Bijections for maps on non-oriented surfaces

Maciej Dołęga, IMPAN

I. Maps

Maps

= graphs embedded into a surface (2-dimensional, compact, connected real manifold without boundary) in a way that the complement of the image is homeomorphic to the collection of open discs called faces

Maps

= graphs embedded into a surface (2-dimensional, compact, connected real manifold without boundary) in a way that the complement of the image is homeomorphic to the collection of open discs called faces

This is an map on the projective plane

This is a map on the torus.

Maps

= graphs embedded into a surface (2-dimensional, compact, connected real manifold without boundary) in a way that the complement of the image is homeomorphic to the collection of open discs called faces

Question: What is the number $m_{\mathcal{S}}(n)$ of maps with n edges on a surface \mathcal{S} ?

Question: What is the number $m_{\mathcal{S}}(n)$ of maps with n edges on a surface \mathcal{S} ?

• When $S = \mathbb{S}^2$ is the sphere, then $m_{\mathbb{S}^2}(n) = \frac{2 \cdot 3^n \cdot (2n)!}{n!(n+2)!}$ ([Tutte '60]);

Question: What is the number $m_{\mathcal{S}}(n)$ of maps with n edges on a surface \mathcal{S} ?

- When $S = \mathbb{S}^2$ is the sphere, then $m_{\mathbb{S}^2}(n) = \frac{2 \cdot 3^n \cdot (2n)!}{n!(n+2)!}$ ([Tutte '60]);
- In general $m_{\mathcal{S}}(n) \sim c(\mathcal{S}) \cdot n^{-5/4 \cdot \chi(\mathcal{S})} \cdot 12^n$, where $c(\mathcal{S})$ is a constant ([Bender–Canfield '86]);

Question: What is the number $m_{\mathcal{S}}(n)$ of maps with n edges on a surface \mathcal{S} ?

- When $S = \mathbb{S}^2$ is the sphere, then $m_{\mathbb{S}^2}(n) = \frac{2 \cdot 3^n \cdot (2n)!}{n!(n+2)!}$ ([Tutte '60]);
- In general $m_{\mathcal{S}}(n) \sim c(\mathcal{S}) \cdot n^{-5/4 \cdot \chi(\mathcal{S})} \cdot 12^n$, where $c(\mathcal{S})$ is a constant ([Bender–Canfield '86]); universality predicted by topological recursion [Checkhov, Eynard–Orantin '06,'07+]: for any reasonable model $\mathcal{M}_{\mathcal{S}}$ on an orientable \mathcal{S} $m_{\mathcal{M}_{\mathcal{S}}}(n) \sim c(\mathcal{M}_{\mathcal{S}}) \cdot n^{-5/4 \cdot \chi(\mathcal{S})} \cdot \gamma_{\mathcal{M}_{\mathcal{S}}}^n$

Question: What is the number $m_{\mathcal{S}}(n)$ of maps with n edges on a surface \mathcal{S} ?

- When $S = \mathbb{S}^2$ is the sphere, then $m_{\mathbb{S}^2}(n) = \frac{2 \cdot 3^n \cdot (2n)!}{n!(n+2)!}$ ([Tutte '60]);
- In general $m_{\mathcal{S}}(n) \sim c(\mathcal{S}) \cdot n^{-5/4 \cdot \chi(\mathcal{S})} \cdot 12^n$, where $c(\mathcal{S})$ is a constant ([Bender–Canfield '86]);

Direct combinatorial explanation:

• When $S = \mathbb{S}^2$: two important bijections with tree-like structures.

Rooted well-labeled trees [Cori-Vaquellin '81] + [Schaeffer '98]

Question: What is the number $m_{\mathcal{S}}(n)$ of maps with n edges on a surface \mathcal{S} ?

- When $S = \mathbb{S}^2$ is the sphere, then $m_{\mathbb{S}^2}(n) = \frac{2 \cdot 3^n \cdot (2n)!}{n!(n+2)!}$ ([Tutte '60]);
- In general $m_{\mathcal{S}}(n) \sim c(\mathcal{S}) \cdot n^{-5/4 \cdot \chi(\mathcal{S})} \cdot 12^n$, where $c(\mathcal{S})$ is a constant ([Bender–Canfield '86]);

Direct combinatorial explanation:

• When $S = \mathbb{S}^2$: two important bijections with tree-like structures.

Rooted well-labeled trees [Cori-Vaquellin '81] + [Schaeffer '98]

Question: What is the number $m_{\mathcal{S}}(n)$ of maps with n edges on a surface \mathcal{S} ?

- When $S = \mathbb{S}^2$ is the sphere, then $m_{\mathbb{S}^2}(n) = \frac{2 \cdot 3^n \cdot (2n)!}{n!(n+2)!}$ ([Tutte '60]);
- In general $m_{\mathcal{S}}(n) \sim c(\mathcal{S}) \cdot n^{-5/4 \cdot \chi(\mathcal{S})} \cdot 12^n$, where $c(\mathcal{S})$ is a constant ([Bender–Canfield '86]);

Direct combinatorial explanation:

• When $S = \mathbb{S}^2$: two important bijections with tree-like structures.

