$$
\frac{\text { REPRESENTATION THEORY }}{\text { OF FINITE GROUPS }}
$$

G - finite group.
Idea: G is e group of symmetries of some

$\frac{\text { Another lenguge }(R \text {-modules) }}{R \text { - ing is }(\text { left }) R \text {-module if }(M,+) \text { is }}$ an dobesen group equiped with $\because R \times M \rightarrow M$ st
(1) $r \cdot(x+y)=r \cdot x+r \cdot y$
(2) $\left(r_{1}+r_{2}\right) \cdot x=r_{1} \cdot x+r_{1} x$
(2) $\left(r_{1}+r_{2}\right) \cdot x=r_{1} x+r_{2} x$
(3) $r_{1} \cdot\left(r_{1} \cdot x\right)=\left(r_{1} \cdot r_{2}\right) \cdot x$
(4) $\quad 1 \cdot x=x$

$$
\forall x_{1} \subset M_{,}, r_{1}, r_{2} r \in R
$$

The group alfebre $K[G]=\operatorname{spen}_{K}(g: g \in G)$
with the multiplication $\left(\sum_{a} g^{\prime}\right) \cdot\left(\sum b_{j} f\right)=$

$$
=\sum_{\rho_{1} h} e_{g} b_{h}(g \cdot h)
$$

Representations of G over $K \equiv K[G]$-modules (G-modules in short)
$p: G \rightarrow G((V) \longleftrightarrow V$ with the stricture

$$
\sum_{j} g_{g}(v):=\sum_{j} e_{g} \rho(g) v
$$

Exemples: A - S_{3} permutation group.

(*) $S_{n} \rightarrow \mathbb{C}^{n}$ by permuting coordinates:

$$
\left.\rho(\sigma)\left(x_{1},\right)^{\prime} x_{n}\right)=C\left(x_{s^{-1}(1), \ldots}, x_{5-n(1)}\right)
$$

This is a representation of bomenrion n, but of is not irreducible:

$$
\begin{aligned}
& \mathbb{C}^{n}=\mathbb{C}(1, \ldots, 1) \oplus \mathbb{C}(1, n, 1)^{\perp} \\
& \text { en } \rho\left(S_{n}\right) V_{1} \subseteq V_{1}, \rho\left(S_{n}\right) V_{2} \subseteq V_{2}
\end{aligned}
$$

(X) Suppose that G eats on the set X.

Then X hes a structure of b-module celled the permutation representation
For instance $S_{n} G_{1}\left\{_{1},-\sim 4=x\right.$

$$
\begin{gathered}
K[X]=\left\{\sum_{i=1}^{n} c_{i} \cdot i \quad c_{i} c K\right\} \\
\pi \in S_{n} \quad \pi\left(\sum_{i=1}^{n} c_{i} \cdot i\right)=\sum_{i=1}^{n} c_{i} \pi(i) \in K[x]
\end{gathered}
$$

(A) G acts on itself by left multiplication Therefore $k[G]$ is a $k[G]$-module and defines e repr: celled the (left) reguler regresentetion
(A) G - abelian group

Then $P^{\prime} G \rightarrow(V) \quad \operatorname{dim}(V)=1 . \quad r p^{r}$.
$P-f:$ suppose the $\phi: V \rightarrow V$

$$
\text { st. } \phi \circ \rho=\rho \circ \phi \text { (ie. } \forall \rho \in G \forall v \in V
$$

Then, by Schur Lemma, $\left.\phi=\lambda \cdot J d_{V} \quad \phi(p(g) v)^{\prime}=p(\rho) \phi(v)\right)$
for some $\lambda \in \mathbb{C}$
Fix $f \in G$ and let $\phi:=\rho(\rho)$. Then
$\phi \circ \rho=\rho \circ \phi$

$$
\begin{aligned}
\partial & \phi \circ \rho
\end{aligned}=\rho \circ \phi \Rightarrow \operatorname{dim}(v)=1 \text { because } \rho(\rho)_{\rho}^{\prime} \lambda_{\rho} \cdot I d v \text { irreducible }
$$

Def V - on R-module $W<V$ is a submodule if it
is en R-module (with en induced structure) and
$U \subseteq V$. Ever module hes two trivia
Submodules : 404 end V.
V is celled reducible if it contains a non-trival submodule otherwise if is celled irreducible
 if $\exists \phi: V \rightarrow \omega$ sd.

