A positive combinatorial formula for symplectic Kostka-Foulkes polynomials I: Rows

gebra Seminar, Kraków 7 July 2020

Kostka-Foulkes polynomials

- \mathfrak{g}-complex semisimple Lie algebra
- $R=R_{+} \cup R_{-}$- root system
- W - Weyl group
- P_{+}- set of dominant weights
- $P(\lambda)$ - set of weights of the irreducible representation $V(\lambda), \lambda \in P_{+}$

Kostka-Foulkes polynomials

- \mathfrak{g}-complex semisimple Lie algebra
- $R=R_{+} \cup R_{-}$- root system
- W - Weyl group
- P_{+}- set of dominant weights
- $P(\lambda)$ - set of weights of the irreducible representation $V(\lambda), \lambda \in P_{+}$

$$
\begin{gathered}
\lambda \in P_{+}, \mu \in P(\lambda), \quad V(\lambda)=\bigoplus_{\mu \in P(\lambda)} V_{\mu}^{\oplus K_{\lambda, \mu}^{R}}, \quad K_{\lambda, \mu}^{R} \text { - multiplicity of } \mu \text { in } V(\lambda) \\
\frac{\sum_{\sigma \in W}(-1)^{\ell(\sigma)} x^{\sigma(\lambda+\rho)-\rho}}{\prod_{\alpha \in R_{+}}{ }^{\left(1-x^{-\alpha}\right)}}=\sum_{\mu \in P(\lambda)} K_{\lambda, \mu}^{R} x^{\mu} .
\end{gathered}
$$

Kostka-Foulkes polynomials

- \mathfrak{g}-complex semisimple Lie algebra
- $R=R_{+} \cup R_{-}$- root system
- W - Weyl group
- P_{+}- set of dominant weights
- $P(\lambda)$ - set of weights of the irreducible representation $V(\lambda), \lambda \in P_{+}$

$$
\begin{gathered}
\lambda \in P_{+}, \mu \in P(\lambda), \quad V(\lambda)=\bigoplus_{\mu \in P(\lambda)} V_{\mu}^{\oplus K_{\lambda, \mu}^{R}}, \quad K_{\lambda, \mu}^{R} \text { - multiplicity of } \mu \text { in } V(\lambda) \\
\frac{\sum_{\sigma \in W}(-1)^{\ell(\sigma)} x^{\sigma(\lambda+\rho)-\rho}}{\prod_{\alpha \in R_{+}}\left(1-q x^{-\alpha}\right)}=\sum_{\mu \in P(\lambda)} K_{\lambda, \mu}^{R}(q) x^{\mu} .
\end{gathered}
$$

Kostka-Foulkes polynomials

- \mathfrak{g}-complex semisimple Lie algebra
- $R=R_{+} \cup R_{-}$- root system
- W - Weyl group
- P_{+}- set of dominant weights
- $P(\lambda)$ - set of weights of the irreducible representation $V(\lambda), \lambda \in P_{+}$

$$
\begin{gathered}
\lambda \in P_{+}, \mu \in P(\lambda), \quad V(\lambda)=\bigoplus_{\mu \in P(\lambda)} V_{\mu}^{\oplus K_{\lambda, \mu}^{R}}, \quad K_{\lambda, \mu}^{R}-\begin{array}{c}
\text { multiplicity of } \mu \text { in } \\
\text { Kostka-Foulkes } \\
\text { polynomials }
\end{array} \\
\frac{\sum_{\sigma \in W}(-1)^{\ell(\sigma)} x^{\sigma(\lambda+\rho)-\rho}}{\prod_{\alpha \in R_{+}}\left(1-q x^{-\alpha}\right)}=\sum_{\mu \in P(\lambda)} K_{\lambda, \mu}^{R}(q) x^{\mu} .
\end{gathered}
$$

Kostka-Foulkes polynomials

- \mathfrak{g}-complex semisimple Lie algebra
- $R=R_{+} \cup R_{-}$- root system
- W - Weyl group
- P_{+}- set of dominant weights
- $P(\lambda)$ - set of weights of the irreducible representation $V(\lambda), \lambda \in P_{+}$

$$
\begin{gathered}
\lambda \in P_{+}, \mu \in P(\lambda), \quad V(\lambda)=\bigoplus_{\mu \in P(\lambda)} V_{\mu}^{\oplus K_{\lambda, \mu}^{R}}, \quad K_{\lambda, \mu}^{R} \text { - multiplicity of } \mu \text { in } V(\lambda) \\
\text { Kostka-Foulkes } \\
\text { polynomials }
\end{gathered}
$$

Kostka-Foulkes polynomials are affine Kazhdan-Lusztig polynomials

$$
\Rightarrow K_{\lambda, \mu}^{R} \in \mathbb{Z}_{\geq}[q] \text { [Kato '81] }
$$

Problem:

Let $\lambda \in P_{+}, \mu \in P_{+}(\lambda), \mathfrak{K}_{\lambda, \mu}^{R}$-parametrizes multiplicity of μ in $V(\lambda)$. Find

$$
\text { charge : } \mathfrak{K}_{\lambda, \mu}^{R} \rightarrow \mathbb{Z}_{\geq 0}
$$

such that

$$
K_{\lambda, \mu}^{R}(q)=\sum_{T \in \mathfrak{K}_{\lambda, \mu}^{R}} q^{\operatorname{charge}(T)} .
$$

Kostka-Foulkes polynomials in type A

- $R=A_{n-1}, W=S(n)$
- $P_{+}=$Young diagrams with at most n rows

Kostka-Foulkes polynomials in type A

- $R=A_{n-1}, W=S(n)$
- $P_{+}=$Young diagrams with at most n rows
- $\mathfrak{K}_{\lambda, \mu}^{A_{n-1}}=\operatorname{SSY} T(\lambda, \mu)$

$$
T=
$$

$$
\in \mathfrak{K}_{(5,3,2,0,0),(3,3,2,2,0)}^{A_{4}}
$$

Kostka-Foulkes polynomials in type A

- $R=A_{n-1}, W=S(n)$
- $P_{+}=$Young diagrams with at most n rows
- $\mathfrak{K}_{\lambda, \mu}^{A_{n-1}}=\operatorname{SSY} T(\lambda, \mu)$

Theorem [Lascoux-Schutzenberger '78]

$$
K_{\lambda, \mu}^{A_{n-1}}(q)=\sum_{T \in S S Y T(\lambda, \mu)} q^{\operatorname{charge}(T)} .
$$

Kostka-Foulkes polynomials in type A

- $R=A_{n-1}, W=S(n)$
- $P_{+}=$Young diagrams with at most n rows
- $\mathfrak{K}_{\lambda, \mu}^{A_{n-1}}=\operatorname{SSY}(\lambda, \mu)$

Theorem [Lascoux-Schutzenberger '78]

$$
K_{\lambda, \mu}^{A_{n-1}}(q)=\sum_{T \in S S Y T(\lambda, \mu)} q^{\operatorname{charge}(T)} .
$$

