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Recent Progress in the Geometry of Q-Acyclic Surfaces

Karol Palka

Abstract. We give a survey of results on the geometry of complex algebraic
Q-acyclic surfaces including some recent results.

1. Introduction

In this article we want to take the reader to the rich and yet not fully explored
world of plane-like complex algebraic surfaces. We hope our survey will give a
general reader a taste of methods used and will serve as an update on recent results
for experts. All varieties considered are complex algebraic.

The story begins with a surprising discovery of Ramanujam [36] of a con-
tractible affine surface nonisomorphic to C2, one of the many nontrivial smooth
homotopy planes, i.e., smooth contractible surfaces. Ramanujam discovered an im-
portant characterization of C2 by showing that it is the unique smooth homotopy
plane which is simply connected at infinity. Since then affine algebraic geometers
began the study of smooth (and more generally normal) varieties with the same
Betti numbers as C2, so-called Q-homology planes. One of the motivations was the
search for more practical characterizations of the complex plane (the computation
of the fundamental group at infinity of an affine variety is usually very difficult).
In the face of the topological simplicity the intriguing algebraic side of Q-acyclic
surfaces is more clearly visible. Because of their homological similarity to the plane,
smooth Q-homology planes, and especially smooth homotopy planes, play today an
important role as a source of examples or counterexamples when studying work-
ing hypotheses as well as more challenging conjectures. They accompany us when
studying exotic structures on Cn’s (see [46]), the Cancellation Conjecture1 (which
was the motivation for Ramanujam and has been proved in dimension two by Fu-
jita and Miyanishi [8]), the Jacobian Conjecture2 (see [24, Section 5.2]) and others.
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1The m-dimensional Cancellation Conjecture. If X × Cn ∼= Cn+m then X ∼= Cm.
2The Jacobian Conjecture. A polynomial map f : Cn → Cn with nowhere vanishing Jacobian

determinant |J(f)| has a polynomial inverse.
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Today, after almost forty years, mainly due to the tools of the theory of open sur-
faces, the scheme of the classification, and in most cases the classification itself, are
settled. Recently the author had the pleasure of adding his part to the story.

Although we try to avoid notions which are not well-known to any well-versed
algebraic geometer, we need to refer the reader for the basics of the theory of open
surfaces to [23]. Since the Section 3.4 loc. cit. is a review of smooth Q-homology
planes, we concentrate mainly on the singular case, stating the updated results so
to include the smooth case if possible (see also [24]).

Acknowledgements. The author would like to thank Professors P. Russell
and S. Lu for the invitation to Montréal. He also thanks Prof. P. Russell for
stimulating discussions.

2. Preliminaries

A normal pair (X,D) consists of a complete normal surface X and a divisor
D contained in the smooth locus of X which has smooth components and simple
normal crossings (an snc-divisor). A normal pair (X,D) is said to be smooth if X is
smooth. If X is a normal surface then an embedding ι : X → X, where (X,X \X)
is a normal pair, is called a normal completion of X. A normal completion is a
smooth completion if X is smooth. Two normal completions ιj : X → Xj , j = 1, 2
are isomorphic if there exists a morphism f : X1 → X2 for which f ◦ ι1 = ι2. A
surface with isolated singularities is called logarithmic if each of its singular points
is of analytical type C2/G for some finite subgroup G < GL(2,C). By an n-curve
we mean a smooth rational curve with self-intersection n.

An affine ruling (a P1-ruling, a C(n∗)-ruling) is a morphism from a surface onto
a smooth curve with a general fiber isomorphic to C1 (respectively to P1, C1 with
n points deleted). All these morphisms are called rational rulings.

Definition 2.1. Let p : X → B be a rational ruling of a normal surface X.
A triple (X,D, p̄) is called a completion of p if and only if (X,D) is a normal
completion of X and p̄ : X → B is a P1-ruling onto a smooth curve B ⊇ B extending
p. Such a completion is minimal (we say also that (X,D) is p̄-minimal) if it does
not dominate any other completion of p.

If an snc-divisor T (or rather its dual graph) is a chain and T = T1+T2+· · ·+Tn

is its decomposition into irreducible components so that Ti · Ti+1 = 1 for i =
1, . . . , n− 1, we then write T = [−T 2

1 , . . . ,−T 2
n ]. As long as T is not considered as

a twig attached to some other divisor containing T there is no preferred choice of
the tip (T1 or Tn) of T , so in this case T = [−T 2

n , . . . ,−T 2
1 ] as well. If T is a twig of

some fixed bigger divisor then by convention we always choose the tip of T which
is a tip of this bigger divisor as T1.

The Iitaka dimension of a divisor F on a smooth complete surface X (hence
projective by the theorem of Zariski) is defined as

κ(F ) = sup
n>0

dim Im(Φ|nF |) ∈ {−∞, 0, 1, 2},

where Φ|nF | : X ��� PN is the mapping given by the linear system |nF |. Then the
(logarithmic) Kodaira dimension of a smooth open surface X can be defined by
taking some smooth completion (X,D) of X and by putting

κ̄(X) = κ(KX + D),
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where KX is a canonical divisor on X. This is well-known to be independent of the
smooth completion (see [16] for the properties of κ(F )). The Kodaira dimension of
a singular surface is defined to be the Kodaira dimension of any resolution.