Rooted well-labeled trees [Cori-Vaquellin '81] + [Schaeffer '98]

Question: What is the number $m_{\mathcal{S}}(n)$ of maps with n edges on a surface \mathcal{S} ?

- When $S = \mathbb{S}^2$ is the sphere, then $m_{\mathbb{S}^2}(n) = \frac{2 \cdot 3^n \cdot (2n)!}{n!(n+2)!}$ ([Tutte '60]);
- In general $m_{\mathcal{S}}(n) \sim c(\mathcal{S}) \cdot n^{-5/4 \cdot \chi(\mathcal{S})} \cdot 12^n$, where $c(\mathcal{S})$ is a constant ([Bender–Canfield '86]);

Direct combinatorial explanation:

• When $S = \mathbb{S}^2$: two important bijections with tree-like structures.

Rooted well-labeled trees [Cori-Vaquellin '81] + [Schaeffer '98]

Question: What is the number $m_{\mathcal{S}}(n)$ of maps with n edges on a surface \mathcal{S} ?

- When $S = \mathbb{S}^2$ is the sphere, then $m_{\mathbb{S}^2}(n) = \frac{2 \cdot 3^n \cdot (2n)!}{n!(n+2)!}$ ([Tutte '60]);
- In general $m_{\mathcal{S}}(n) \sim c(\mathcal{S}) \cdot n^{-5/4 \cdot \chi(\mathcal{S})} \cdot 12^n$, where $c(\mathcal{S})$ is a constant ([Bender–Canfield '86]);

Direct combinatorial explanation:

• When $S = \mathbb{S}^2$: two important bijections with tree-like structures.

Rooted well-labeled trees [Cori-Vaquellin '81] + [Schaeffer '98]

Balanced blossoming trees [Schaeffer '97]

Question: What is the number $m_{\mathcal{S}}(n)$ of maps with n edges on a surface \mathcal{S} ?

- When $S = \mathbb{S}^2$ is the sphere, then $m_{\mathbb{S}^2}(n) = \frac{2 \cdot 3^n \cdot (2n)!}{n!(n+2)!}$ ([Tutte '60]);
- In general $m_{\mathcal{S}}(n) \sim c(\mathcal{S}) \cdot n^{-5/4 \cdot \chi(\mathcal{S})} \cdot 12^n$, where $c(\mathcal{S})$ is a constant ([Bender–Canfield '86]);

Direct combinatorial explanation:

• When $S = \mathbb{S}^2$: two important bijections with tree-like structures.

Initial motivation:

- direct explanation of the simple formula of Tutte,
- better understanding of the structure of planar maps
- good way to generate maps

Map M is bipartite if vertices can be colored by two different colors $(V_{\bullet}(M)$ - set of black vertices, $V_{\circ}(M)$ - set of white vertices, the root vertex is black by convention) such that each edge connects two vertices of different colors.

Quadrangulation is a map with all faces of degree 4.

Map M is bipartite if vertices can be colored by two different colors $(V_{\bullet}(M)$ - set of black vertices, $V_{\circ}(M)$ - set of white vertices, the root vertex is black by convention) such that each edge connects two vertices of different colors.

Quadrangulation is a map with all faces of degree 4.

Theorem | Tutte 1960

- ullet the set of rooted maps on ${\mathcal S}$ with n edges, l vertices and k faces of degree
- $\lambda_1, \ldots, \lambda_k$,
 the set of rooted, bipartite quadrangulations on S with n faces, l black vertices and k white vertices of degree $\lambda_1, \ldots, \lambda_k$.

Map M is bipartite if vertices can be colored by two different colors $(V_{\bullet}(M)$ - set of black vertices, $V_{\circ}(M)$ - set of white vertices, the root vertex is black by convention) such that each edge connects two vertices of different colors.

Quadrangulation is a map with all faces of degree 4.

Theorem [Tutte 1960]

- ullet the set of rooted maps on ${\mathcal S}$ with n edges, l vertices and k faces of degree
- $\lambda_1, \ldots, \lambda_k$,
 the set of rooted, bipartite quadrangulations on S with n faces, l black vertices and k white vertices of degree $\lambda_1, \ldots, \lambda_k$.

Map M is bipartite if vertices can be colored by two different colors $(V_{\bullet}(M)$ - set of black vertices, $V_{\circ}(M)$ - set of white vertices, the root vertex is black by convention) such that each edge connects two vertices of different colors.

Quadrangulation is a map with all faces of degree 4.