Kostka-Foulkes polynomials in type A

- $R=A_{n-1}, W=S(n)$
- $P_{+}=$Young diagrams with at most n rows
- $\mathfrak{K}_{\lambda, \mu}^{A_{n-1}}=\operatorname{SSY}(\lambda, \mu)$

1	1	1	3	3
2	2	2		
4	4			

$$
w(T)=4
$$

Theorem [Lascoux-Schutzenberger '78]

$$
K_{\lambda, \mu}^{A_{n-1}}(q)=\sum_{T \in S S Y T(\lambda, \mu)} q^{\operatorname{charge}(T)}
$$

Kostka-Foulkes polynomials in type A

- $R=A_{n-1}, W=S(n)$
- $P_{+}=$Young diagrams with at most n rows
- $\mathfrak{K}_{\lambda, \mu}^{A_{n-1}}=\operatorname{SSY}(\lambda, \mu)$

1	1	1	3	3
2	2	2		
4	4			

$$
w(T)=44
$$

Theorem [Lascoux-Schutzenberger '78]

$$
K_{\lambda, \mu}^{A_{n-1}}(q)=\sum_{T \in S S Y T(\lambda, \mu)} q^{\operatorname{charge}(T)} .
$$

Kostka-Foulkes polynomials in type A

- $R=A_{n-1}, W=S(n)$
- $P_{+}=$Young diagrams with at most n rows
- $\mathfrak{K}_{\lambda, \mu}^{A_{n-1}}=\operatorname{SSY}(\lambda, \mu)$

1	1	1	3	3
2	2	2		
4	4			

$$
w(T)=442
$$

Theorem [Lascoux-Schutzenberger '78]

$$
K_{\lambda, \mu}^{A_{n-1}}(q)=\sum_{T \in S S Y T(\lambda, \mu)} q^{\operatorname{charge}(T)} .
$$

Kostka-Foulkes polynomials in type A

- $R=A_{n-1}, W=S(n)$
- $P_{+}=$Young diagrams with at most n rows
- $\mathfrak{K}_{\lambda, \mu}^{A_{n-1}}=\operatorname{SSYT}(\lambda, \mu)$

1	1	1	3	3
2	2	2		
4	4			

$$
w(T)=4422
$$

Theorem [Lascoux-Schutzenberger '78]

$$
K_{\lambda, \mu}^{A_{n-1}}(q)=\sum_{T \in S S Y T(\lambda, \mu)} q^{\operatorname{charge}(T)}
$$

Kostka-Foulkes polynomials in type A

- $R=A_{n-1}, W=S(n)$
- $P_{+}=$Young diagrams with at most n rows
- $\mathfrak{K}_{\lambda, \mu}^{A_{n-1}}=\operatorname{SSYT}(\lambda, \mu)$

1	1	1	3	3
2	2	2		
4	4			

$$
w(T)=44222
$$

Theorem [Lascoux-Schutzenberger '78]

$$
K_{\lambda, \mu}^{A_{n-1}}(q)=\sum_{T \in S S Y T(\lambda, \mu)} q^{\operatorname{charge}(T)}
$$

Kostka-Foulkes polynomials in type A

- $R=A_{n-1}, W=S(n)$
- $P_{+}=$Young diagrams with at most n rows
- $\mathfrak{K}_{\lambda, \mu}^{A_{n-1}}=\operatorname{SSY}(\lambda, \mu)$

1	1	1	3	3
2	2	2		
4	4			

$$
w(T)=442221
$$

Theorem [Lascoux-Schutzenberger '78]

$$
K_{\lambda, \mu}^{A_{n-1}}(q)=\sum_{T \in S S Y T(\lambda, \mu)} q^{\operatorname{charge}(T)}
$$

Kostka-Foulkes polynomials in type A

- $R=A_{n-1}, W=S(n)$
- $P_{+}=$Young diagrams with at most n rows
- $\mathfrak{K}_{\lambda, \mu}^{A_{n-1}}=\operatorname{SSY}(\lambda, \mu)$

1	1	1	3	3
2	2	2		
4	4			

$$
w(T)=4422211133
$$

Theorem [Lascoux-Schutzenberger '78]

$$
K_{\lambda, \mu}^{A_{n-1}}(q)=\sum_{T \in S S Y T(\lambda, \mu)} q^{\operatorname{charge}(T)}
$$

Kostka-Foulkes polynomials in type A

- $R=A_{n-1}, W=S(n)$
- $P_{+}=$Young diagrams with at most n rows
- $\mathfrak{K}_{\lambda, \mu}^{A_{n-1}}=\operatorname{SSY}(\lambda, \mu)$

1	1	1	3	3
2	2	2		
4	4			

$$
\left.\begin{array}{rl}
w(T) & =4422
\end{array}\right)
$$

Theorem [Lascoux-Schutzenberger '78]

$$
K_{\lambda, \mu}^{A_{n-1}}(q)=\sum_{T \in S S Y T(\lambda, \mu)} q^{\operatorname{charge}(T)}
$$

Kostka-Foulkes polynomials in type A

- $R=A_{n-1}, W=S(n)$
- $P_{+}=$Young diagrams with at most n rows
- $\mathfrak{K}_{\lambda, \mu}^{A_{n-1}}=\operatorname{SSY}(\lambda, \mu)$

1	1	1	3	3
2	2	2		
4	4			

$$
w(T)=442222_{0} 1111_{0} 33
$$

$$
\operatorname{charge}(T)=0+0+
$$

Theorem [Lascoux-Schutzenberger '78]

$$
K_{\lambda, \mu}^{A_{n-1}}(q)=\sum_{T \in S S Y T(\lambda, \mu)} q^{\operatorname{charge}(T)}
$$

Kostka-Foulkes polynomials in type A

- $R=A_{n-1}, W=S(n)$
- $P_{+}=$Young diagrams with at most n rows
- $\mathfrak{K}_{\lambda, \mu}^{A_{n-1}}=\operatorname{SSY}(\lambda, \mu)$

1	1	1	3	3
2	2	2		
4	4			

$$
\left.\begin{array}{rl}
w(T) & =4422
\end{array} \begin{array}{lllllll}
& 4 & 1 & 1 & 1 & 3 & 3
\end{array}\right]
$$

Theorem [Lascoux-Schutzenberger '78]

$$
K_{\lambda, \mu}^{A_{n-1}}(q)=\sum_{T \in S S Y T(\lambda, \mu)} q^{\operatorname{charge}(T)}
$$

Kostka-Foulkes polynomials in type A

- $R=A_{n-1}, W=S(n)$
- $P_{+}=$Young diagrams with at most n rows
- $\mathfrak{K}_{\lambda, \mu}^{A_{n-1}}=\operatorname{SSY}(\lambda, \mu)$