If R is an snc-divisor on a complete surface and Q(R) is the intersection matrix
of R then we define the discriminant of R by d(R) = d

(
−Q(R)

)
.

3. Balanced and standard completions

One of the basic steps to take when dealing with an open surface is to construct
a completion and a boundary. Of course, these are not unique, but we want to
bring to the attention of the reader some normalizing conditions, which make them
more unique and more useful in practice. We came to this problem when trying to
distinguish (or to find an isomorphism) between some Q-acyclic surfaces. This type
of analysis was done at least partially by many authors, with the most complete
treatment in terms of weighted dual graphs in [2] and [5]. Here we present the
necessary results using partially our own terminology. For simplicity we restrict
ourselves to divisors whose dual graphs contain no loops (forests).

Definition 3.1. A rational chain D = [a1, . . . , an] is balanced if a1, . . . , an ∈
{0, 2, 3, . . . } or if D = [1]. A reduced snc-forest D is balanced if all rational chains
contained in D which do not contain branching components of D are balanced. A
normal pair (X,D) is balanced if D is balanced.

The word balanced stands here for the property that on one hand we do not al-
low nonbranching (−1)-curves, but on the other hand we do not allow nonbranching
b-curves with positive b. The following operation is responsible for nonuniqueness
of balanced completions of a given surface.

Definition 3.2. Let (X,D) be a normal pair. Let L be a 0-curve which is
a nonbranching component of D. Make a blowup of a point c ∈ L, such that
c ∈ L ∩ (D − L) if L · (D − L) = 2 and contract the proper transform of L. The
resulting pair (X ′, D′), where D′ is the reduced direct image of the total transform
of D is called an elementary transform of (X,D). The point c ∈ L is the center
of the transformation. A composition of elementary transformations of D and its
subsequent elementary transforms is called a flow inside D.

For example, taking T = [0, 0, a1, . . . , an] one can obtain by a flow exactly the
chains [0, b, a1, . . . , an], [a1, . . . , ak−1, ak − b, 0, b, ak+1, . . . , an] and [a1, . . . , an, b, 0],
where 1 ≤ k ≤ n and b ∈ Z. In particular, it is easy to see when two rational chains
differ by a flow. The following result is the main property of balanced completions,
it follows from [5, Corollary 3.36].

Proposition 3.3. Any normal surface which admits a normal completion with
a forest as a boundary has a balanced completion. Two such completions differ by a
flow inside the boundary. In particular, all balanced boundaries of a given surface
are isomorphic as curves.

Of course, two balanced boundaries of a given surface are in general noniso-
morphic as weighted curves (weights are here the self-intersections of their compo-
nents). One introduces normalizing conditions to deal with this. After [5] we state
the following definition.
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Definition 3.4. Let D be an snc-divisor. The connected components of the
divisor which remains after subtracting all nonrational and all branching compo-
nents of D are called the segments of D. An snc-divisor is standard if and only if
any of its connected components is either [1] or has all segments of type [0], [0, 0],
[0, 0, 0], [0, 0, a1, . . . , an] or [a1, . . . , an] with a1, . . . , an ≥ 2.

It follows from the example above and from the Hodge index theorem that each
balanced chain can be carried to a standard form by a flow.

Example 3.5. The affine plane C2 has a balanced completion (F2, T ), where
F2 is the second Hirzebruch surface and T = [0, 2]. It follows that each balanced
boundary of C2 is of type [0, a] for some a ≥ 2, it is standard if and only if
a = 0. Note that the isomorphism type of the boundary can change when we
admit nonbalanced completions, for example the boundary of C2 embedded in P2

is [−1].

More generally, it follows from the above considerations about a flow inside
a chain that if a surface has a completion with some rational chain as a bound-
ary then there are at most two weighted graphs which can be dual graphs of a
standard boundary of this surface. If there are two then one of them is of type
T = [0, 0, a1, . . . , an] with some a1, . . . , an ≥ 2 and the other is the reversion of the
first one, T rev = [0, 0, an, . . . , a1]. Given one weighted dual graph of some standard
boundary of some surface each other can be easily described, which gives a method
of distinguishing between many open surfaces.

In general two standard boundaries of a given surface can differ by more than
the reversion of segments. It is useful to introduce the following, more restrictive
normalizing conditions.

Definition 3.6. A balanced snc-forest D is strongly balanced if and only if it is
standard and either D contains no segments of type [0], [0, 0, 0] or for at least one
of such segments there is a component B ⊆ D intersecting it, such that B2 = 0.
A normal pair (X,D) for which D is a forest is strongly balanced if D is strongly
balanced.

4. Basic properties

Let R be a ring. An R-homology plane is a normal surface X with H∗(X,R) ∼=
R. (This is a bit nonstandard, as usually R-homology planes are defined as smooth
by definition). We say that X is a homotopy plane if πi(X) ∼= 0 for i > 0. A
Z-homology plane with trivial π1 is a homotopy plane by the theorem of Hurewicz.
By a theorem of Whitehead homotopy planes are contractible.

Example 4.1. Let G < GL(2,C) be a finite subgroup without pseudoreflec-
tions. Then C2/G is a singular logarithmic homotopy plane for which the smooth
locus has negative Kodaira dimension. Indeed, the linear contraction of C2 to
0 ∈ C2 descends to a contraction of the quotient and the quotient morphism
C2 − {0} → C2 − {0}/G is étale, so κ̄(C2 − {0}/G) = κ̄(C2 − {0}) = −∞.