Theorem Tutte 1960

- ullet the set of rooted maps on ${\mathcal S}$ with n edges, l vertices and k faces of degree
- $\lambda_1, \ldots, \lambda_k$,
 the set of rooted, bipartite quadrangulations on S with n faces, l black vertices and k white vertices of degree $\lambda_1, \ldots, \lambda_k$.

Map M is bipartite if vertices can be colored by two different colors $(V_{\bullet}(M)$ - set of black vertices, $V_{\circ}(M)$ - set of white vertices, the root vertex is black by convention) such that each edge connects two vertices of different colors.

Quadrangulation is a map with all faces of degree 4.

Theorem Tutte 1960

- ullet the set of rooted maps on ${\mathcal S}$ with n edges, l vertices and k faces of degree
- $\lambda_1, \ldots, \lambda_k$,
 the set of rooted, bipartite quadrangulations on S with n faces, l black vertices and k white vertices of degree $\lambda_1, \ldots, \lambda_k$.

Map M is bipartite if vertices can be colored by two different colors $(V_{\bullet}(M)$ - set of black vertices, $V_{\circ}(M)$ - set of white vertices, the root vertex is black by convention) such that each edge connects two vertices of different colors.

Quadrangulation is a map with all faces of degree 4.

Theorem [Tutte 1960]

- ullet the set of rooted maps on ${\mathcal S}$ with n edges, l vertices and k faces of degree
- $\lambda_1, \ldots, \lambda_k$,
 the set of rooted, bipartite quadrangulations on S with n faces, l black vertices and k white vertices of degree $\lambda_1, \ldots, \lambda_k$.

Map M is bipartite if vertices can be colored by two different colors $(V_{\bullet}(M)$ - set of black vertices, $V_{\circ}(M)$ - set of white vertices, the root vertex is black by convention) such that each edge connects two vertices of different colors.

Quadrangulation is a map with all faces of degree 4.

Theorem | Tutte 1960

- ullet the set of rooted maps on ${\mathcal S}$ with n edges, l vertices and k faces of degree
- $\lambda_1, \ldots, \lambda_k$,
 the set of rooted, bipartite quadrangulations on S with n faces, l black vertices and k white vertices of degree $\lambda_1, \ldots, \lambda_k$.

Map M is bipartite if vertices can be colored by two different colors $(V_{\bullet}(M)$ - set of black vertices, $V_{\circ}(M)$ - set of white vertices, the root vertex is black by convention) such that each edge connects two vertices of different colors.

Quadrangulation is a map with all faces of degree 4.

Theorem [Tutte 1960]

- ullet the set of rooted maps on ${\mathcal S}$ with n edges, l vertices and k faces of degree
- $\lambda_1, \ldots, \lambda_k$,
 the set of rooted, bipartite quadrangulations on S with n faces, l black vertices and k white vertices of degree $\lambda_1, \ldots, \lambda_k$.

Map M is bipartite if vertices can be colored by two different colors $(V_{\bullet}(M)$ - set of black vertices, $V_{\circ}(M)$ - set of white vertices, the root vertex is black by convention) such that each edge connects two vertices of different colors.

Quadrangulation is a map with all faces of degree 4.

Theorem Tutte 1960

- ullet the set of rooted maps on ${\mathcal S}$ with n edges, l vertices and k faces of degree
- $\lambda_1, \ldots, \lambda_k$,
 the set of rooted, bipartite quadrangulations on S with n faces, l black vertices and k white vertices of degree $\lambda_1, \ldots, \lambda_k$.

Map M is bipartite if vertices can be colored by two different colors $(V_{\bullet}(M)$ - set of black vertices, $V_{\circ}(M)$ - set of white vertices, the root vertex is black by convention) such that each edge connects two vertices of different colors.

Quadrangulation is a map with all faces of degree 4.

Theorem Tutte 1960

- ullet the set of rooted maps on ${\mathcal S}$ with n edges, l vertices and k faces of degree
- $\lambda_1, \ldots, \lambda_k$,
 the set of rooted, bipartite quadrangulations on S with n faces, l black vertices and k white vertices of degree $\lambda_1, \ldots, \lambda_k$.

Observation: labels \equiv metric structure of the quadrangulation

Theorem: [Felsner '04]
There is a unique
Eulerian orientation
(indegree=outdegree)
without clockwise
circuit

dual map = bipartite
quadrangulation

Observation: metric structure in the quadrangulation is again encoded by the blossoming tree!

local rule:

Observation: metric structure in the quadrangulation is again encoded by the blossoming tree!

New motivation

Find a bijection between maps and some objects with a WELL-UNDERSTOOD (tree-like) structure!

Understanding a geometry of a random surface:

- growing maps as a discrete model of a continuous manifold,
- metric geometry of a random surface = metric in a random map, when its size tends to infinity,
- bijection helps to understand a discrete surface as a metric space!

New motivation

Find a bijection between maps and some objects with a WELL-UNDERSTOOD (tree-like) structure!