1	1	1	3	3
2	2	2		
4	4			

$$
\begin{aligned}
w(T) & =\begin{array}{lllllll}
4 & 4_{1} 2 & 2 & 2_{0} 1 & 1 & 1 & 1_{0}
\end{array} 33_{1} \\
\operatorname{charge}(T) & =0+0+1+1+
\end{aligned}
$$

Theorem [Lascoux-Schutzenberger '78]

$$
K_{\lambda, \mu}^{A_{n-1}}(q)=\sum_{T \in S S Y T(\lambda, \mu)} q^{\operatorname{charge}(T)}
$$

Kostka-Foulkes polynomials in type A

- $R=A_{n-1}, W=S(n)$
- $P_{+}=$Young diagrams with at most n rows
- $\mathfrak{K}_{\lambda, \mu}^{A_{n-1}}=\operatorname{SSY}(\lambda, \mu)$

1	1	1	3	3
2	2	2		
4	4			

$$
\begin{aligned}
w(T) & =\begin{array}{llll}
4 & 4_{1} 2 & 2 & 2
\end{array} 2_{0} 11_{0} 1_{0} 3
\end{aligned} 3_{1}
$$

Theorem [Lascoux-Schutzenberger '78]

$$
K_{\lambda, \mu}^{A_{n-1}}(q)=\sum_{T \in S S Y T(\lambda, \mu)} q^{\operatorname{charge}(T)}
$$

Kostka-Foulkes polynomials in type A

- $R=A_{n-1}, W=S(n)$
- $P_{+}=$Young diagrams with at most n rows
- $\mathfrak{K}_{\lambda, \mu}^{A_{n-1}}=\operatorname{SSY}(\lambda, \mu)$

1	1	1	3	3
2	2	2		
4	4			

$$
\begin{aligned}
w(T) & =44_{1} 22_{0} 2_{0} 11_{0} 1_{0} 33_{1} \\
\operatorname{charge}(T) & =0+0+1+1+0+0+
\end{aligned}
$$

Theorem [Lascoux-Schutzenberger '78]

$$
K_{\lambda, \mu}^{A_{n-1}}(q)=\sum_{T \in S S Y T(\lambda, \mu)} q^{\operatorname{charge}(T)}
$$

Kostka-Foulkes polynomials in type A

- $R=A_{n-1}, W=S(n)$
- $P_{+}=$Young diagrams with at most n rows
- $\mathfrak{K}_{\lambda, \mu}^{A_{n-1}}=\operatorname{SSY}(\lambda, \mu)$

1	1	1	3	3
2	2	2		
4	4			

$$
\begin{aligned}
w(T) & =44_{1} 22_{0} 2_{0} 1 \quad 1_{0} 1_{0} 3_{1} 3_{1} \\
\operatorname{charge}(T) & =0+0+1+1+0+0+1+
\end{aligned}
$$

Theorem [Lascoux-Schutzenberger '78]

$$
K_{\lambda, \mu}^{A_{n-1}}(q)=\sum_{T \in S S Y T(\lambda, \mu)} q^{\operatorname{charge}(T)}
$$

Kostka-Foulkes polynomials in type A

- $R=A_{n-1}, W=S(n)$
- $P_{+}=$Young diagrams with at most n rows
- $\mathfrak{K}_{\lambda, \mu}^{A_{n-1}}=\operatorname{SSY}(\lambda, \mu)$

1	1	1	3	3
2	2	2		
4	4			

$$
\begin{aligned}
w(T) & =4_{1} 4_{1} 22_{0} 2_{0} 1 \quad 1_{0} 1_{0} 3_{1} 3_{1} \\
\operatorname{charge}(T) & =0+0+1+1+0+0+1+1+
\end{aligned}
$$

Theorem [Lascoux-Schutzenberger '78]

$$
K_{\lambda, \mu}^{A_{n-1}}(q)=\sum_{T \in S S Y T(\lambda, \mu)} q^{\operatorname{charge}(T)}
$$

Kostka-Foulkes polynomials in type A

- $R=A_{n-1}, W=S(n)$
- $P_{+}=$Young diagrams with at most n rows
- $\mathfrak{K}_{\lambda, \mu}^{A_{n-1}}=\operatorname{SSY}(\lambda, \mu)$

1	1	1	3	3
2	2	2		
4	4			

$$
\begin{aligned}
w(T) & =4_{1} 4_{1} 22_{0} 2_{0} 1_{0} 1_{0} 1_{0} 3_{1} 3_{1} \\
\operatorname{charge}(T) & =0+0+1+1+0+0+1+1+0+
\end{aligned}
$$

Theorem [Lascoux-Schutzenberger '78]

$$
K_{\lambda, \mu}^{A_{n-1}}(q)=\sum_{T \in S S Y T(\lambda, \mu)} q^{\operatorname{charge}(T)}
$$

Kostka-Foulkes polynomials in type A

- $R=A_{n-1}, W=S(n)$
- $P_{+}=$Young diagrams with at most n rows
- $\mathfrak{K}_{\lambda, \mu}^{A_{n-1}}=\operatorname{SSY}(\lambda, \mu)$

1	1	1	3	3
2	2	2		
4	4			

$$
\begin{aligned}
w(T) & =4_{1} 4_{1} 2_{0} 2_{0} 2_{0} 1_{0} 1_{0} 1_{0} 3_{1} 3_{1} \\
\operatorname{charge}(T) & =0+0+1+1+0+0+1+1+0+0=4
\end{aligned}
$$

Theorem [Lascoux-Schutzenberger '78]

$$
K_{\lambda, \mu}^{A_{n-1}}(q)=\sum_{T \in S S Y T(\lambda, \mu)} q^{\operatorname{charge}(T)}
$$

Kostka-Foulkes polynomials in type C

- $R=C_{n}, W=H(n)$
- $P_{+}=$Young diagrams with at most n rows
- $\mathfrak{K}_{\lambda, \mu}^{C_{n-1}}=\operatorname{SympTab}(\lambda, \mu) \quad$ - SSYT in alphabet $\{\bar{n}<\cdots<\overline{1}<1<\ldots, n\}$
- shape $=\lambda$

$\overline{3}$	$\overline{3}$	$\overline{2}$
$\overline{1}$	1	

- $\mu_{n+1-i}=\# \bar{i}-\# i$
- + symplectic conditions

Kostka-Foulkes polynomials in type C

Conjecture [Lecouvey '05]

$$
K_{\lambda, \mu}^{C_{n}}(q)=\sum_{T \in \operatorname{SympTab}_{n}(\lambda, \mu)} q^{\text {charge }^{C_{n}}(T)} .
$$

where charge ${ }^{C_{n}}$ is defined through the symplectic cocyclage.

Kostka-Foulkes polynomials in type C

Conjecture [Lecouvey '05]

$$
K_{\lambda, \mu}^{C_{n}}(q)=\sum_{T \in \operatorname{SympTab}_{n}(\lambda, \mu)} q^{\text {charge }^{C_{n}}(T)} .
$$

where charge ${ }^{C_{n}}$ is defined through the symplectic cocyclage.