We now fix the notation for the rest of the paper. Let ε : S → S′ be a minimal
snc-resolution of a singular Q-homology plane S′. Denote the exceptional divisor
of ε by Ê. Let (S,D) be a smooth completion of S and let S0 be the smooth locus
of S′. Since S′ is normal, its singular locus consists of a finite number of points.
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For topological spaces A ⊆ X we write Hi(X,A) for Hi(X,A,Q) and bi(X,A) for
dimHi(X,A).

Logarithmic Q-homology planes are known to be affine by an argument of Fujita
(cf. [9, 2.4]). They are also known to be rational due to Gurjar – Pradeep – Shastri
[14, 15, 35]. On the other hand, the following example shows that nonlogarithmic
Q-homology planes can be nonrational.

Example 4.2. Let C ⊆ Pn be a projectively normal embedding of a smooth
projective curve. Then the affine cone over C is normal and contractible. It has a
standard cylinder resolution, for which the exceptional divisor is isomorphic to C.
In case C is not rational, the cone is nonrational and nonlogarithmic.

In general we have the following result (cf. [30, Corollary 3.2, Proposition 3.4]).

Theorem 4.3. Every Q-homology plane is affine and birationally ruled.

As for the affiness we note that the above mentioned argument of Fujita works
as long as one assumes the inclusion ι : D ∪ Ê → S induces an isomorphism
H2(ι) : H2(D ∪ Ê) → H2(S). One can prove that this condition is always satisfied.
If Ê is a rational forest this can be seen as follows. First note that Hi(S,D ∪ Ê) ∼=
H4−i(S0) by the Lefschetz duality. One can prove that b2(S0) = b1(S0) = b1(Ê),
so if Ê is a rational forest then b3(S,D ∪ Ê) = b2(S,D ∪ Ê) = 0 and H2(ι) is an
isomorphism. For b1(Ê) = 0 the argument is more complicated. For the proof of
ruledness we refer to loc. cit.

Corollary 4.4. If S′ is a singular Q-homology plane then its boundary is con-
nected and the homology groups Hi(S′,Z) vanish for i ≥ 2.

Proof. Since S′ is affine, by [17] its boundary is connected and S′ is homotopy
equivalent to a CW-complex of real dimension at most two, hence H2(S′,Z) is
torsionfree and H3(S′,Z) = H4(S′,Z) = 0. Since b2(S′) = 0, we get H2(S′,Z) = 0.

�

The rationality of smooth Q-homology planes has strong consequences for vec-
tor bundles.

Theorem 4.5. Let S′ be a smooth Q-homology plane. Then any vector bundle
over S′ is a sum of a line bundle and a trivial vector bundle. Moreover, PicS′ ∼=
H1(X,Z), so if S′ is a Z-homology plane then all vector bundles over S′ are trivial.

Proof. The first part of the theorem is a result of Murthy [29] valid for smooth
affine surfaces which are birationally ruled. Since S′ is rational, we have PicS′ ∼=
H2(S′,Z). The groups H1(S′,Z) and H2(S′,Z) are finite, so by the universal
coefficient theorem H2(S′,Z) ∼= H1(S′,Z). �

We note that the question whether a vector bundle over any smooth contractible
threefold is necessarily trivial is open.

5. Case κ̄(S0) = −∞ and moduli

Let us start with recalling some known results in case S0 has negative Ko-
daira dimension. This is a strong assumption, which in particular forces S′ to be
logarithmic (and hence rational). This can be seen as follows.
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Suppose S0 is affine-ruled. The affine ruling extends to a P1-ruling of some
smooth completion (S,D + Ê) of S0, where Ê is the exceptional divisor of some
(not necessarily minimal) snc-resolution of singularities of S′. The unique section
of this extension contained in the boundary is in fact contained in D. Indeed,
if it is contained in Ê, then D is vertical for this ruling (i.e., all its components
intersect trivially with fibers), so since the homology classes of components of D+Ê
generate H2(S), the intersection form on S is semi-negative definite, contradicting
the Hodge index theorem. Thus the affine ruling of S0 extends to an affine ruling
of S′, so S′ has at most cyclic singularities by [22, Theorem 1]. There is no bound
on the number of singularities, H1(S′,Z) can be any finite abelian group. The
extension has a unique fiber contained in the boundary (the fiber can be assumed
to be smooth) and each singular fiber contains a unique component not contained
in D∪ Ê (see [25, Sections 1, 2] for more details). A strongly balanced boundary of
S′ is unique if it is branched and it is unique up to reversion if it is a chain. There
can be infinitely many strongly balanced completions (see [30, Example 4.6]). Note
that from Proposition 1.2 loc. cit. if follows that C2 is the only smooth Z-homology
plane of negative Kodaira dimension (see [8] for the first proof of this) and this
characterization implies the positive solution of the two-dimensional Cancellation
Conjecture.

Now if S0 is not affine-ruled (this can happen only if S′ is singular) then it
follows from an important structure theorem by Miyanishi – Tsunoda [27] that it
contains an open subset U with a very special C∗-ruling called a Platonic fibration.
In fact one shows that S0 = U (cf. [19, Theorem 3.1]), which implies that S′ ∼=
C2/G for a finite small noncyclic subgroup G < GL(2,C). The strongly balanced
completion of S′ is unique.

