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Problem

Definition
A partition π of the integer n
(π ` n, or π ∈ Pn): a finite
non-increasing sequence of positive
integers π1 ≥ π2 ≥ · · · ≥ πk , such
that |π| :=

∑
i πi = n;

Graphical representation by a
Young diagram of size n.

Problem
β-ensembles: the probability distributions on Rn with the density of the
form

p(x1, . . . , xn) =
1
Z
eV (x1)+···+V (xn)

∏
i<j

|xi − xj |β ,

where V is some real-valued function and Z is the normalization
constant. What is the discrete counterpart of β-ensambles?
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Problem

Example

π = (7, 7, 4, 4, 2) ` 24,
Representem by a Young diagram λ
with `(λ) = 5 rows.

λ1

λ2

λ3

λ4

λ5
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Solution

There seems to be no obvious unique way of defining the discrete
counterpart of β-ensambles.
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counterpart of β-ensambles.

Several alternative approaches are available, see for example
approaches recently proposed by Borodin, Gorin and Guionnet, or by
Moll.
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Solution

There seems to be no obvious unique way of defining the discrete
counterpart of β-ensambles.

Several alternative approaches are available, see for example
approaches recently proposed by Borodin, Gorin and Guionnet, or by
Moll.

We propose different approach which produces measures with many
desirable asymptotic properties and allows to study the
double-scaling limit.
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Examples and the representation theory I

ρn - a representation of the symmetric group Sn defines a probability
measure Pn on the set of Young diagrams Yn in the following way:

χn(π) :=
Tr ρn(π)

Tr ρn(id)
=
∑
λ∈Yn

Pn(λ)χλ(π)

for each π ∈ Sn, where χλ is an irreducible character, i.e.

χλ(π) :=
Tr ρλ(π)

Tr ρλ(id)
,

where ρλ - irreducible representation of Sn.

More generally, we call χ : Pn → R a reducible character, if it is a convex
combination of irreducible characters.
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Examples and the representation theory II

Example

Plancherel measure

χ(π) :=

{
1 if π = 1n,
0 otherwise

↔ Pχ(λ) :=
(dim ρλ)2

n!

Schur-Weyl measure

χ(π) := N`(π)−|π| ↔ Pχ(λ) :=
dimEλ
Nn

,

where (CN)⊗n =
⊕

λ`n Eλ.
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Jack deformation

Fix α ∈ R>0 and expand Jack polynomials J(α)
λ in power-sum basis:

J
(α)
λ =

∑
π

θ(α)
π (λ) pπ.

We define irreducible Jack character χ(α)
λ :

χ
(α)
λ (π) := α−

‖π‖
2

zπ
n!

θ(α)
π (λ),

where ‖π‖ := |π| − `(π).

We call χ : Pn → R a reducible Jack character, if it is a convex
combination of irreducible Jack characters.



Jack-deformed Young diagrams Approximate factorization property Polynomial functions

Jack deformation

Fix α ∈ R>0 and expand Jack polynomials J(α)
λ in power-sum basis:

J
(α)
λ =

∑
π

θ(α)
π (λ) pπ.

We define irreducible Jack character χ(α)
λ :

χ
(α)
λ (π) := α−

‖π‖
2

zπ
n!

θ(α)
π (λ),

where ‖π‖ := |π| − `(π).

We call χ : Pn → R a reducible Jack character, if it is a convex
combination of irreducible Jack characters.



Jack-deformed Young diagrams Approximate factorization property Polynomial functions

Jack deformation - examples

Example

Jack-Plancherel measure

χ(π) :=

{
1 if π = 1n,
0 otherwise

↔ Pχ(λ) :=
n!∏

(x,y)∈λ hα(x , y)h′α(x , y)

Jack-Schur-Weyl measure

χ(π) : = N`(π)−|π| = N−‖π‖ ↔

Pχ(λ) : = n!
∏

(x,y)∈λ

N +
√
α(x − 1)−

√
α
−1

(y − 1)

N · hα(x , y)h′α(x , y)

= n!
∏

(x,y)∈λ

N + (
√
α x −

√
α
−1

y) + (
√
α
−1 −

√
α)

N · hα(x , y)h′α(x , y)
.
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Jack deformation of hook-length formula

a(�)

`(�)

�

hα(�) :=
√
α a(�) +

√
α
−1

`(�) +
√
α,

h′α(�) :=
√
α a(�) +

√
α
−1

`(�) +
√
α
−1
.
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Main result

Theorem (D., Śniady 2017)

For each n let χn : Pn → R be a reducible Jack character, and let
α = α(n) be such that

γ :=
√
α
−1 −

√
α = g

√
n + g ′ + o(1)

for some g , g ′ ∈ R. We impose that the sequence (χn) fulfills some
technical assumptions about its asymptotic behavior; we will specify their
details later.