Symplectic insertion: [Lecouvey '05]

1. Single column:

$\overline{4} \rightarrow$| $\overline{4}$ |
| :--- |
| $\overline{2}$ |
| 2 |
| 3 |
| 4 |$=$

Kostka-Foulkes polynomials in type C

Conjecture [Lecouvey '05]

$$
K_{\lambda, \mu}^{C_{n}}(q)=\sum_{T \in \operatorname{SympTab}_{n}(\lambda, \mu)} q^{\text {charge }^{C_{n}}(T)} .
$$

where charge ${ }^{C_{n}}$ is defined through the symplectic cocyclage.

Symplectic insertion: [Lecouvey '05]

1. Single column:

"-

Kostka-Foulkes polynomials in type C

Conjecture [Lecouvey '05]

$$
K_{\lambda, \mu}^{C_{n}}(q)=\sum_{T \in \operatorname{SympTab}_{n}(\lambda, \mu)} q^{\text {charge }^{C_{n}}(T)} .
$$

where charge ${ }^{C_{n}}$ is defined through the symplectic cocyclage.

Symplectic insertion: [Lecouvey '05]

1. Single column:

| $\overline{4}$ |
| :---: |\rightarrow| $\overline{4}$ |
| :--- |
| $\overline{2}$ |
| 2 |
| 3 |
| 4 | | $\overline{4}$ | |
| :--- | :--- |
| $\overline{3}$ | 3 |
| 3 | |

$$
\begin{array}{|}
\hline \overline{4} \\
\hline 4 \\
\hline
\end{array}=\begin{array}{|l|l|}
\hline \overline{3} & 3 \\
\hline 3 & \\
\hline
\end{array}
$$

Kostka-Foulkes polynomials in type C

Conjecture [Lecouvey '05]

$$
K_{\lambda, \mu}^{C_{n}}(q)=\sum_{T \in \operatorname{SympTab}_{n}(\lambda, \mu)} q^{\text {charge }^{C_{n}}(T)} .
$$

where charge ${ }^{C_{n}}$ is defined through the symplectic cocyclage.

Symplectic insertion: [Lecouvey '05]

1. Single column:

vilive

Kostka-Foulkes polynomials in type C

Conjecture [Lecouvey '05]

$$
K_{\lambda, \mu}^{C_{n}}(q)=\sum_{T \in \operatorname{SympTab}_{n}(\lambda, \mu)} q^{\text {charge }^{C_{n}}(T)} .
$$

where charge ${ }^{C_{n}}$ is defined through the symplectic cocyclage.

Symplectic insertion: [Lecouvey '05]

1. Single column:

| $\overline{4}$ |
| :---: |\rightarrow| $\overline{4}$ |
| :--- | :--- |
| $\overline{2}$ |
| 2 |
| 3 |
| 4 |$=$| $\overline{4}$ | |
| :--- | :--- |
| $\overline{2}$ | 2 |
| 2 | |
| 3 | |

$$
\overline{\overline{3}} \rightarrow \begin{array}{|l|}
\hline 2 \\
\hline 3 \\
\hline
\end{array}=\begin{array}{|l|l|}
\hline \overline{2} & 2 \\
\hline 2 & \\
\hline
\end{array}
$$

Kostka-Foulkes polynomials in type C

Conjecture [Lecouvey '05]

$$
K_{\lambda, \mu}^{C_{n}}(q)=\sum_{T \in \operatorname{SympTab}_{n}(\lambda, \mu)} q^{\text {charge }^{C_{n}}(T)} .
$$

where charge ${ }^{C_{n}}$ is defined through the symplectic cocyclage.

Symplectic insertion: [Lecouvey '05]

1. Single column:

$$
\overline{\overline{2}} \rightarrow \begin{array}{|}
\overline{2} \\
\hline 2 \\
\hline
\end{array}=\begin{array}{|l|l|}
\hline \overline{3} & 3 \\
\hline \overline{2} & \\
\hline
\end{array}
$$

Kostka-Foulkes polynomials in type C

Conjecture [Lecouvey '05]

$$
K_{\lambda, \mu}^{C_{n}}(q)=\sum_{T \in \operatorname{SympTab}_{n}(\lambda, \mu)} q^{\text {charge }^{C_{n}}(T)} .
$$

where charge ${ }^{C_{n}}$ is defined through the symplectic cocyclage.

Symplectic insertion: [Lecouvey '05]

1. Single column:

$$
\begin{array}{|c|}
\hline \overline{3} \\
\overline{4} \\
\hline 3 \\
\hline
\end{array}=\begin{array}{|l|l|}
\hline \overline{4} & 3 \\
\hline \overline{3} \\
\hline
\end{array}
$$

Kostka-Foulkes polynomials in type C

Conjecture [Lecouvey '05]

$$
K_{\lambda, \mu}^{C_{n}}(q)=\sum_{T \in \operatorname{SympTab}_{n}(\lambda, \mu)} q^{\text {charge }^{C_{n}}(T)} .
$$

where charge ${ }^{C_{n}}$ is defined through the symplectic cocyclage.

Symplectic insertion: [Lecouvey '05]

1. Single column:

| $\overline{4}$ |
| :---: |\rightarrow| $\overline{4}$ |
| :--- | :--- |
| $\overline{2}$ |
| 2 |
| 3 |
| 4 |$=$| $\overline{4}$ | 3 |
| :--- | :--- |
| $\overline{3}$ | |
| $\overline{2}$ | |
| 2 | |
| 3 | |

$$
\overline{\overline{3}} \rightarrow \begin{array}{|}
\overline{4} \\
\hline 3 \\
\hline
\end{array}=\begin{array}{|l|l|}
\hline \overline{4} & 3 \\
\hline \overline{3} & \\
\hline
\end{array}
$$

Kostka-Foulkes polynomials in type C

Conjecture [Lecouvey '05]

$$
K_{\lambda, \mu}^{C_{n}}(q)=\sum_{T \in \operatorname{SympTab}_{n}(\lambda, \mu)} q^{\text {charge }^{C_{n}}(T)} .
$$

where charge ${ }^{C_{n}}$ is defined through the symplectic cocyclage.

Symplectic insertion: [Lecouvey '05]

2. Arbitrary shape:

Kostka-Foulkes polynomials in type C

Conjecture [Lecouvey '05]

$$
K_{\lambda, \mu}^{C_{n}}(q)=\sum_{T \in \operatorname{SympTab}_{n}(\lambda, \mu)} q^{\text {charge }^{C_{n}}(T)} .
$$

where charge ${ }^{C_{n}}$ is defined through the symplectic cocyclage.