It is well known that there are only finitely many fake projective planes, i.e.,
smooth projective surfaces with Betti numbers of P2 (cf. [1, Section V.1]). This
is clearly not the case for Q-homology planes (the name fake affine planes is not
used). Moreover, there are arbitrarily high-dimensional nontrivial families of Q-
homology planes with the same weighted boundary. The following example of a
family of singular Q-homology planes is a modification of a similar example in
[6, Example 4.16]. We sketch the arguments.

Example 5.1. Let p : F1 → B ∼= P1 be the P1-ruling of the first Hirze-
bruch surface and let N be a positive integer. Choose N + 3 distinct points

Figure 1. Singular fibers in Example 5.1
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x∞, x1, x2, . . . , xN+2 on the negative section. Blow up successively over each xi so
to produce singular fibers with reductions F∞ = [0], F1 = [3, 1, 2, 2], F2 = [2, 1, 2],
F ′
i = [2, 1, 2] for i = 2, . . . , N + 2 lying respectively over x∞, x1, . . . , xN+2. Denote

the resulting surface by V and the proper transform of the negative section by Dh.
Note there are chains Ê1 = [2, 2] and Ê2 = [2] contained in F1 and F2 respectively.
We can assume that Ê1, Ê2 do not intersect Dh. For each i ∈ {3, . . . , N} choose a
point yi on the (−1)-curve Di of F ′

i and blow up once. For i ∈ {1, . . . , N} denote the
unique (−1)-curve of Fi by Ci. Let Sy, where y = (y3, . . . , yN+2), be the resulting
surface and put D = F∞+Dh+(F1−C1−Ê1)+(F2−C2−Ê2)+

∑N
i=3(Fi−Ci). One

checks that the surface S′
y obtained by the contraction of Ê1 and Ê2 on S −D is a

singular Q-homology plane. Clearly, the above family S′
y is N -dimensional. Now if

S′
y
∼= S′

z then the isomorphism lifts to S−D and then, since F∞ is the only 0-curve
in D, extends to Sy − F∞ ∼= Sz − F∞ by Proposition 3.3, which in turn descends
to an automorphism of U = F1 − F∞ −Dh

∼= C2 fixing fibers. However, if x, y are
respectively the horizontal and vertical coordinate on U , each automorphism of U
fixing fibers can be written as (x, y) →

(
x, λy + P (x)

)
for some P [x] ∈ C[x] and

its lifting to V acts by λ2 on Di in some coordinates on Di (the multiplicity of Di

in the fiber is 2). Thus if we consider an (N − 1)-dimensional subfamily with fixed
y3 ∈ D3 then λ2 = 1, so the mentioned action on each Di is trivial, hence y = z
and different members of this subfamily are nonisomorphic.

6. Logarithmic Bogomolov – Miyaoka –Yau

When studying Q-homology planes we often use the logarithmic version of the
Bogomolov – Miyaoka –Yau inequality proved by Kobayashi (cf. [18]). Usually this
inequality is stated for surfaces of general type in terms of the so-called strongly
minimal model. This is not necessary and in fact the inequality works for surfaces
of nonnegative Kodaira dimension. For example, the following lemma has been
proved in [31, Corollary 2.5] as an easy corollary from an inequality of Bogomolov –
Miyaoka – Yau type proved by Langer (cf. [20]). The latter generalizes in particular
both the inequality of Kobayashi and an inequality of Miyaoka [28]. For the notion
of the Zariski decomposition and of the bark BkD of an effective snc-divisor D see
[23, Section 2.3]. Put D# = D − BkD.

Lemma 6.1. Let (X,D) be a smooth pair with κ(KX + D) ≥ 0. Then:
(i)

3χ(X −D) + 1
4
(
(KX + D)−

)2 ≥ (KX + D)2.
(ii) For each connected component of D, which is a connected component of

BkD (hence contractible to a quotient singularity) denote by GP the local
fundamental group of the respective singular point P . Then

χ(X −D) +
∑

P

1
|GP |

≥ 1
3
(KX + D#)2.

We now illustrate the usefulness of the second inequality in our context.

Corollary 6.2. Let S0 be the smooth locus of a singular Q-homology plane S′

and let Ê1, . . . , Êq be the connected components of the exceptional divisor of the
snc-minimal resolution.

(i) If κ̄(S0) = 2 then S′ is logarithmic and q = 1.
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(ii) If κ̄(S0) = 0 or 1 then either q = 1, or q = 2 and Ê1 = Ê2 = [2].

Proof. Let (Sm, Dm) be the almost minimal model of (S,D + Ê). For the
notion of almost minimality see [23, 2.3.11]. Since S′ is affine, Sm−Dm is isomorphic
to an open subset of S0 satisfying χ(Sm −Dm) ≤ χ(S0) = 1 − q. Let Q be the set
of singular points which have been created by contracting connected components
of D as in Lemma 6.1(ii). Since #Q ≤ q, the above inequality gives

1
3

(
(KSm

+ Dm)+
)2 ≤ χ(Sm −Dm) +

∑

P∈Q

1
|GP |

≤ 1 − q + #Q

2
≤ 1 − q

2
.

