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Enumeration of maps...

Question: What is the number mS(n) of maps with n edges on a surface S?

• When S = S2 is the sphere, then mS2(n) =
2·3n·(2n)!
n!(n+2)! ([Tutte ’60]);

• In general mS(n) ∼ c(S) · n−5/4·χ(S) · 12n, where c(S) is a constant
([Bender–Canfield ’86]);

Direct combinatorial explanation:

• When S = S2: two important bijections with tree-like structures.

• direct explanation of the simple
formula of Tutte,
• better understanding of the structure
of planar maps
• good way to generate maps

Initial motivation:
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How these bijections work

Theorem: [Felsner ’04]
There is a unique
Eulerian orientation
(indegree=outdegree)
without clockwise
circuit
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space!
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Brownian map as a
universal object for:

• quadrangulations [Le Gall ’11
+ Miermont ’11]
• 2p-angulations and
traingulations [Le Gall ’13]
• bipartite maps [Abraham ’14]

planar generalizations of blossoming-type
bijections [Bousquet-Mellou–Schaeffer
’00], [Poulalhon–Schaeffer ’05], [Fusy
’07], [Bernardi–Fusy ’10],
[Fusy–Poulalhon–Schaeffer ’09],
[Bernardi–Collet–Fusy ’14],
[Albenque–Poulalhon ’15]

• simple triangulations and
simple quadrangulations
[Addario-Berry–Albenque ’13]
• simple maps
[Albenque–Bernardi–Collet–Fusy
’14]

• general maps
[Bettinelli–Jacob–Miermont ’13]
• 2p + 1-angulations
[Addario-Berry–Albenque ’19]
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Labeled and well-labeled maps

A map is called labeled if its vertices are labeled by integers such that:
• the root vertex has label 1;
• if two vertices are linked by an edge, their labels differ by at most 1.

If in addition we have:
• all the vertex labels are positive,

then the map is called well-labeled.
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Theorem [Chapuy–D. ’15]
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• rooted, one-face, well-labeled maps on ANY NON-ORIENTED surface S
with n edges and Ni vertices of label i (i ≥ 1);
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Idea of how to extend Marcus-Schaeffer bijection:
• local rules are the same,

• rooted, bipartite quadrangulations on ANY NON-ORIENTED surface S
with n faces and Ni vertices at distance i from the root vertex (i ≥ 1);
• rooted, one-face, well-labeled maps on ANY NON-ORIENTED surface S
with n edges and Ni vertices of label i (i ≥ 1);

i− 1
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i− 1 i

• the resulting red map is unicellular. For a given quadrangulation we are
going to construct a blue tree-like graph (with these local rules)!
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General case

Theorem [Chapuy–D. ’15]
There exists a bijection between:

Idea of how to extend Marcus-Schaeffer bijection:
• local rules are the same,

• rooted, bipartite quadrangulations on ANY NON-ORIENTED surface S
with n faces and Ni vertices at distance i from the root vertex (i ≥ 1);
• rooted, one-face, well-labeled maps on ANY NON-ORIENTED surface S
with n edges and Ni vertices of label i (i ≥ 1);

i− 1

i− 1

i− 1 i

• the resulting red map is unicellular. For a given quadrangulation we are
going to construct a blue tree-like graph (with these local rules)!

i

i i i+1

• If the construction of blue graph is local then it is invertible and it leads to
a BIJECTION!



General case (II)

{rooted, bipartite quadrangulations on S with n faces and Ni vertices
at distance i from the root vertex (i ≥ 1)}

↔
{rooted, WELL-LABELED, one-face maps on S with n edges and Ni

vertices of label i (i ≥ 1)}



General case (II)

⇓

{rooted, POINTED bipartite quadrangulations on S with n faces and
Ni vertices at distance i from the pointed vertex (i ≥ 1)}

↔
{rooted, LABELED, one-face maps on S equipped with a sign
ε ∈ {+,−} with Ni vertices of label i+ (`min − 1)(i ≥ 1)}

{rooted, bipartite quadrangulations on S with n faces and Ni vertices
at distance i from the root vertex (i ≥ 1)}

↔
{rooted, WELL-LABELED, one-face maps on S with n edges and Ni

vertices of label i (i ≥ 1)}



General case (II)

⇓

{rooted, POINTED bipartite quadrangulations on S with n faces and
Ni vertices at distance i from the pointed vertex (i ≥ 1)}

↔
{rooted, LABELED, one-face maps on S equipped with a sign
ε ∈ {+,−} with Ni vertices of label i+ (`min − 1)(i ≥ 1)}

Double rooting trick and Hall’s marriage theorem!