Understanding a geometry of a random surface:

- growing maps as a discrete model of a continuous manifold,
- metric geometry of a random surface = metric in a random map, when its size tends to infinity,
- bijection helps to understand a discrete surface as a metric space!

planar generalizations of labeled-type bijections [Boutier-di Francesco-Guitter '04], [Ambjorn-Budd '13] Brownian map as a universal object for:

- quadrangulations [Le Gall '11
- + Miermont '11]
- 2p-angulations and traingulations [Le Gall '13]
- bipartite maps [Abraham '14]
- general maps

[Bettinelli-Jacob-Miermont '13]

• 2p + 1-angulations

[Addario-Berry-Albenque '19]

New motivation

Find a bijection between maps and some objects with a WELL-UNDERSTOOD (tree-like) structure!

Understanding a geometry of a random surface:

- growing maps as a discrete model of a continuous manifold,
- metric geometry of a random surface = metric in a random map, when its size tends to infinity,
- bijection helps to understand a discrete surface as a metric space!

planar generalizations of labeled-type bijections [Boutier-di Francesco-Guitter '04], [Ambjorn-Budd '13]

planar generalizations of blossoming-type bijections [Bousquet-Mellou-Schaeffer '00], [Poulalhon-Schaeffer '05], [Fusy '07], [Bernardi-Fusy '10], [Fusy-Poulalhon-Schaeffer '09], [Bernardi-Collet-Fusy '14], [Albenque-Poulalhon '15]

Brownian map as a universal object for:

- quadrangulations [Le Gall '11
- + Miermont '11]
- 2p-angulations and traingulations [Le Gall '13]
- bipartite maps [Abraham '14]
- general maps

[Bettinelli-Jacob-Miermont '13]

[Addario-Berry-Albenque '19]

• simple triangulations and simple quadrangulations [Addario-Berry-Albenque '13]

• simple maps

[Albenque-Bernardi-Collet-Fusy '14]

II. Bijections for bipartite quadrangulations and labeled tree-like structures

A map is called labeled if its vertices are labeled by integers such that:

- the root vertex has label 1;
- if two vertices are linked by an edge, their labels differ by at most 1.

If in addition we have:

• all the vertex labels are positive,

then the map is called well-labeled.

A map is called labeled if its vertices are labeled by integers such that:

- the root vertex has label 1;
- if two vertices are linked by an edge, their labels differ by at most 1.

If in addition we have:

• all the vertex labels are positive, then the map is called well-labeled.

A map is called labeled if its vertices are labeled by integers such that:

- the root vertex has label 1;
- if two vertices are linked by an edge, their labels differ by at most 1.

If in addition we have:

• all the vertex labels are positive, then the map is called well-labeled.

labeled map on the torus

A map is called labeled if its vertices are labeled by integers such that:

- the root vertex has label 1;
- if two vertices are linked by an edge, their labels differ by at most 1.

If in addition we have:

• all the vertex labels are positive, then the map is called well-labeled.

well-labeled map on the torus

Theorem | Marcus–Schaeffer '98

- rooted, bipartite quadrangulations on ORIENTABLE surface S with n faces and N_i vertices at distance i from the root vertex ($i \ge 1$);
- rooted, one-face, well-labeled maps on ORIENTABLE surface S with n edges and N_i vertices of label i ($i \ge 1$);

Theorem | Marcus–Schaeffer '98

- rooted, bipartite quadrangulations on ORIENTABLE surface S with n faces and N_i vertices at distance i from the root vertex ($i \ge 1$);
- rooted, one-face, well-labeled maps on ORIENTABLE surface S with n edges and N_i vertices of label i ($i \ge 1$);

Theorem | Marcus–Schaeffer '98

- rooted, bipartite quadrangulations on ORIENTABLE surface S with n faces and N_i vertices at distance i from the root vertex ($i \ge 1$);
- rooted, one-face, well-labeled maps on ORIENTABLE surface S with n edges and N_i vertices of label i ($i \ge 1$);

Theorem | Marcus–Schaeffer '98

- rooted, bipartite quadrangulations on ORIENTABLE surface S with n faces and N_i vertices at distance i from the root vertex ($i \ge 1$);
- rooted, one-face, well-labeled maps on ORIENTABLE surface S with n edges and N_i vertices of label i ($i \ge 1$);

Theorem | Marcus–Schaeffer '98

- rooted, bipartite quadrangulations on ORIENTABLE surface S with n faces and N_i vertices at distance i from the root vertex ($i \ge 1$);
- rooted, one-face, well-labeled maps on ORIENTABLE surface S with n edges and N_i vertices of label i ($i \ge 1$);

Theorem | Marcus–Schaeffer '98

- rooted, bipartite quadrangulations on ORIENTABLE surface S with n faces and N_i vertices at distance i from the root vertex $(i \ge 1)$;
- rooted, one-face, well-labeled maps on ORIENTABLE surface S with n edges and N_i vertices of label i ($i \ge 1$);