Now if κ̄(S0) = 2 then
(
(KSm

+ Dm)+
)2

> 0 and we get q = 1 and 0 <∑
P∈Q 1/|GP |, so there is a unique singular point on S′ and it is of quotient type.

If q > 1 and κ̄(S0) = 0, 1 then
(
(KSm

+ Dm)+
)2 = 0 and we get q = 2 and

1 = 1/|GP1 | + 1/|GP2 |, so |GP1 | = |GP2 | = 2. �

7. Exceptional Q-homology planes

The structure theorem for Q-homology planes with smooth locus of nongeneral
type is based on general structure theorems for open surfaces.

Definition 7.1. A Q-homology plane for which the smooth locus is neither of
general type, nor C1- or C∗-ruled is exceptional.

Now the mentioned structure theorems lead to the fact that for exceptional
S′ one has κ̄(S0) = 0. It was proved by Fujita (cf. [9, 8.64]) that each excep-
tional smooth Q-homology plane is up to isomorphism one of three surfaces called
Y {3, 3, 3}, Y {2, 4, 4} and Y {2, 3, 6} (the Fujita’s surfaces of type H[k,−k] with
k ≥ 1 are C∗-ruled). The snc-minimal boundary of Y {a, b, c} is a rational fork
(a tree with one branching component), such that its three maximal twigs consist
of (−2)-curves and have discriminants equal to a, b, c respectively. A singular ex-
ceptional Q-homology plane having a boundary with this property will be denoted
by SY {a, b, c}. Together with the description of exceptional singular Q-homology
planes in [31] we have the following theorem (to be precise one still needs to prove
that smooth Y {a, b, c}’s are not C∗-ruled, but this can be done as in loc. cit.).

Theorem 7.2. If S′ is a Q-homology plane with smooth locus S0 of nongeneral
type then S0 is affine-ruled or C∗-ruled or S′ is up to isomorphism one of five excep-
tional Q-homology planes having smooth locus of Kodaira dimension zero: smooth
Y {3, 3, 3}, Y {2, 4, 4}, Y {2, 3, 6} and singular SY {3, 3, 3}, SY {2, 4, 4}. For the last
two surfaces κ̄(S′) = 0 and the singular locus consists of a unique point of Dynkin
type A2 and A1, respectively.

Since the exceptional Q-homology planes admit boundaries with no nonbranch-
ing 0-curves, their snc-minimal (which are also balanced) completions are unique.
None of the exceptional surfaces is a Z-homology plane. Writing this review the
author noticed that a posteriori there is another (different than the one discovered
in loc. cit.) nice description of exceptional singular Q-homology planes. Namely,
Y {2, 4, 4} and Y {3, 3, 3} have automorphism groups Z2 and Z3 respectively (the au-
tomorphism group of Y {2, 3, 6} is trivial) and the actions have unique fixed points.
The quotients are two nonisomorphic Q-homology planes with smooth loci of Ko-
daira dimension zero. Suppose, say, the quotient S′ = Y {3, 3, 3}/AutY {3, 3, 3} is



RECENT PROGRESS IN THE GEOMETRY OF Q-ACYCLIC SURFACES 279

Figure 2. Singular Y{3,3,3}, dual Hesse configuration.

not exceptional. Then its smooth locus S0 is C∗-ruled, so the Stein factorization
of the pull-back of this C∗-ruling gives a C∗-ruling of the complement of the fixed
point of Y {3, 3, 3}. Since Y {3, 3, 3} is exceptional, the closures of the fibers meet
in the fixed point, hence the closures of the fibers of the C∗-ruling of S0 meet in
the singular point of S′. Thus the last C∗-ruling does not extend to a ruling of S′.
Since the singularity is cyclic, it follows from [30, Theorem 5.4] that κ̄(S0) = −∞, a
contradiction. (One can also get a contradiction with the fact that Y {3, 3, 3} does
not contain infinitely many contractible curves, cf. Theorem 10.1).

We recall here the construction of SY {3, 3, 3}, mainly because of its beautiful
connection with classical geometry. A projective configuration of type (ac, bd) is an
arrangement of b lines in a projective space and a points on these lines, such that
each point belongs to c lines and each line contains d points. Clearly, ac = bd for
such a configuration.

Example 7.3. Up to a projective automorphism there exists a unique projec-
tive configuration H of type (123, 94) (the uniqueness is easy to show using infor-
mation on the automorphism group of the configuration which we give below). The
dual configuration H∗ is the famous Hesse configuration (94, 123) of flexes of an
elliptic curve. It is known that Aut(H) ∼= Aut(H∗) has order 216 and is isomorphic
to the group of special affine transformations of F2

3, i.e., F2
3�/ SL(2,F3) (cf. [3, Sec-

tion 4]). Choose three points Q1, Q2, Q3 of H none two of which lie on a common
line of H and choose some line U incident to Q3. By taking the dual choice in H we
check using linear algebra that Aut(H) acts transitively on the set of such choices
and the stabilizer Γ < Aut(H) has order three. For i = 1, 2 let T1,i, T2,i, T3,i be
the lines incident to Qi and let E1, E2, U be the lines incident to Q3. Blow up once
in each of eight points not incident to U . Let S be the resulting complete surface.
We denote divisors and their proper transforms by the same letters. Let B be the
exceptional curve over Q2, put D = B + T1,1 + T1,2 + T2,1 + T2,2 + T3,1 + T3,2 and
Ê = E1 +E2. Clearly, all components of D−B + Ê are (−2)-curves, D and Ê are
disjoint and D is a fork. Put S′ = (S −D)/Ê. One can show that Aut(S′) ∼= Γ.