Symplectic insertion: [Lecouvey '05]

2. Arbitrary shape:

$$
1 . \rightarrow \begin{array}{|l|}
\hline \overline{1} \\
\hline 1 \\
\hline 3 \\
\hline
\end{array}=\begin{array}{|l|l|}
\hline \overline{2} & 2 \\
\hline 1 & \\
\hline 3 &
\end{array}
$$

Kostka-Foulkes polynomials in type C

Conjecture [Lecouvey '05]

$$
K_{\lambda, \mu}^{C_{n}}(q)=\sum_{T \in \operatorname{SympTab}_{n}(\lambda, \mu)} q^{\text {charge }^{C_{n}}(T)} .
$$

where charge ${ }^{C_{n}}$ is defined through the symplectic cocyclage.

Symplectic insertion: [Lecouvey '05]

2. Arbitrary shape:

Kostka-Foulkes polynomials in type C

Conjecture [Lecouvey '05]

$$
K_{\lambda, \mu}^{C_{n}}(q)=\sum_{T \in \operatorname{SympTab}_{n}(\lambda, \mu)} q^{\text {charge }^{C_{n}}(T)} .
$$

where charge ${ }^{C_{n}}$ is defined through the symplectic cocyclage.

Symplectic insertion: [Lecouvey '05]

2. Arbitrary shape:

Kostka-Foulkes polynomials in type C

Conjecture [Lecouvey '05]

$$
K_{\lambda, \mu}^{C_{n}}(q)=\sum_{T \in \operatorname{SympTab}_{n}(\lambda, \mu)} q^{\text {charge }^{C_{n}}(T)} .
$$

where charge ${ }^{C_{n}}$ is defined through the symplectic cocyclage.

Symplectic insertion: [Lecouvey '05]

2. Arbitrary shape:

Kostka-Foulkes polynomials in type C

Conjecture [Lecouvey '05]

$$
K_{\lambda, \mu}^{C_{n}}(q)=\sum_{T \in \operatorname{SympTab}_{n}(\lambda, \mu)} q^{\text {charge }^{C_{n}}(T)} .
$$

where charge ${ }^{C_{n}}$ is defined through the symplectic cocyclage.

Symplectic insertion: [Lecouvey '05]

2. Arbitrary shape:

Kostka-Foulkes polynomials in type C

Conjecture [Lecouvey '05]

$$
K_{\lambda, \mu}^{C_{n}}(q)=\sum_{T \in \operatorname{SympTab}_{n}(\lambda, \mu)} q^{\text {charge }^{C_{n}}(T)} .
$$

where charge ${ }^{C_{n}}$ is defined through the symplectic cocyclage.

Symplectic insertion: [Lecouvey '05]
2. Arbitrary shape:

Symplectic cocyclage: [Lecouvey '05]

CoCyc | $\overline{4}$ | $\overline{3}$ | $\overline{3}$ | $\overline{3}$ |
| :---: | :---: | :---: | :---: |
| $\overline{2}$ | $\overline{2}$ | $\overline{1}$ | $\overline{1}$ |
| 1 | 4 | | |
| | | | |$=$

Kostka-Foulkes polynomials in type C

Conjecture [Lecouvey '05]

$$
K_{\lambda, \mu}^{C_{n}}(q)=\sum_{T \in \operatorname{SympTab}_{n}(\lambda, \mu)} q^{\text {charge }^{C_{n}}(T)} .
$$

where charge ${ }^{C_{n}}$ is defined through the symplectic cocyclage.

Symplectic insertion: [Lecouvey '05]
2. Arbitrary shape:

Symplectic cocyclage: [Lecouvey '05]

CoCyc | $\overline{4}$ | $\overline{3}$ | $\overline{3}$ | $\overline{3}$ |
| :---: | :---: | :---: | :---: |
| $\overline{2}$ | $\overline{2}$ | $\overline{1}$ | $\overline{1}$ |
| 1 | 4 | | |
| | | | |$=$

Kostka-Foulkes polynomials in type C
Conjecture [Lecouvey '05]

$$
K_{\lambda, \mu}^{C_{n}}(q)=\sum_{T \in \operatorname{SympTab}_{n}(\lambda, \mu)} q^{\text {charge }^{C_{n}}(T)} .
$$

where charge ${ }^{C_{n}}$ is defined through the symplectic cocyclage.

Symplectic insertion: [Lecouvey '05]
2. Arbitrary shape:

Symplectic cocyclage: [Lecouvey '05]

Kostka-Foulkes polynomials in type C
Conjecture [Lecouvey '05]

$$
K_{\lambda, \mu}^{C_{n}}(q)=\sum_{T \in \operatorname{SympTab}_{n}(\lambda, \mu)} q^{\text {charge }^{C_{n}}(T)} .
$$

where charge ${ }^{C_{n}}$ is defined through the symplectic cocyclage.

Symplectic insertion: [Lecouvey '05]
2. Arbitrary shape:

| 1 |
:---	:---	:---	\rightarrow	$\overline{1}$	1	2	
1	2						
3			$=$	$\overline{2}$	1	2	
:---	:---	:---					
1	2						
3			\rightarrow	2			
:---	:---	:---	:---				
$\overline{2}$	1	2	2				
1	2						
3							

Symplectic cocyclage: [Lecouvey '05]

Cocyclage \& charge in type C (Lecouvey 2005)

$T \in \operatorname{SympTab}_{n}(\lambda, \mu)$
$\operatorname{charge}^{C_{n}}(T)=? ? ?$

Cocyclage \& charge in type C (Lecouvey 2005)

$$
\begin{aligned}
& T \in \operatorname{SympTab}_{n}(\lambda, \mu) \\
& \qquad T=\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline \overline{3} & \overline{3} & \overline{3} & \overline{2} & \overline{2} & \overline{2} & \overline{1} & \overline{1} & \operatorname{charge}^{C_{n}} & 2 \\
\hline
\end{array} \quad \in \operatorname{SympTab}_{3}((10),(3,2,1))
\end{aligned}
$$

Cocyclage \& charge in type C (Lecouvey 2005)

$$
\begin{aligned}
& T \in \operatorname{SympTab}_{n}(\lambda, \mu) \\
& \operatorname{CoCyc}(T)=\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline \overline{3} & \overline{3} & \overline{3} & \overline{2} & \overline{2} & \overline{2} & \overline{1} & \overline{1} & 1 \\
\hline 2 & &
\end{array}
\end{aligned}
$$

$$
\operatorname{charge}^{C_{n}}(T)=? ? ?
$$

Cocyclage \& charge in type C (Lecouvey 2005)

$$
\begin{aligned}
& T \in \operatorname{SympTab}_{n}(\lambda, \mu) \\
& \operatorname{CoCyc}^{2}(T)=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline \overline{3} & \overline{3} & \overline{3} & \overline{2} & \overline{2} & \overline{2} & \overline{1} & \overline{1} \\
\hline 1 & 2 & & \\
\hline
\end{array}
\end{aligned}
$$

$$
\operatorname{charge}^{C_{n}}(T)=? ? ?
$$

Cocyclage \& charge in type C (Lecouvey 2005)