Let λn be a random Young diagram with the probability distribution Pχn

associated with χ := χn. Then the sequence (λn) of Young diagrams
converges to some limit shape in the limit n→∞ when the number of
the boxes tends to infinity.
Furthermore, the fluctuations of λn around the limit shape are
asymptotically Gaussian.
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α-anisotropic Young diagrams

Definition

Anisotropic Young diagram Tw ,h(λ) - polygon obtained from the Young
diagram λ by a horizontal stretching of ratio w and a vertical stretching
of ratio h (each box 1× 1 is replaced by a box of dimension w × h).

λ 7→ T2, 12
(λ)

In order to study the shape of random Young diagrams λn ∈ Yn sampled
by some Jack-deformed measure, the right scaling is the following:

Λn := T√α
n ,
√

1
αn

λn.
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Young diagrams as continuous objects

French convention:

x
1 2 3 4 5

y

1

2

3

4
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Young diagrams as continuous objects

French convention:

z
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3−

2−
1

1
2

3

t
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2

3
4

5
6

7
8

9
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Young diagrams as continuous objects

Russian convention:
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Young diagrams as continuous objects

Russian convention:

z
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Definition
A profile of a Young diagram λ is a function ωλ : R→ R+ such that its
graph is a profile of λ drawn in Russian convention.
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Young diagrams as continuous objects

Russian convention:

z
−5 −4 −3 −2 −1 1 2 3 4 5

t

1

2

3

4

5

x

1

2

3

4

5

y

1

2

3

4

Definition
A profile of a Young diagram λ is a function ωλ : R→ R+ such that its
graph is a profile of λ drawn in Russian convention.

When we claim that a sequence (λn)n of Young diagrams λn ∈ Yn

converges to some limit shape, we actually mean that the sequence of
profiles ωΛn converges.
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Asymptotic shape of large Jack-deformed Young diagrams

Theorem (D., Śniady 2017; α = 1 Biane 2002)

For each n let χn : Pn → R be a reducible Jack character, and let
α = α(n) be such that

γ :=
√
α
−1 −

√
α = g

√
n + g ′ + o(1)

for some g , g ′ ∈ R.
Let λn be a random Young diagram with the probability distribution Pχn

associated with reducible Jack-characters χ := χn that fulfill some
technical assumptions about its asymptotic behavior (presented in details
later on).
Then there exists some deterministic function ωΛ∞ : R→ R with the
property that

lim
n→∞

ωΛn = ωΛ∞ ,

where the convergence holds true with respect to the supremum norm, in
probability.
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Examples

We recall that γ = g
√
n + g ′ + o(1).

Example

When α > 0 is fixed, that is g = 0 then the limit shape ωΛ∞ does not
depend on α!.

Jack-Plancherel measure (D., Féray 2016)

ωΛ∞(x) =

{
|x | if |x | ≥ 2;
2
π

(
x · arcsin x

2 +
√
4− x2

)
otherwise.

Jack-Schur-Weyl measure with
√
n ∼ cN (D., Śniady 2017)

ωΛ∞(x)− explicit function depending on c .



Jack-deformed Young diagrams Approximate factorization property Polynomial functions

Examples

We recall that γ = g
√
n + g ′ + o(1).

Example

1

1

2

An interesting choice is when
α(n) = 1

c2n for some c > 0, that is
g = c , g ′ = 0. Then the anisotropic
Young diagram Λn is a collection of
rectangles of the same height g and
of the widths λ1

gn ,
λ2
gn , . . . , and the

limit shape ωΛ∞ clearly depends on
g !

The limit shape of random Young
diagrams distributed according to
the Jack–Plancherel measure in the
double scaling limit for c = 1

4 .
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Fluctuations

Problem
How to “measure” fluctuations around the limit shape ωΛ∞?
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Fluctuations

Problem
How to “measure” fluctuations around the limit shape ωΛ∞?

We know that ωΛn → ωΛ∞ , so we define

∆n :=
√
n (ωΛn − ωΛ∞) .

We would like to show that ∆n converges to some function ∆∞, so
informally speaking,

ωΛn ≈ ωΛ∞ +
1√
n

∆∞.



Jack-deformed Young diagrams Approximate factorization property Polynomial functions

Fluctuations

Problem
How to “measure” fluctuations around the limit shape ωΛ∞?

We know that ωΛn → ωΛ∞ , so we define

∆n :=
√
n (ωΛn − ωΛ∞) .

We would like to show that ∆n converges to some function ∆∞, so
informally speaking,

ωΛn ≈ ωΛ∞ +
1√
n

∆∞.