To see that S′ is Q-acyclic note that b1(S) = 0 and b2(S) = b2(D∪Ê) = 9. Now
since d(D+ Ê) = 0, the natural morphism H2(D∪ Ê) → H2(S) is an isomorphism.
Put S = S \D. The homology exact sequence of the pair (S,D) and the Lefschetz
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duality give b1(S) = b3(S) = b4(S) = 0 and b2(S) = #Ê. We know from the above
that H2(Ê) → H2(S) is a monomorphism, so the homology exact sequence of the
pair (S, Ê) gives that S′ is Q-acyclic.

We check easily that in both cases KS+D# = KS+D#+Ê# intersects trivially
with all components of D + Ê, hence κ̄(S0) = κ̄(S′) = 0. See [31, Section 5] for
an explicit realization of H and for a proof that the constructed Q-homology plane
does not admit a C∗-ruling.

8. Nonlogarithmic Q-homology planes

Let us start with a generalization of Example 4.2.

Example 8.1. Let U be an affine cone over a projectively normal curve and
let G be a finite group acting on it so that the vertex of the cone is a fixed point,
the action is free on its complement and respects the set of lines of the cone. Then
the quotient S′ = U/G is a normal contractible surface.

What is surprising is that all nonlogarithmic Q-homology planes arise in the
above way. Namely, we have the following theorem (see [30, Corollary 5.8]).

Theorem 8.2. Every singular Q-homology plane containing a nonquotient sin-
gularity is a quotient of an affine cone over a smooth projective curve by an action
of a finite group which is free off the vertex of the cone and respects the set of lines
through the vertex. In particular, it is contractible, has negative Kodaira dimension,
has a unique singular point and its smooth locus is C∗-ruled. The snc-minimal com-
pletion of such a surface is unique.

Proof (sketch). By Lemma 6.2 and Theorem 7.2 the smooth locus of a non-
logarithmic Q-homology plane S′ is C1- or C∗-ruled. By the results of Section 5,
κ̄(S0) ≥ 0, so in fact S0 is C∗-ruled. One can show (cf. Theorem 3.6 loc. cit.)
that if this ruling extends to a C∗-ruling of S′ then S′ is necessarily logarithmic,
so we can further assume that this is not the case. This means that there is a
P1-ruling p : S → P1 of some completion (S,D + Ê) of S0 as before, such that
for a general fiber f we have f · D = f · Ê = 1. We can assume that the com-
pletion is p-minimal. Then each singular fiber of p is a so-called columnar fiber,
which means that it is a rational snc-chain of discriminant zero, its components
have negative self-intersections, it contains a unique (−1)-curve Ci which is also
a unique S0-component of the fiber (i.e., a component not contained in D ∪ Ê)
and it is intersected by the horizontal components of D and Ê in tips. It follows
that D and Ê contain unique branching components Dh and Êh. In particular,
the boundary contains no nonbranching 0-curves, so S′ has a unique snc-minimal
(hence also balanced) normal completion. Write the singular fibers as Di +Ci +Ei,
where Di ⊆ D and Ei ⊆ Ê (see Figure 3). Contracting singular fibers we get a
P1-bundle over a complete curve, so all nonlogarithmic singular Q-homology planes
can be reconstructed starting from such a bundle by producing columnar singular
fibers, taking out D and contracting Ê. The mentioned bundle admits a usual C∗-
action fixing pointwise the images of Dh and Êh. This action induces a C∗-action
on S′ with the singular point as the unique fixed point. Thus by [34, Theorem 1.1]
S′ is a quotient of an affine cone over a smooth projective curve by an action of
a finite group. In fact without knowing this global description the contractibility
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Figure 3. Construction of nonlogarithmic Q-homology planes.

follows also from [9, 5.9, 4.19] and the Whitehead theorem, as one can show that
π1(Êh) → π1(S) is an isomorphism and π1(S) → π1(S′) is an epimorphism. Since
S = S −D is affine-ruled, we get κ̄(S′) = −∞. �

We see that one can obtain any nonlogarithmic Q-homology plane by creating
its snc-minimal completion S of the resolution as in the proof above by starting with
a nontrivial P1-bundle over some smooth complete curve B and by blowing up some
number n of columnar fibers. Then exactly one of two forks, say Ê, separated by
vertical (−1)-curves is negative definite, hence by [10] it contracts analytically to a
singularity. What is quite surprising here is that this contraction is always algebraic
(cf. the contraction criterion [30, Corollary 2.6]). Suppose Êh

∼= B ∼= P1. Although
Ê is a rational tree, the singularity does not have to be a rational singularity.
Indeed, using Artin’s criterion one can show that if Ê2

h + n ≤ 0 then S′ has a
rational and if Ê2

h + n ≥ 2 a nonrational singularity (cf. [30, Corollary 5.8]). The
case Ê2

h + n = 1 is more subtle (cf. [34, Corollary 5.8]).