$$
\begin{aligned}
& T \in \operatorname{SympTab}_{n}(\lambda, \mu) \\
& \operatorname{CoCyc}^{3}(T)=\begin{array}{|l|l|l|l|l|l|l|}
\hline \overline{3} & \overline{3} & \overline{3} & \overline{2} & \overline{2} & \overline{2} & \overline{1} \\
\hline \overline{1} & 1 & 2 & & \\
\hline
\end{array}
\end{aligned}
$$

$$
\operatorname{charge}^{C_{n}}(T)=? ? ?
$$

Cocyclage \& charge in type C (Lecouvey 2005)

$$
\begin{aligned}
& T \in \operatorname{SympTab}_{n}(\lambda, \mu) \\
& \operatorname{CoCyc}^{4}(T)=\begin{array}{|l|l|l|l|l|l|}
\overline{3} & \overline{3} & \overline{3} & \overline{2} & \overline{2} & \overline{2} \\
\hline \overline{1} & \overline{1} & 1 & 2 & \\
\hline
\end{array}
\end{aligned}
$$

$$
\operatorname{charge}^{C_{n}}(T)=? ? ?
$$

Cocyclage \& charge in type C (Lecouvey 2005)

$$
\begin{aligned}
& T \in \operatorname{SympTab}_{n}(\lambda, \mu) \\
& \operatorname{CoCyc}^{5}(T)=\begin{array}{|l|l|l|l|l|}
\hline \overline{3} & \overline{3} & \overline{3} & \overline{3} & \overline{2} \\
\hline \overline{2} & \overline{1} & \overline{1} & 1 & 3 \\
\hline
\end{array}
\end{aligned}
$$

$$
\operatorname{charge}^{C_{n}}(T)=? ? ?
$$

Cocyclage \& charge in type C (Lecouvey 2005)

$$
\begin{aligned}
& T \in \operatorname{SympTab}_{n}(\lambda, \mu) \\
& \operatorname{CoCyc}^{6}(T)=
\end{aligned}
$$

$$
\operatorname{charge}^{C_{n}}(T)=? ? ?
$$

Cocyclage \& charge in type C (Lecouvey 2005)

$$
\begin{aligned}
& T \in \operatorname{SympTab}_{n}(\lambda, \mu) \\
& \left.\operatorname{CoCyc}^{7}(T)= \right\rvert\, l
\end{aligned}
$$

$$
\operatorname{charge}^{C_{n}}(T)=? ? ?
$$

Cocyclage \& charge in type C (Lecouvey 2005)

$$
\begin{aligned}
& T \in \operatorname{Symp}^{2}(\lambda, \mu) \\
& \operatorname{CoCyc}_{n}(T)=\begin{array}{|l|l|l|l|}
\hline \overline{4} & \overline{3} & \overline{3} & \overline{3} \\
\hline \overline{2} & \overline{2} & \overline{1} & \overline{1} \\
\hline 1 & 4 & & \\
\hline
\end{array}
\end{aligned}
$$

$$
\operatorname{charge}^{C_{n}}(T)=? ? ?
$$

Cocyclage \& charge in type C (Lecouvey 2005)

$$
\begin{aligned}
& T \in \operatorname{SympTab}_{n}(\lambda, \mu) \\
& \operatorname{CoCyc}^{9}(T)=\begin{array}{|l|l|l|l|l|}
\hline \overline{4} & \overline{3} & \overline{3} & \overline{1} & \overline{1} \\
\hline \overline{3} & \overline{2} & \overline{2} & & \\
\hline 1 & 4 & & \\
\hline
\end{array}
\end{aligned}
$$

$$
\operatorname{charge}^{C_{n}}(T)=? ? ?
$$

Cocyclage \& charge in type C (Lecouvey 2005)

$$
\begin{gathered}
T \in \operatorname{SympTab}_{n}(\lambda, \mu) \\
\operatorname{CoCyc}^{10}(T)=\begin{array}{|l|l|l|l|}
\hline \overline{4} & \overline{3} & \overline{3} & \overline{1} \\
\hline \overline{3} & \overline{2} & \overline{2} & \\
\hline \overline{1} & 1 & 4 & \\
\hline
\end{array}
\end{gathered}
$$

$$
\operatorname{charge}^{C_{n}}(T)=? ? ?
$$

Cocyclage \& charge in type C (Lecouvey 2005)

$$
\begin{gathered}
T \in \operatorname{SympTab}_{n}(\lambda, \mu) \\
\operatorname{CoCyc}^{11}(T)=
\end{gathered}
$$

$$
\operatorname{charge}^{C_{n}}(T)=? ? ?
$$

Cocyclage \& charge in type C (Lecouvey 2005)

$$
\begin{gathered}
T \in \operatorname{SympTab}_{n}(\lambda, \mu) \\
\operatorname{CoCyc}^{12}(T)=\begin{array}{|l|l|l|}
\hline \overline{4} & \overline{3} & \overline{3} \\
\hline \overline{3} & \overline{2} & \overline{2} \\
\hline \overline{1} & \overline{1} & 1 \\
\hline 4 & &
\end{array}
\end{gathered}
$$

$$
\operatorname{charge}^{C_{n}}(T)=? ? ?
$$

Cocyclage \& charge in type C (Lecouvey 2005)

$$
\begin{gathered}
T \in \operatorname{SympTab}_{n}(\lambda, \mu) \\
\operatorname{CoCyc}^{12}(T)=\begin{array}{|c|c|c|}
\hline \overline{4} & \overline{3} & \overline{3} \\
\hline \overline{3} & \overline{2} & \overline{2} \\
\hline \overline{1} & \overline{1} & 1 \\
\hline 4 & &
\end{array}
\end{gathered}
$$

$$
\operatorname{charge}^{C_{n}}(T)=? ? ?
$$

Cocyclage \& charge in type C (Lecouvey 2005)

$$
\begin{gathered}
T \in \operatorname{Symp}_{\operatorname{Tab}}^{n}(\lambda, \mu) \\
\operatorname{CoCyc}^{12}(T)=\begin{array}{|l|l|l|}
\hline \overline{4} & \overline{3} & \overline{3} \\
\hline \overline{2} & \overline{2} & 2 \\
\hline 4 & \\
\hline
\end{array}
\end{gathered}
$$

$$
\operatorname{charge}^{C_{n}}(T)=? ? ?
$$

Cocyclage \& charge in type C (Lecouvey 2005)

$$
\begin{gathered}
T \in \operatorname{SympTab}_{n}(\lambda, \mu) \\
\operatorname{CoCyc}^{13}(T)=\begin{array}{|l|l|l|l|}
\hline \overline{4} & \overline{3} & \overline{2} & 2 \\
\hline \overline{3} & \overline{2} & & \\
\hline 4 & &
\end{array}
\end{gathered}
$$

$$
\operatorname{charge}^{C_{n}}(T)=? ? ?
$$

Cocyclage \& charge in type C (Lecouvey 2005)