Theorem | Marcus–Schaeffer '98

- rooted, bipartite quadrangulations on ORIENTABLE surface S with n faces and N_i vertices at distance i from the root vertex ($i \ge 1$);
- rooted, one-face, well-labeled maps on ORIENTABLE surface S with n edges and N_i vertices of label i ($i \ge 1$);

Theorem | Marcus–Schaeffer '98|

- rooted, bipartite quadrangulations on ORIENTABLE surface S with n faces and N_i vertices at distance i from the root vertex ($i \ge 1$);
- rooted, one-face, well-labeled maps on ORIENTABLE surface S with n edges and N_i vertices of label i ($i \ge 1$);

Theorem | Marcus–Schaeffer '98

- rooted, bipartite quadrangulations on ORIENTABLE surface S with n faces and N_i vertices at distance i from the root vertex ($i \ge 1$);
- rooted, one-face, well-labeled maps on ORIENTABLE surface S with n edges and N_i vertices of label i ($i \ge 1$);

Theorem | Marcus–Schaeffer '98

There exists a bijection between:

- rooted, bipartite quadrangulations on ORIENTABLE surface S with n faces and N_i vertices at distance i from the root vertex $(i \ge 1)$;
- rooted, one-face, well-labeled maps on ORIENTABLE surface S with n edges and N_i vertices of label i ($i \ge 1$);

Are **non-orientable** maps different?

Theorem | Chapuy-D. '15

- rooted, bipartite quadrangulations on ANY NON-ORIENTED surface S with n faces and N_i vertices at distance i from the root vertex ($i \ge 1$);
- rooted, one-face, well-labeled maps on ANY NON-ORIENTED surface S with n edges and N_i vertices of label i ($i \ge 1$);

Theorem | Chapuy-D. '15

There exists a bijection between:

- rooted, bipartite quadrangulations on ANY NON-ORIENTED surface S with n faces and N_i vertices at distance i from the root vertex ($i \ge 1$);
- rooted, one-face, well-labeled maps on ANY NON-ORIENTED surface S with n edges and N_i vertices of label i ($i \ge 1$);

Idea of how to extend Marcus-Schaeffer bijection:

• local rules are the same,

Theorem [Chapuy-D. '15]

There exists a bijection between:

- rooted, bipartite quadrangulations on ANY NON-ORIENTED surface S with n faces and N_i vertices at distance i from the root vertex ($i \ge 1$);
- rooted, one-face, well-labeled maps on ANY NON-ORIENTED surface S with n edges and N_i vertices of label i ($i \ge 1$);

Idea of how to extend Marcus-Schaeffer bijection:

• local rules are the same,

Theorem [Chapuy-D. '15]

There exists a bijection between:

- rooted, bipartite quadrangulations on ANY NON-ORIENTED surface S with n faces and N_i vertices at distance i from the root vertex ($i \ge 1$);
- rooted, one-face, well-labeled maps on ANY NON-ORIENTED surface S with n edges and N_i vertices of label i ($i \ge 1$);

- local rules are the same,
- the resulting red map is unicellular

Theorem [Chapuy-D. '15]

There exists a bijection between:

- rooted, bipartite quadrangulations on ANY NON-ORIENTED surface S with n faces and N_i vertices at distance i from the root vertex ($i \ge 1$);
- rooted, one-face, well-labeled maps on ANY NON-ORIENTED surface S with n edges and N_i vertices of label i ($i \ge 1$);

- local rules are the same,
- the resulting red map is unicellular = dual graph has a tree-like structure,

Theorem [Chapuy-D. '15]

There exists a bijection between:

- rooted, bipartite quadrangulations on ANY NON-ORIENTED surface S with n faces and N_i vertices at distance i from the root vertex ($i \ge 1$);
- ullet rooted, one-face, well-labeled maps on ANY NON-ORIENTED surface ${\mathcal S}$ with n edges and N_i vertices of label i ($i \geq 1$);

- local rules are the same,
- the resulting red map is unicellular. For a given quadrangulation we are going to construct a blue tree-like graph (with these local rules)!

Theorem [Chapuy-D. '15]

There exists a bijection between:

- rooted, bipartite quadrangulations on ANY NON-ORIENTED surface S with n faces and N_i vertices at distance i from the root vertex ($i \ge 1$);
- rooted, one-face, well-labeled maps on ANY NON-ORIENTED surface S with n edges and N_i vertices of label i ($i \ge 1$);

- local rules are the same,
- the resulting red map is unicellular. For a given quadrangulation we are going to construct a blue tree-like graph (with these local rules)!
- position of blue and black edges forces the position of red edges,

General case

Theorem [Chapuy-D. '15]

There exists a bijection between:

- rooted, bipartite quadrangulations on ANY NON-ORIENTED surface S with n faces and N_i vertices at distance i from the root vertex ($i \ge 1$);
- ullet rooted, one-face, well-labeled maps on ANY NON-ORIENTED surface ${\mathcal S}$ with n edges and N_i vertices of label i ($i \geq 1$);

Idea of how to extend Marcus-Schaeffer bijection:

- local rules are the same,
- the resulting red map is unicellular. For a given quadrangulation we are going to construct a blue tree-like graph (with these local rules)!
- position of blue and black edges forces the position of red edges,

General case

Theorem | Chapuy-D. '15

There exists a bijection between:

- rooted, bipartite quadrangulations on ANY NON-ORIENTED surface S with n faces and N_i vertices at distance i from the root vertex ($i \ge 1$);
- ullet rooted, one-face, well-labeled maps on ANY NON-ORIENTED surface ${\mathcal S}$ with n edges and N_i vertices of label i ($i \geq 1$);

Idea of how to extend Marcus-Schaeffer bijection:

- local rules are the same,
- the resulting red map is unicellular. For a given quadrangulation we are going to construct a blue tree-like graph (with these local rules)!
- If the construction of blue graph is local then it is invertible and it leads to
 BIJECTION!

General case (II)

General case (II)

```
{rooted, bipartite quadrangulations on S with n faces and N_i vertices
             at distance i from the root vertex (i \ge 1)
{rooted, WELL-LABELED, one-face maps on S with n edges and N_i
                      vertices of label i \ (i \ge 1)
{rooted, POINTED bipartite quadrangulations on S with n faces and
      N_i vertices at distance i from the pointed vertex (i \ge 1)
    {rooted, LABELED, one-face maps on S equipped with a sign
     \epsilon \in \{+, -\} with N_i vertices of label i + (\ell_{min} - 1)(i \ge 1)
```

General case (II)

{rooted, POINTED bipartite quadrangulations on S with n faces and N_i vertices at distance i from the pointed vertex $(i \ge 1)$ }

{rooted, LABELED, one-face maps on S equipped with a sign $\epsilon \in \{+, -\}$ with N_i vertices of label $i + (\ell_{min} - 1)(i \ge 1)$ }

Double rooting trick and Hall's marriage theorem!

Random maps

Let (\mathcal{M}, v) be a map with a distinguished vertex v. We define:

ullet radius of a map ${\mathcal M}$ centered at v by the quantity

$$R(\mathcal{M}, v) = \max_{u \in V(\mathcal{M})} d_{\mathcal{M}}(v, u);$$

• profile of distances from the distinguished point v (for any r > 0) by:

$$I_{(\mathcal{M},v)}(r) = \#\{u \in V(\mathcal{M}) : d_{\mathcal{M}}(v,u) = r\}.$$

Random maps

Let (\mathcal{M}, v) be a map with a distinguished vertex v. We define:

ullet radius of a map ${\mathcal M}$ centered at v by the quantity

$$R(\mathcal{M}, v) = \max_{u \in V(\mathcal{M})} d_{\mathcal{M}}(v, u);$$

• profile of distances from the distinguished point v (for any r > 0) by:

$$I_{(\mathcal{M},v)}(r) = \#\{u \in V(\mathcal{M}) : d_{\mathcal{M}}(v,u) = r\}.$$

Theorem [Chapuy-D. '15]

Let q_n be uniformly distributed over the set of rooted, bipartite quadrangulations with n faces on \mathcal{S} , let v_0 be a root vertex of q_n and let v_* be uniformly chosen vertex of q_n . Then, there exists a continuous, stochastic process $L^{\mathcal{S}} = (L_t^{\mathcal{S}}, 0 \le t \le 1)$ such that:

$$\bullet(\frac{9}{8n})^{1/4}R(q_n,v_*)\to \sup L^{\mathcal{S}}-\inf L^{\mathcal{S}};$$

$$\bullet (\frac{9}{8n})^{1/4} d_{q_n}(v_0, v_*) \to \sup L^{\mathcal{S}};$$

$$\bullet^{\frac{I_{(q_n,v_*)}\left((8n/9)^{1/4}\cdot\right)}{n+2-2h}}\to\mathcal{I}^{\mathcal{S}},$$

where $\mathcal{I}^{\mathcal{S}}$ is defined as follows: for every non-negative, measurable $g: \mathbb{R}_+ \to \mathbb{R}_+$,

$$\langle \mathcal{I}^{\mathcal{S}}, g \rangle = \int_0^1 dt g(L_t^{\mathcal{S}} - \inf L^{\mathcal{S}}).$$

Generalization by Bettinelli

• [Bettinelli '15] rephrased our orientation process of a quadrangulation (given by the Dual Exploration Graph) in terms of level loops.

direct construction of a bijection between pointed quadrangulations and labeled unicellular maps on a non-oriented surface \mathcal{S}

extension to arbitrary bipartite (and finally not necessarily bipartite - more technical) maps on a non-oriented surface \mathcal{S} . Bijection with so-called well-labeled unicellular mobiles on \mathcal{S} .

