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Kostka-Foulkes
polynomials

Kostka-Foulkes polynomials are affine Kazhdan-Lusztig polynomials
⇒ KR

λ,µ ∈ Z≥[q] [Kato ’81]

Problem:
Let λ ∈ P+, µ ∈ P+(λ),K

R
λ,µ-parametrizes multiplicity of µ in V (λ). Find

KR
λ,µ(q) =

∑
T∈KRλ,µ

qcharge(T ).

charge : KRλ,µ → Z≥0
such that
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Kostka-Foulkes polynomials in type C

• SSYT in alphabet {n < · · · < 1 < 1 < . . . , n}
• shape = λ

• µn+1−i = #i−#i
• + symplectic conditions

3 3 2

1 1

∈ SympTab3((3, 2), (2, 1, 0)

• KCn−1

λ,µ = SympTab(λ, µ)

• R = Cn,W = H(n)

• P+ = Young diagrams with at most n rows
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Problem Computing charge = going through the whole cocyclage.
CoCycn+1(T ) depends heavily on CoCycn(T ) + local constraints!

T ∈ SympTabn(λ, µ) chargeCn(T ) =???
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Theorem [Dołęga, Gerber, Torres ’20]

KCn
λ,µ(q) =

∑
T∈SympTabn(λ,µ) q

chargeCn (T ).

for λ = (p), where chargeCn is defined through the symplectic cocyclage.

Corollary: [Dołęga, Gerber, Torres ’20]
Lecouvey’s conjecture is true for arbitrary n, p, µ and λ = (p).