$$
\begin{gathered}
T \in \operatorname{SympTab}_{n}(\lambda, \mu) \\
\operatorname{CoCyc}^{14}(T)=\begin{array}{|l|l|l|}
\hline \overline{5} & \overline{3} & \overline{2} \\
\hline \overline{3} & \overline{2} & \\
\hline 2 & 5 & \\
\hline
\end{array}
\end{gathered}
$$

$$
\operatorname{charge}^{C_{n}}(T)=? ? ?
$$

Cocyclage \& charge in type C (Lecouvey 2005)

$$
\begin{gathered}
T \in \operatorname{Symp}_{\operatorname{Tab}}^{n}(\lambda, \mu) \\
\operatorname{CoCyc}^{15}(T)=\begin{array}{|l|l|l|}
\hline \overline{5} & \overline{3} & 5 \\
\hline \overline{3} & \overline{2} & \\
\hline \overline{2} & 2 & \\
\hline
\end{array}
\end{gathered}
$$

$$
\operatorname{charge}^{C_{n}}(T)=? ? ?
$$

Cocyclage \& charge in type C (Lecouvey 2005)

$$
\begin{gathered}
T \in \operatorname{SympTab}_{n}(\lambda, \mu) \\
\operatorname{CoCyc}^{16}(T)=\begin{array}{|l|l|}
\hline \overline{5} & \overline{3} \\
\hline \overline{3} & \overline{2} \\
\hline \overline{2} & 2 \\
\hline 5 & 1
\end{array}
\end{gathered}
$$

$$
\operatorname{charge}^{C_{n}}(T)=? ? ?
$$

Cocyclage \& charge in type C (Lecouvey 2005)

$$
\begin{gathered}
T \in \operatorname{SympTab}_{n}(\lambda, \mu) \\
\operatorname{CoCyc}^{16}(T)=\begin{array}{|l|l|}
\hline \overline{5} & \overline{3} \\
\hline \overline{3} & \overline{2} \\
\hline \overline{2} & 2 \\
\hline 5 & \\
\hline
\end{array}
\end{gathered}
$$

$$
\operatorname{charge}^{C_{n}}(T)=? ? ?
$$

Cocyclage \& charge in type C (Lecouvey 2005)

$$
\begin{gathered}
T \in \operatorname{SympTab}_{n}(\lambda, \mu) \\
\operatorname{CoCyc}^{16}(T)=\begin{array}{|l|l|}
\hline \overline{5} & \overline{3} \\
\hline \overline{3} & 3 \\
\hline 5 & \\
\hline
\end{array}
\end{gathered}
$$

$$
\operatorname{charge}^{C_{n}}(T)=? ? ?
$$

Cocyclage \& charge in type C (Lecouvey 2005)

$$
\begin{gathered}
T \in \operatorname{SympTab}_{n}(\lambda, \mu) \\
\operatorname{CoCyc}^{17}(T)=
\end{gathered}
$$

$$
\operatorname{charge}^{C_{n}}(T)=? ? ?
$$

Cocyclage \& charge in type C (Lecouvey 2005)

$$
\begin{gathered}
T \in \operatorname{SympTab}_{n}(\lambda, \mu) \\
\operatorname{CoCyc}^{18}(T)=\begin{array}{|l|l|}
\hline \overline{6} & \overline{3} \\
\hline \overline{3} & 6 \\
\hline 3 & \\
\hline
\end{array}
\end{gathered}
$$

$$
\text { charge }^{C_{n}}(T)=? ? ?
$$

Cocyclage \& charge in type C (Lecouvey 2005)

$$
\begin{gathered}
T \in \operatorname{SympTab}_{n}(\lambda, \mu) \\
\operatorname{CoCyc}^{19}(T)=
\end{gathered}
$$

$$
\text { charge }^{C_{n}}(T)=? ? ?
$$

Cocyclage \& charge in type C (Lecouvey 2005)

$$
\begin{gathered}
T \in \operatorname{SympTab}_{n}(\lambda, \mu) \\
\operatorname{CoCyc}^{20}(T)=
\end{gathered}
$$

$$
\text { charge }^{C_{n}}(T)=? ? ?
$$

Cocyclage \& charge in type C (Lecouvey 2005)

$$
\begin{gathered}
T \in \operatorname{SympTab}_{n}(\lambda, \mu) \\
\text { CoCyc }^{21}(T)=
\end{gathered}
$$

$$
\operatorname{charge}^{C_{n}}(T)=? ? ?
$$

Cocyclage \& charge in type C (Lecouvey 2005)

$$
\begin{gathered}
T \in \operatorname{SympTab}_{n}(\lambda, \mu) \\
\operatorname{CoCyc}^{22}(T)=\begin{array}{|}
\hline \overline{7} \\
\hline \overline{4} \\
\hline 4 \\
\hline 7 \\
\hline
\end{array}
\end{gathered}
$$

$$
\operatorname{charge}^{C_{n}}(T)=? ? ?
$$

Cocyclage \& charge in type C (Lecouvey 2005)

$$
\begin{aligned}
& T \in \operatorname{SympTa}_{n}(\lambda, \mu) \\
& C o C y c^{22}(T)=\text { 产 } \\
& \hline \frac{\overline{4}}{4} \\
& \hline \frac{7}{2} \\
& \operatorname{charge}^{C_{3}}(T)=22+2((3-4)+(3-7))=12
\end{aligned}
$$

$$
\operatorname{charge}^{C_{n}}(T)=? ? ?
$$

Cocyclage \& charge in type C (Lecouvey 2005)

Problem Computing charge $=$ going through the whole cocyclage. $C o C y c^{n+1}(T)$ depends heavily on $\operatorname{CoCyc}^{n}(T)+$ local constraints!

Main result - new algorithm for CoCyclage!

$$
\operatorname{CoCyc}^{14}(T)=? ? ?
$$

Main result - new algorithm for CoCyclage!

$$
C o C y c^{14}(T)=? ? ?
$$

Find a shape by shifting: remove the far right box from the longest row and insert it to the next row by shifting. Remove singles when the shape is contained between orange lines.

Main result - new algorithm for CoCyclage!

$$
\operatorname{CoCyc}{ }^{14}(T)=? ? ?
$$

Step 0

Find a shape by shifting: remove the far right box from the longest row and insert it to the next row by shifting. Remove singles when the shape is contained between orange lines.

Main result - new algorithm for CoCyclage!

$$
C o C y c^{14}(T)=? ? ?
$$

Step 1

Find a shape by shifting: remove the far right box from the longest row and insert it to the next row by shifting. Remove singles when the shape is contained between orange lines.

Main result - new algorithm for CoCyclage!

$$
C o C y c^{14}(T)=? ? ?
$$

Step 2

Find a shape by shifting: remove the far right box from the longest row and insert it to the next row by shifting. Remove singles when the shape is contained between orange lines.