We need to study suitable test functions:

Yk :=
k − 1
2

∫
uk−2 ∆n(u)du, k ≥ 2.
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Central limit theorem

Theorem (D., Śniady 2017; α = 1 Śniady 2006)

For each n let χn : Pn → R be a reducible Jack character, and let
α = α(n) be such that

γ :=
√
α
−1 −

√
α = g

√
n + g ′ + o(1)

for some g , g ′ ∈ R.
Let λn be a random Young diagram with the probability distribution Pχn

associated with reducible Jack-characters χ := χn that fulfill some
technical assumptions about its asymptotic behavior (presented in details
later on).

Then the random vector ∆n converges in distribution to some
(non-centered) Gaussian random vector ∆∞ as n→∞.

Equivalently, the family of random variables (Yk)k≥2 converges as
n→∞ to a (non-centered) Gaussian distribution.
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Question

Problem
What are the proper assumptions about asymptotic behavior of reducible
Jack characters which provide the law of large numbers and the central
limit theorem?
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Approximate factorization property

We extend the domain of χn : Pn → R to the set
⊔

0≤k≤n Pk of partitions
of sufficiently small numbers by setting

χn(π) := χn(π, 1n−|π|) for |π| ≤ n.
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Approximate factorization property

We extend the domain of χn : Pn → R to the set
⊔

0≤k≤n Pk of partitions
of sufficiently small numbers by setting

χn(π) := χn(π, 1n−|π|) for |π| ≤ n.

The general idea of our assumptions is the following:
the characters do not grow too fast:

χn(π) = O(n−
‖π‖
2 ),

characters on cycles have subleading terms of a proper order:

χn((l)) n
l−1
2 = al+1 +

bl+1 + o(1)√
n

for n→∞,

the characters should approximately factorize, i.e.

χn(π1 · · ·π`) ≈ χn(π1) · · ·χn(π`).
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Cumulants I

Note that χn(π) = E
(
χ(◦)(π)

)
is, by definition, the expectation of the

irreducible Jack characters χλ(π) taken with the probability Pχn(λ).
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(
χ(◦)(π)

)
is, by definition, the expectation of the

irreducible Jack characters χλ(π) taken with the probability Pχn(λ).

χn(π1 · π2)− χn(π1) · χn(π2) = Var
(
χ(◦)(π)

)
.
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Cumulants I

Note that χn(π) = E
(
χ(◦)(π)

)
is, by definition, the expectation of the

irreducible Jack characters χλ(π) taken with the probability Pχn(λ).

χn(π1 · π2)− χn(π1) · χn(π2) = Var
(
χ(◦)(π)

)
.

Cumulants κE` (x1, . . . , x`) of random variables x1, . . . , x` - natural
generalization of a variance:

E(x1) = κE1 (x1),

E(x1x2) = κE2 (x1, x2) + κE1 (x1)κE1 (x2),

E(x1x2x3) = κE3 (x1, x2, x3) + κE1 (x1)κE2 (x2, x3)

+ κE1 (x2)κE2 (x1, x3) + κE1 (x3)κE2 (x1, x2)

+ κE1 (x1)κE1 (x2)κE1 (x3),

...
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Approximate factorization property revisited

χn(π) = O(n−
‖π‖
2 ),

χn(π1 · · ·π`) ≈ χn(π1) · · ·χn(π`)

Examples (Of measures with AFP, thus CLT)

Jack-Plancherel measure (α > 0 fixed, D., Féray 2016)

χn(π) :=

{
1 if π = 1n,
0 otherwise

κχ` (π1, . . . , π`) =

{
1 if ` = 1, π1 = 1k ,
0 otherwise

Jack-Schur-Weyl measure (
√
n ∼ cN, D., Śniady 2017)

χn(π) := N−‖π‖ κχ` (π1, . . . , π`) =

{
N−‖π`‖ if ` = 1,
0 otherwise.
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More examples

Theorem

Let
(
χ1
n

)
,
(
χ2
n

)
be two families of reducible Jack characters with

approximate factorization property. Then all the families consists of
reducible Jack characters with approximate factorization property:

the restriction
(
χi
q,n

)
:=
((
χi
qn

)↓qnn ), where qn ≥ n and
limn→∞

qn
n = q;

the induction
(
χ

(i
q,n

)
:=
((
χi
qn

)↑qnn ), where qn ≤ n and
limn→∞

qn
n = q;

the outer product
(χn) :=

(
χ1
q

(1)
n
◦ χ2

q
(2)
n

)
,

where q
(1)
n + q

(2)
n = n and the limits q(i) := limn→∞

q(i)
n

n exist;
the tensor product

(χn) :=
(
χ1
n · χ2

n

)
.
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The main tool

Our main tool for proving above theorems are certain results on the
structure of the algebra of polynomial functions P.
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The main tool

Our main tool for proving above theorems are certain results on the
structure of the algebra of polynomial functions P.
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The main tool

Our main tool for proving above theorems are certain results on the
structure of the algebra of polynomial functions P.