$$
\phi \circ \rho_{1}=\rho_{2} \circ \phi
$$

MASCHKE'S THEOREM
Th. Let V-finite dim. G-module Then
$V=W^{(1)} \oplus \oplus W^{(d)}$, where $W^{(1)}$-irreduable
If. Induction on dim $V=$ of G-module

$$
d=1
$$

$d>1 \quad V-1 r r \Rightarrow$ done
Suppose $\quad \omega<V$
submodule
Let \langle,$\rangle be some scaler product on V$.
Define $\langle v, \omega\rangle^{\prime}:=\frac{1}{|G|} \sum_{\rho \in G}\langle\rho v, \rho \omega\rangle$
Then $\langle v, w\rangle^{\prime}=\left\langle g v, g^{w}\right\rangle^{\prime} \quad \forall g \in G, \forall w v \in V$
Define $\omega^{\perp}:=\{v \in V:\langle v \omega\rangle=0 \quad \forall \omega \in \omega\}$
$W \perp$ is $Q \quad G$ module end $V=W \oplus W \perp$
Therefore $w=w^{(1)} \oplus \cdots w^{\left(k_{1}\right)}$

$$
U^{\perp}=U^{\left(k_{1}+1\right)} \oplus \oplus U^{\left(k_{1}+k_{2}\right)} \quad \text { oud } V=U^{(1)} \oplus \cdots U^{\left(k_{1}+k_{0}\right)}
$$

SCHUR'S LEMMA (veg simple, super strong) :
$V W$-irreducible R-modules $f \in H_{R}(V, \omega)$
Then (1) either $f \equiv 0$, or f-isomorphism.
(2) If $R=\mathbb{C}[G]$ end $V=\omega$ then $f=\lambda \cdot] d, \lambda \in \mathbb{C}$.
P - $f^{\prime}(1)$ Conisder $\operatorname{ker}(f)<V . \quad(R$-module $\rightarrow e x)$

$$
V \text { - ire } \Rightarrow \operatorname{ker}(f)=0 \text { or } \operatorname{ker}(f)=V
$$

Suppose $\operatorname{ker}(f)=0$, conllder $\operatorname{Jin}(f)<\omega(R-\bmod \rightarrow e)$ $\operatorname{Im}(f) \equiv \omega$.
(2) Let $\lambda \in \mathbb{C}$ be on egenvalue of f (it exirts beceouse \mathbb{C} is elf cored)

Convider $f^{\prime}=f-\lambda \cdot J d . \quad f^{\prime} \in \operatorname{Hom}_{\mathbb{C}}[G](v, v)$

$$
\left.\Rightarrow f^{\prime} \equiv 0 \text { (beceuse } \operatorname{ker}\left(f^{\prime}\right)=\{v \in V: \quad f(v)=x v\rangle \neq 0\right) D
$$

Girr - set of irreducible rep of G up to \mathbb{C} GOAL: Understend $G_{i r r}$

CHARACTERS
Let $P: G \longrightarrow G(V)$ e repr.
We define a chenecter of ρ as

$$
\begin{aligned}
& x_{\rho}(\rho):=\operatorname{Tr}_{\hat{t}_{\text {rce }}}(\rho(f)) \\
& x_{\rho}: G \longrightarrow \mathbb{C}
\end{aligned}
$$

Idee: Classificetion of Irre rep \Longleftrightarrow chessificetion of chenecters
Lemne (s) $x_{e}(i d)=$ din V
(2) $x_{\rho}(g)=x_{p}\left(\operatorname{logh}^{-1}\right) \quad \forall h_{g} \in G$
(3) $\ell_{1} l_{2}$-equivelent rep $\Rightarrow x_{p_{1}} \equiv x_{p_{2}}$

Sometimes it is convenient to think the f

$$
\begin{gathered}
\mathbb{C}[G] \equiv\{f: G \longrightarrow \mathbb{C}\} \\
\sum_{\rho} \cdot \rho
\end{gathered}
$$

Define $\langle\forall\rangle$ on $\mathbb{C}[G]$

$$
\begin{aligned}
\langle j\rangle & \text { on } \mathbb{C}[G] \quad b y \\
\langle\psi, x\rangle & =\frac{1}{|G|} \sum_{f} \psi(\rho) x\left(f^{-1}\right) \\
& =\frac{1}{|G|} \sum_{\rho} \psi(\rho) \frac{x(\rho)}{x}
\end{aligned}
$$

Lemme: $B_{1} l_{2}$-irred rep of G

$$
\left\langle x_{p_{1}}, x_{p_{2}}\right\rangle= \begin{cases}1 & \text { of } \rho_{1} \stackrel{p_{2}}{0} \\ 0 & \text { otheruss }\end{cases}
$$

CLASSIFICATION THEOREM:
Let $C(G) \equiv$ Conjugacy classes
$G_{i r r}$ is indexed by $\left.C_{(}^{\delta_{G}}\right)$
$\mathbb{C}[G]=\oplus_{\mu \in C(G)} \operatorname{dim}\left(V_{\mu}\right) \vee_{\mu} \quad V_{\mu} \in G_{i r}$
(*) $|G|=\sum_{\mu \in C(G)} \operatorname{dim}\left(V_{\mu}\right)^{2}$
Ex: We sew 3 rr, rep of $s_{3}: 2$ 1-dim, ene 1 -dim Since $1^{2}+1^{2}+2^{2}=6=\left|S_{3}\right|$, these are all from $\left(S_{3}\right)$ ir r