Main result - new algorithm for CoCyclage!

$$
C o C y c^{14}(T)=? ? ?
$$

Step 3

Find a shape by shifting: remove the far right box from the longest row and insert it to the next row by shifting. Remove singles when the shape is contained between orange lines.

Main result - new algorithm for CoCyclage!

$$
C o C y c^{14}(T)=? ? ?
$$

Step 4

Find a shape by shifting: remove the far right box from the longest row and insert it to the next row by shifting. Remove singles when the shape is contained between orange lines.

Main result - new algorithm for CoCyclage!

$$
C o C y c^{14}(T)=? ? ?
$$

Find a shape by shifting: remove the far right box from the longest row and insert it to the next row by shifting. Remove singles when the shape is contained between orange lines.

Main result - new algorithm for CoCyclage!

$$
C o C y c^{14}(T)=? ? ?
$$

Step 6

Find a shape by shifting: remove the far right box from the longest row and insert it to the next row by shifting. Remove singles when the shape is contained between orange lines.

Main result - new algorithm for CoCyclage!

$$
C o C y c^{14}(T)=? ? ?
$$

Step 7

Find a shape by shifting: remove the far right box from the longest row and insert it to the next row by shifting. Remove singles when the shape is contained between orange lines.

Main result - new algorithm for CoCyclage!

$$
C o C y c^{14}(T)=? ? ?
$$

Step 8

Find a shape by shifting: remove the far right box from the longest row and insert it to the next row by shifting. Remove singles when the shape is contained between orange lines.

Main result - new algorithm for CoCyclage!

$$
C o C y c^{14}(T)=? ? ?
$$

Step 9

Find a shape by shifting: remove the far right box from the longest row and insert it to the next row by shifting. Remove singles when the shape is contained between orange lines.

Main result - new algorithm for CoCyclage!

$$
C o C y c^{14}(T)=? ? ?
$$

Step 10

Find a shape by shifting: remove the far right box from the longest row and insert it to the next row by shifting. Remove singles when the shape is contained between orange lines.

Main result - new algorithm for CoCyclage!

$$
C o C y c^{14}(T)=? ? ?
$$

Step 11

Find a shape by shifting: remove the far right box from the longest row and insert it to the next row by shifting. Remove singles when the shape is contained between orange lines.

Main result - new algorithm for CoCyclage!

$$
C o C y c^{14}(T)=? ? ?
$$

Step 12

Find a shape by shifting: remove the far right box from the longest row and insert it to the next row by shifting. Remove singles when the shape is contained between orange lines.

Main result - new algorithm for CoCyclage!

$$
C o C y c^{14}(T)=? ? ?
$$

Step 12

Reduction: The whole diagram is contained between orange lines -> update T (remove orange singles, increase everything by 1)

Find a shape by shifting: remove the far right box from the longest row and insert it to the next row by shifting. Remove singles when the shape is contained between orange lines.

Main result - new algorithm for CoCyclage!

$$
C o C y c^{14}(T)=? ? ?
$$

Step 12

Find a shape by shifting: remove the far right box from the longest row and insert it to the next row by shifting. Remove singles when the shape is contained between orange lines.

Main result - new algorithm for CoCyclage!

$$
C o C y c^{14}(T)=? ? ?
$$

Step 13

Find a shape by shifting: remove the far right box from the longest row and insert it to the next row by shifting. Remove singles when the shape is contained between orange lines.

Main result - new algorithm for CoCyclage!

$$
\operatorname{CoCyc}{ }^{14}(T)=? ? ?
$$

Step 14

Find a shape by shifting: remove the far right box from the longest row and insert it to the next row by shifting. Remove singles when the shape is contained between orange lines.

Main result - new algorithm for CoCyclage!

$$
T=\begin{array}{|l|l|l|l|l|l|l|}
\hline \overline{3} & \overline{3} & \overline{3} & \overline{2} & \overline{2} & 2 & 3 \\
\hline
\end{array} \quad \quad \operatorname{CoCyc}^{14}(T)=? ? ?
$$

Find a partner: compute the distance between the first available box and compare its value with the value of singles.

Main result - new algorithm for CoCyclage!

$$
C o C y c^{14}(T)=? ? ?
$$

Find a partner: compute the distance between the first available box and compare its value with the value of singles.

Main result - new algorithm for CoCyclage!

Find a partner: compute the distance between the first available box and compare its value with the value of singles.

Main result - new algorithm for CoCyclage!

$$
C o C y c^{14}(T)=? ? ?
$$

Find a partner: compute the distance between the first available box and compare its value with the value of singles.

Main result - new algorithm for CoCyclage!

$$
C o C y c^{14}(T)=? ? ?
$$

Find a partner: compute the distance between the first available box and compare its value with the value of singles.

Main result - new algorithm for CoCyclage!

Find a partner: compute the distance between the first available box and compare its value with the value of singles.

Main result - new algorithm for CoCyclage!

$$
C o C y c^{14}(T)=? ? ?
$$

Red partner found

Find a partner: compute the distance between the first available box and compare its value with the value of singles.

Main result - new algorithm for CoCyclage!

$$
C o C y c^{14}(T)=? ? ?
$$

Find a partner: compute the distance between the first available box and compare its value with the value of singles.

Main result - new algorithm for CoCyclage!

Find a partner: compute the distance between the first available box and compare its value with the value of singles.

Main result - new algorithm for CoCyclage!

$$
C o C y c^{14}(T)=? ? ?
$$

Find a partner: compute the distance between the first available box and compare its value with the value of singles.

Main result - new algorithm for CoCyclage!

$$
C o C y c^{14}(T)=? ? ?
$$

Find a partner: compute the distance between the first available box and compare its value with the value of singles.

Main result - new algorithm for CoCyclage!

$$
T=\begin{array}{|l|l|l|l|l|l|l|}
\hline \overline{3} & \overline{3} & \overline{3} & \overline{2} & \overline{2} & 2 & 3 \\
\hline
\end{array}
$$

Blue partner found

Find a partner: compute the distance between the first available box and compare its value with the value of singles.

Main result - new algorithm for CoCyclage!

```
T= \begin{array}{llllll:l|llll}{\hline\overline{3}}&{\overline{3}}&{\overline{3}}&{\overline{2}}&{\overline{2}}&{2}\\{\hline}\end{array}\mathbf{A}
CoCyc}\mp@subsup{}{}{14}(T)=??
```


Blue partner found

Corollary: [Dołęga, Gerber, Torres '20]
Lecouvey's conjecture is true for arbitrary n, p, μ and $\lambda=(p)$.

Theorem [Dołęga, Gerber, Torres '20]

$$
K_{\lambda, \mu}^{C_{n}}(q)=\sum_{T \in \operatorname{SympTab}_{n}(\lambda, \mu)} q^{\text {charge }^{C_{n}}(T)} .
$$

for $\lambda=(p)$, where charge ${ }^{C_{n}}$ is defined through the symplectic cocyclage.