Generalization by Bettinelli

• [Bettinelli '15] rephrased our orientation process of a quadrangulation (given by the Dual Exploration Graph) in terms of level loops.

direct construction of a bijection between pointed quadrangulations and labeled unicellular maps on a non-oriented surface \mathcal{S}

extension to arbitrary bipartite (and finally not necessarily bipartite - more technical) maps on a non-oriented surface \mathcal{S} . Bijection with so-called well-labeled unicellular mobiles on \mathcal{S} .

Applications: Enumeration of triangulations of any non-oriented surface S.

III Bijections for bipartite maps and blossoming tree-like structures

Idea

• In the planar case the crucial idea was to use the set of **Eulerian** orientations and rely on the fact that it is a lattice. In positive genus: Eulerian maps \neq Bicolorable maps (Bicolorable maps = dual to bipartite maps)

• The set of bicolorable orientations (of a fixed graph) is a lattice [Propp '93]. [Lepoutre '17] used it to extend Schaeffer bijection to all orientable surfaces. Ideas still heavily rely on clockwise/counterclockwise circuits. New ideas:

- try to cut your map using a canonical spanning tree
- redefine blossoming maps

A map is called blossoming if it has additional half-edges (stems):

buds ↑leafs ▼

A map is called blossoming if it has additional half-edges (stems):

- budsleafs

The corner labeling of the one-face blossoming map:

- root corner label = 0 walk around your face and label according to

A map is called blossoming if it has additional half-edges (stems):

- budsleafs

The corner labeling of the one-face blossoming map:

- root corner label = 0 walk around your face and label according to

A map is called blossoming if it has additional half-edges (stems):

- budsleafs

The corner labeling of the one-face blossoming map:

- root corner label = 0 walk around your face and label according to

A map is called blossoming if it has additional half-edges (stems):

- buds ↑leafs ▼

- The corner labeling of the one-face blossoming map:
- root corner label = 0
 walk around your face and label according to
- A map is well-blossoming if it has one-face and
- it is bud-rooted

A map is called blossoming if it has additional half-edges (stems):

- buds ↑leafs ▼
- The corner labeling of the one-face blossoming map:

- root corner label = 0
 walk around your face and label according to
- A map is well-blossoming if it has one-face and
- it is bud-rooted

A map is called blossoming if it has additional half-edges (stems):

- buds ↑leafs ▼

The corner labeling of the one-face blossoming map:

- root corner label = 0
 walk around your face and label according to A map is well-blossoming if it has one-face and
- it is bud-rooted

A map is called blossoming if it has additional half-edges (stems):

- buds ↑leafs ▼

- The corner labeling of the one-face blossoming map:
- root corner label = 0
 walk around your face and label according to
- A map is well-blossoming if it has one-face and
- it is bud-rooted

Bijection

Theorem | D.-Lepoutre '20|

There exists a bijection between:

- rooted, bipartite, pointed maps on ANY NON-ORIENTED surface S with n_{\bullet} black vertices, n_{\circ} white vertices, and n_k faces of degree 2k ($k \geq 1$);
- well-blossoming maps on ANY NON-ORIENTED surface S with $n_{\bullet}-1$ black buds, n_{\circ} white buds and and n_k vertices of degree 2k $(k \geq 1)$;

Additionally, distances from the distinguished point correspond to the corner labeling.

$$2i-1$$
 $2i$ $2i$ $2i$ $2i-1$ $2i+1$ $2i+1$ $2i+1$ $2i$ black white stems

Bijection

Theorem | D.-Lepoutre '20|

There exists a bijection between:

- rooted, bipartite, pointed maps on ANY NON-ORIENTED surface S with n_{\bullet} black vertices, n_{\circ} white vertices, and n_k faces of degree 2k ($k \geq 1$);
- well-blossoming maps on ANY NON-ORIENTED surface S with $n_{\bullet}-1$ black buds, n_{\circ} white buds and and n_k vertices of degree 2k ($k \geq 1$);

Additionally, distances from the distinguished point correspond to the corner labeling.

$$2i-1$$
 $2i$ $2i$ $2i-1$ $2i+1$ $2i+1$ $2i+1$ $2i$ black white stems

How does it work?