9. C∗-ruled Q-homology planes

By the results described in previous sections the classification of Q-homology
planes of nongeneral type reduces now to the classification of logarithmic (and hence
rational) Q-homology planes which are C∗-ruled, or in other words, for which the
smooth locus is C∗-ruled and the ruling extends to a C∗-ruling of S′. Note that
the existence of a C∗-ruling implies that κ̄(S0) = 2 by the ’easy addition theorem’
(cf. [23, 2.1.5]). This case was analyzed in [25], where one can find a description of
singular fibers and a computation of κ̄(S0) and H1(S′,Z) in terms of these fibers.
We note here that in [30, Theorem 6.8] we have redone some incorrect computations
of κ̄(S0) from loc. cit. (identified then with the Kodaira dimension of S′) and we
have computed κ̄(S′) too. We discuss two issues here.

First, it is practically useful to know when a C(n∗)-ruled surface is a Q-homology
plane. To formulate a criterion we need to recall the definition of some numbers
characterizing rational rulings. Having a fixed P1-ruling of a smooth complete
surface X and a reduced divisor T we define

ΣX−T =
∑

F�T

(σ(F ) − 1),
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where σ(F ) is the number of (X−T )-components (i.e., irreducible components not
contained in T ) of a fiber F (cf. [9, 4.16]). Th is the horizontal part of T , which
consists of components of T intersecting nontrivially with a general fiber. If Th = 0
then T is vertical. The numbers h and ν are defined respectively as #Th and as
the number of fibers contained in T .

Lemma 9.1. Let (S, T ) be a smooth pair and let p : S → P1 be a P1-ruling.
Assume the following conditions are satisfied:

(i) there exists a unique connected component D of T which is not vertical,
(ii) D is a rational tree,
(iii) ΣS−T = h + ν − 2,
(iv) d(D) = 0.

Then the surface S′ defined as the image of S − D after contraction of connected
components of T − D to points is a rational Q-homology plane and p induces a
rational ruling of S′. Conversely, if p′ : S′ → B is a rational ruling of a rational
Q-homology plane S′ (not necessarily singular) then any completion (S, T, p) of the
restriction of p′ to the smooth locus of S′ has the above properties.

The conditions (iii) – (iv) are equivalent to the fact that H2(D ∪ Ê) → H2(S)
is an isomorphism, similar criteria were used by many authors. What is important,
in case of a C∗-ruling the most problematic condition (iv) can be replaced by an
easier and more geometric condition (cf. [30, Lemma 6.1]).

Second, there is a question of uniqueness of a C∗-ruling of S′. Let us assume
S′ is singular. In case κ̄(S0) = 1 it is easy to prove that there is a unique C∗-ruling
of S′ and it is induced by the C∗-ruling of S0 given by the linear system of some
multiple of the logarithmic canonical divisor of S0. In case κ̄(S0) = 0 generically
there are two C∗-rulings of S′, but there may be zero (exceptional Q-homology
planes), one or three as well (cf. Theorem 6.12 loc. cit.). We will see that this
information is important for example when computing the number of contractible
curves on S′.

Assume that S′ admits a C∗- ruling but no affine-ruling. Then it has a unique
balanced completion, unless it admits an untwisted C∗-ruling with base C1 (un-
twisted means that for some completion of the surface the ruling extends to a
P1-ruling for which the horizontal part of the boundary consists of two irreducible
components). In the latter case S′ has infinitely many balanced completions, but
there are exactly two which are strongly balanced (cf. Theorem 6.11 loc. cit.).

10. Contractible curves

It is known that the logarithmic Bogomolov – Miyaoka – Yau inequality imposes
restrictions on the number of topologically contractible curves on S′. According to
the author’s knowledge this number is known except the cases when S′ is non-
logarithmic or when S′ is singular and κ̄(S0) = 0 (see [12, 13, 44, 45]). In the
nonlogarithmic case it is easily seen to be infinity by Theorem 8.2 and, as we sketch
below, in the last case it can be deduced from the knowledge on the number (and
types) of C∗-rulings of S0 [30, Theorem 6.12]. The final result is as follows.

Theorem 10.1. Let l be the number of topologically contractible curves on a
Q-homology plane S′. Let S0 be the smooth locus of S′. Then:

(i) if κ̄(S0) = 2 then l = 0,
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(ii) if S′ is exceptional (hence κ̄(S′) = κ̄(S0) = 0) then l = 0,
(iii) if S′ is nonlogarithmic (hence κ̄(S′) = −∞, κ̄(S0) = 0, 1) then l = ∞,
(iv) if κ̄(S0) = −∞ then l = ∞,
(v) in other cases (S′ is C∗-ruled and κ̄(S0) = 0, 1) l = 1 or 2.