{rooted, bipartite quadrangulations on S with n faces and Ni vertices
at distance i from the root vertex (i ≥ 1)}

↔
{rooted, WELL-LABELED, one-face maps on S with n edges and Ni

vertices of label i (i ≥ 1)}



Random maps

Let (M, v) be a map with a distinguished vertex v. We define:
• radius of a mapM centered at v by the quantity

R(M, v) = maxu∈V (M) dM(v, u);
• profile of distances from the distinguished point v (for any r > 0) by:

I(M,v)(r) = #{u ∈ V (M) : dM(v, u) = r}.



Random maps

Let (M, v) be a map with a distinguished vertex v. We define:
• radius of a mapM centered at v by the quantity

R(M, v) = maxu∈V (M) dM(v, u);
• profile of distances from the distinguished point v (for any r > 0) by:

I(M,v)(r) = #{u ∈ V (M) : dM(v, u) = r}.

Theorem [Chapuy–D. ’15]
Let qn be uniformly distributed over the set of rooted, bipartite
quadrangulations with n faces on S, let v0 be a root vertex of qn and let v∗
be uniformly chosen vertex of qn. Then, there exists a continuous, stochastic
process LS = (LSt , 0 ≤ t ≤ 1) such that:

•( 9
8n )

1/4R(qn, v∗)→ supLS − inf LS ;

•( 9
8n )

1/4dqn(v0, v∗)→ supLS ;

• I(qn,v∗)((8n/9)
1/4·)

n+2−2h → IS ,
where IS is defined as follows: for every non-negative, measurable
g : R+ → R+,

〈IS , g〉 =
∫ 1

0
dtg(LSt − inf LS).



Generalization by Bettinelli

• [Bettinelli ’15] rephrased our orientation process of a quadrangulation
(given by the Dual Exploration Graph) in terms of level loops.

direct construction of a bijection
between pointed

quadrangulations and labeled
unicellular maps on a
non-oriented surface S

extension to arbitrary bipartite
(and finally not necessarily

bipartite - more technical) maps
on a non-oriented surface S.

Bijection with so-called
well-labeled unicellular mobiles

on S.



Generalization by Bettinelli

• [Bettinelli ’15] rephrased our orientation process of a quadrangulation
(given by the Dual Exploration Graph) in terms of level loops.

direct construction of a bijection
between pointed

quadrangulations and labeled
unicellular maps on a
non-oriented surface S

extension to arbitrary bipartite
(and finally not necessarily

bipartite - more technical) maps
on a non-oriented surface S.

Bijection with so-called
well-labeled unicellular mobiles

on S.

Applications: Enumeration of triangulations of any non-oriented surface S.



III Bijections for bipartite maps
and blossoming tree-like

structures



Idea

• In the planar case the crucial idea was to use the set of Eulerian
orientations and rely on the fact that it is a lattice. In positive genus:
Eulerian maps 6= Bicolorable maps (Bicolorable maps = dual to bipartite maps)

• The set of bicolorable orientations (of a fixed graph) is a lattice [Propp ’93].
[Lepoutre ’17] used it to extend Schaeffer bijection to all orientable surfaces.
Ideas still heavily rely on clockwise/counterclockwise circuits. New ideas:

• try to cut your map using a canonical spanning tree

• redefine blossoming maps



Blossoming and well-blossoming maps

A map is called blossoming if it has additional half-edges (stems):
• buds • leafs



Blossoming and well-blossoming maps

A map is called blossoming if it has additional half-edges (stems):
• buds • leafs

0

The corner labeling of the one-face blossoming map:
• root corner label = 0 • walk around your face and label according to

i + 1 i

i + 1i



Blossoming and well-blossoming maps

A map is called blossoming if it has additional half-edges (stems):
• buds • leafs

