General case = "interpolation" between orientable and
non-orientable cases?
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