Bijection (II)

• label the distances from the distiguished point

- label the distances from the distiguished point
- Lemma: There exists a unique geodesic tree (the distances in the tree ≡ the distances in the initial map), whose contour word is maximal in lexicographic order.

draw the dual map

- label the distances from the distiguished point
- Lemma: There exists a unique geodesic tree (the distances in the tree ≡ the distances in the initial map), whose contour word is maximal in lexicographic order.

draw the dual map

- label the distances from the distiguished point
- Lemma: There exists a unique geodesic tree (the distances in the tree ≡ the distances in the initial map), whose contour word is maximal in lexicographic order.

draw the dual map

finish the
 blossoming map
 by the local rule

- label the distances from the distiguished point
- Lemma: There exists a unique geodesic tree (the distances in the tree ≡ the distances in the initial map), whose contour word is maximal in lexicographic order.

draw the dual map

finish the
 blossoming map
 by the local rule

- label the distances from the distiguished point
- Lemma: There exists a unique geodesic tree (the distances in the tree ≡ the distances in the initial map), whose contour word is maximal in lexicographic order.

draw the dual map

finish the blossoming map by the local rule

- label the distances from the distiguished point
- Lemma: There exists a unique geodesic tree (the distances in the tree ≡ the distances in the initial map), whose contour word is maximal in lexicographic order.

draw the dual map

finish the
 blossoming map
 by the local rule

- label the distances from the distiguished point
- Lemma: There exists a unique geodesic tree (the distances in the tree ≡ the distances in the initial map), whose contour word is maximal in lexicographic order.

draw the dual map

finish the
 blossoming map
 by the local rule

$$i \uparrow i + 1$$

- label the distances from the distiguished point
- Lemma: There exists a unique geodesic tree (the distances in the tree ≡ the distances in the initial map), whose contour word is maximal in lexicographic order.

draw the dual map

finish the
 blossoming map
 by the local rule

- label the distances from the distiguished point
- Lemma: There exists a unique geodesic tree (the distances in the tree ≡ the distances in the initial map), whose contour word is maximal in lexicographic order.

Theorem | Bender-Canfield '86

Let

$$BQ_{\mathcal{S}}(t) := \sum_{M \in \mathcal{BQ}_{\mathcal{S}}} t^{\chi(\mathcal{S}) + \text{number of faces of M}}$$

be the univariate generating function of rooted bipartite quadrangulations of \mathcal{S} . Moreover let $U\equiv U(t)$ and $T\equiv T(t)$ be the two formal power series defined by: $T=1+3tT^2, \qquad U=tT^2(1+U+U^2)$. Then $BQ_{\mathcal{S}}(t)$ is a rational function in U.

Theorem | Bender-Canfield '86

Let

$$BQ_{\mathcal{S}}(t) := \sum_{M \in \mathcal{BQ}_{\mathcal{S}}} t^{\chi(\mathcal{S}) + \text{number of faces of M}}$$

be the univariate generating function of rooted bipartite quadrangulations of \mathcal{S} . Moreover let $U\equiv U(t)$ and $T\equiv T(t)$ be the two formal power series defined by: $T=1+3tT^2, \qquad U=tT^2(1+U+U^2)$. Then $BQ_{\mathcal{S}}(t)$ is a rational function in U.

a consequence of our labeled bijection [Chapuy–D. '15]

Theorem [Bender–Canfield '91]

Let

$$BQ_{\mathcal{S}}(t) := \sum_{M \in \mathcal{BQ}_{\mathcal{S}}} t^{\chi(\mathcal{S}) + \text{number of faces of M}}$$

be the univariate generating function of rooted bipartite quadrangulations of an orientable surface S. Then $BQ_S(t)$ is a rational function in $\sqrt{1-12t}$.

a consequence of the blossoming bijection [Lepoutre '17] also a consequence of the topological recursion [Eynard—Orantin '07]

Theorem [Bender–Canfield–Richmond '93 (orientable) Arques–Giorgetti '00 (non-oriented)]

Let

$$BQ_{\mathcal{S}}(x,y) := \sum_{M \in \mathcal{BQ}_{\mathcal{S}}} x^{n_{\bullet}(M)} y^{n_{\circ}(M)}$$

be the bivariate generating function of rooted bipartite quadrangulations of a

surface ${\cal S}$. Let

$$t_{\bullet} = x + 2t_{\bullet}t_{\circ} + t_{\bullet}^{2}$$

$$t_{\circ} = y + 2t_{\bullet}t_{\circ} + t_{\circ}^{2}$$

$$a = \sqrt{(1 - 2(t_{\bullet} + t_{\circ}))^{2} - 4t_{\bullet}t_{\circ}}.$$

Then there exists a polynomial $P_{\mathcal{S}}(t_{\bullet},t_{\circ},a)$ of degree $\leq 3-3\chi(\mathcal{S})$ such that

$$BQ_{\mathcal{S}}(x,y) = \frac{P_{\mathcal{S}}(t_{\bullet}, t_{\circ}, a)}{a^{4-5\chi(\mathcal{S})}}.$$

Moreover $\deg_a(P_{\mathcal{S}}) = 0$ when \mathcal{S} is orientable.

a consequence of the blossoming bijection [D.–Lepoutre '20] (orientable case worked out by [Albenque–Lepoutre '20])

THANK YOU!

References:

arXiv:1501.06942

arXiv:1512.02208

arXiv:2002.07238