We define the normalized Jack character Ch(α)
π : Y→ Q[

√
α,
√
α
−1

]:

Ch(α)
π (λ) :=

{
|λ||π| χ(α)

λ (π) if |λ| ≥ |π|;
0 if |λ| < |π|.

The algebra of polynomial functions P is spanned by the elements of the
form γk Chπ, where k ∈ N, π ∈ P. This algebra is graded:

deg(γk Chπ) = k + ‖π‖.
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Equivalent characterization of characters with AFP

Theorem (D., Śniady 2017; α = 1 Śniady 2006)

for each integer ` ≥ 1 and all integers l1, . . . , l` ≥ 2 the limit

lim
n→∞

κχn

`

(
(l1), . . . , (l`)

)
n

l1+···+l`+`−2
2 exists and is finite;

for each integer ` ≥ 1 and all x1, . . . , x` ∈ {Ch2,Ch3, . . . } the limit

lim
n→∞

κχn

` (x1, . . . , x`) n−
deg x1+···+deg x`−2(`−1)

2 exists and is finite;

for each integer ` ≥ 1 and all x1, . . . , x` ∈P the limit

lim
n→∞

κχn

` (x1, . . . , x`) n−
deg x1+···+deg x`−2(`−1)

2 exists and is finite;

for each integer ` ≥ 1 and all x1, . . . , x` ∈P• the limit

lim
n→∞

κχn

•` (x1, . . . , x`) n−
deg x1+···+deg x`−2(`−1)

2 exists and is finite.
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1 (x1)κχn

2 (x2, x3)

+ κχn

1 (x2)κχn

2 (x1, x3) + κχn

1 (x3)κχn
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•1(x3),

...
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Two different cumulants:

Problem

What is the difference between κχn

` and κχn

•`?

P and P• are the same rings, but the multiplication is different:

(γp Chπ) · (γq Chσ) vs. (γp Chπ) • (γq Chσ) := γp+q Chπσ .

Eχ Chπ =

{
|λ||π| χ(π) if |λ| < |π|,
0 otherwise.
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Yk :=
k − 1
2

∫
uk−2 ∆n(u)du

where
∆n :=

√
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Relation between our main result and the algebra P

We recall that we need to study the random variables:

Yk :=
k − 1
2

∫
uk−2 ∆n(u)du =

√
n
(
S(1)
k (Λn)− S(1)

k (Λ∞)
)
,

where
∆n :=

√
n (ωΛn − ωΛ∞) ,

and

S(1)
k (Λ) = S(1)

k (ωΛ) = (k − 1)

∫ ∞
−∞

uk−2 ωΛ(u)− |u|
2

du.

We define
S(α)
k (λ) :=

√
n
kS(1)

k (Λn), k ≥ 2.

Proposition

Functionals S(α)
2 ,S(α)

3 , · · · ∈P, and deg(S(α)
k ) = k .
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The outline of the proof

Proof.
for ` ≥ 3 one has

lim
n→∞

κ
Eχn

` (Yl1 , . . . ,Yl`) = lim
n→∞

κχn

` (S(α)
l1
, . . . ,S(α)

l`
)n

`−l1−···−l`
2 = 0;

limn→∞ κ
Eχn
2 (Yl1 ,Yl2) = limn→∞ κχn

2 (S(α)
l1
,S(α)

l2
)n

2−l1−l2
2

exists and is finite;
if

Eχn

(
S(α)
l

)
n−

l
2 = al +

bl + o(1)√
n

, then

lim
n→∞

Eχn(Yl) = lim
n→∞

√
n
(
n−

l
2 Eχn

(
Sl(λn)

)
−

− lim
m→∞

m−
l
2 Eχn

(
Sl(λm)

))
= bl .
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Perspectives

What can we say about the limit shape of the Jack-Plancherel
measure (or other measures given by reduced characters) in the
double scaling limit?

In order to find a covariance of normal distribution in the double
scaling limit, we need to find a formula for the top-degree of
normalized Jack characters indexed by a partition with two rows -
conjecturally we need to understand the combinatorics of unhandled
maps with two faces.

Let x1 ≥ x2 ≥ . . . be a sequence of eigenvalues of GβE. Then, after
proper normalization, their joint distribution is known
(β-Tracy-Widom). What about the joint distribution of properly
normalized

(
λ(n)

)
1 ≥

(
λ(n)

)
2 ≥ . . . with respect to Jack-Plancherel

measure (conjecturally should be the same!)?
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Thank you

THANK YOU FOR YOUR
ATTENTION!
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