0

1

The corner labeling of the one-face blossoming map:
• root corner label = 0 • walk around your face and label according to

i + 1 i

i + 1i



Blossoming and well-blossoming maps

A map is called blossoming if it has additional half-edges (stems):
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Blossoming and well-blossoming maps

A map is called blossoming if it has additional half-edges (stems):
• buds • leafs
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The corner labeling of the one-face blossoming map:
• root corner label = 0 • walk around your face and label according to

i + 1 i

i + 1iA map is well-blossoming if it has one-face and
• it is bud-rooted • the first/second visited side of an edge has label i+ 1/i
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Blossoming and well-blossoming maps

A map is called blossoming if it has additional half-edges (stems):
• buds • leafs

The corner labeling of the one-face blossoming map:
• root corner label = 0 • walk around your face and label according to

i + 1 i

i + 1iA map is well-blossoming if it has one-face and
• it is bud-rooted • the first/second visited side of an edge has label i+ 1/i

i i
i + 1 i + 1

1
0

0 1



Bijection

Theorem [D.–Lepoutre ’20]
There exists a bijection between:
• rooted, bipartite, pointed maps on ANY NON-ORIENTED surface S with
n• black vertices, n◦ white vertices, and nk faces of degree 2k (k ≥ 1);
• well-blossoming maps on ANY NON-ORIENTED surface S with n• − 1
black buds, n◦ white buds and and nk vertices of degree 2k (k ≥ 1);

Additionally, distances from the distinguished point correspond to the corner
labeling.

2i− 1 2i 2i− 12i 2i 2i+1 2i2i+1

black
stems

white
stems



Bijection

Theorem [D.–Lepoutre ’20]
There exists a bijection between:
• rooted, bipartite, pointed maps on ANY NON-ORIENTED surface S with
n• black vertices, n◦ white vertices, and nk faces of degree 2k (k ≥ 1);
• well-blossoming maps on ANY NON-ORIENTED surface S with n• − 1
black buds, n◦ white buds and and nk vertices of degree 2k (k ≥ 1);

Additionally, distances from the distinguished point correspond to the corner
labeling.
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How does it work?
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Consequences

be the univariate generating function of rooted bipartite quadrangulations of
S. Moreover let U ≡ U(t) and T ≡ T (t) be the two formal power series
defined by: T = 1 + 3tT 2, U = tT 2(1 + U + U2). Then BQS(t) is a
rational function in U .

Theorem [Bender–Canfield ’86]
Let

BQS(t) :=
∑
M∈BQS t

χ(S)+number of faces of M
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be the univariate generating function of rooted bipartite quadrangulations of
S. Moreover let U ≡ U(t) and T ≡ T (t) be the two formal power series
defined by: T = 1 + 3tT 2, U = tT 2(1 + U + U2). Then BQS(t) is a
rational function in U .

Theorem [Bender–Canfield ’86]
Let

BQS(t) :=
∑
M∈BQS t

χ(S)+number of faces of M

a consequence of our
labeled bijection
[Chapuy–D. ’15]



Consequences

be the univariate generating function of rooted bipartite quadrangulations of
an orientable surface S. Then BQS(t) is a rational function in

√
1− 12t.

Theorem [Bender–Canfield ’91]
Let

BQS(t) :=
∑
M∈BQS t

χ(S)+number of faces of M

a consequence of the
blossoming bijection
[Lepoutre ’17]

also a consequence of the
topological recursion
[Eynard–Orantin ’07]



Consequences

be the bivariate generating function of rooted bipartite quadrangulations of a
surface S. Let

Theorem [Bender–Canfield–Richmond ’93 (orientable) Arques–Giorgetti ’00
(non-oriented)]
Let BQS(x, y) :=

∑
M∈BQS x

n•(M)yn◦(M)

a consequence of the
blossoming bijection
[D.–Lepoutre ’20]
(orientable case worked
out by
[Albenque–Lepoutre ’20])

t• = x+ 2t•t◦ + t2•

t◦ = y + 2t•t◦ + t2◦

a =
√

(1− 2(t• + t◦))2 − 4t•t◦.

Then there exists a polynomial PS(t•, t◦, a) of degree ≤ 3− 3χ(S) such that

BQS(x, y) =
PS(t•, t◦, a)

a4−5χ(S)
.

Moreover dega(PS) = 0 when S is orientable.
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