Proof (sketch). If κ̄(S0) = −∞ then S′ is affine-ruled or isomorphic to C2/G
for some G < GL(2,C), so l = ∞. If S′ is nonlogarithmic then by Theorem 8.2
l = ∞. We can therefore assume that κ̄(S0) ≥ 0 and S′ is logarithmic. Suppose
S′ contains a contractible curve L. It follows from the logarithmic Bogomolov –
Miyaoka – Yau inequality that κ̄(S0 −L) ≤ 1 (cf. [12]). We show that S0 −L is C∗-
ruled. This is the case if κ̄(S0−L) = 1, as the ruling is given by some multiple of the
logarithmic canonical divisor or S0 − L. We may therefore assume κ̄(S0 − L) = 0.
Since S′ is rational, Pic(S0) = Coker(Pic(D+ Ê) → PicS) is torsion, so the class of
L in Pic(S0) is torsion. Then there is a morphism f : S0−L → C∗. Taking its Stein
factorization one gets a C∗-ruling of S0 − L, so we are done. Since κ̄(S0) ≥ 0, any
C∗-ruling of S0 − L extends to a C∗-ruling of S0. Since S′ is logarithmic, each C∗-
ruling of S0 extends in turn to a C∗-ruling of S′. Therefore, any contractible curve
on S′ is vertical for some C∗-ruling of S′. In particular, if l > 0 then S′, and hence
S0, is necessarily C∗-ruled, hence S′ cannot be exceptional. The analysis of fibers
(Suzuki’s formula) leads to the corollary that there exist one or two contractible
vertical curves for a given C∗-ruling. Now if κ̄(S0) = 1 then this ruling is unique
(given by a multiple of the logarithmic canonical divisor of S0), hence l = 1, 2.
Consider now the case κ̄(S0) = 0. Here the problem is more difficult, as there may
be more C∗-rulings of S′. In case S′ is smooth it was shown in [13] that l = 1. In
case S′ is singular we have computed the number and types of possible C∗-rulings
of S0 in [30, Theorem 6.12](one can do the same if S′ is smooth in a similar way).
Since this number is finite we see that l is finite and nonzero. Looking more closely
at the computations one deduces that l ≤ 2 (cf. Corollary 6.13. loc. cit). �

Example 10.2. Let π : S → C2 be the restriction of the projection (x, y, z) →
(x, y) to the surface S = {(x, y, z) ∈ C3 : zn = f(x, y)}, where n ≥ 2. Then π
is a branched cover with the curve C = {(x, y) ∈ C2 : f(x, y) = 0} as the branch
locus. Suppose S is a smooth Q-homology plane. Then C is smooth and we have
1−χ(C) = 1−χ

(
π−1(C)

)
= 1−χ(S)+χ

(
S−π−1(C)

)
= nχ(C2−C) = n

(
1−χ(C)

)
,

hence χ(C) = 1. If U is any smooth affine curve then it is noncomplete, so its Euler
characteristic is smaller than the Euler characteristic of the smooth completion U ,
hence χ(U) ≤ 1 − 2g(U), where g is the genus. In case U is irreducible it follows
that χ(U) ≥ 0 only if U ∼= C1 or U ∼= C∗. In particular, some component of
C ∼= π−1(C) is an affine line, so by Theorem 10.1 S is not of general type. In fact
either κ̄(S) = −∞ or S is C∗-ruled. Smooth Q-homology planes of this kind have
been classified in [21].

11. Smooth Q-homology planes of general type

Let S′ be a smooth Q-homology plane of general type, i.e., κ̄(S′) = 2. We know
already that S′ is rational. By Theorem 10.1 S′ contains no contractible curves,
which implies that its snc-minimal completion (S,D) is almost minimal. We can
assume that this completion is balanced. Since S′ is neither C1- nor C∗-ruled, D
contains no nonbranching 0-curves, so any flow inside D is trivial. It follows that
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the balanced completion of S′ is unique. As for now there is no classification, but
there are some partial results.

The first example of such a surface which was shown to be nonisomorphic
to C2 is the famous example of Ramanujam ([36]). We know now infinitely many
examples of this kind. One method of construction of Q-homology planes of general
type is to use C(n∗)-rulings with n ≥ 2. For n = 2 this was done in [26]. Another
method was used by tom Dieck and Petrie.

Definition 11.1. Let (S,D) be a completion of S′ for which there exists a
birational morphism f : (S,D) → (P2, f∗D). Then f∗D is called a plane divisor
of S′. If f∗D is a sum of lines then it is a linear plane divisor and we say that S′

comes from the line arrangement f∗D.

In [39] it was noticed that an inequality of Hirzebruch bounds the number
of types of possible linear plane divisors for smooth Q-homology planes, a list of
these divisors has been given. In [42] a general algorithm for recovering smooth
Q-homology planes (in fact countable series of them) starting from a given rational
divisor on a minimal rational complete surface is described. The conjecture that
all smooth Q-homology planes of general type have linear plane divisors is not true
by an example of tom Dieck (cf. [40]). Tom Dieck’s smooth Z-homology plane has
a nontrivial automorphism group (it is necessarily finite, as S′ is of general type),
so is also a counterexample to the earlier conjecture of Petrie [33].

Example 11.2. Let C ⊆ P2 be an irreducible curve. Recall that a singular
point p ∈ C is a cusp if C is locally irreducible at p. Since C ↪→ P2 induces a
monomorphism on H2(·,Q), by the Lefschetz duality and by the long exact sequence
of the pair (P2, C) the Betti numbers of SC = P2 \ C are b2(SC) = b1(C) and
bi(SC) = 0 for i = 1 and i > 2. Assume that C is rational and cuspidal, i.e.,
it has only cusps as singularities. Then SC is a smooth Q-homology plane (these
conditions are in fact equivalent). By [43] if C has two cusps then κ̄(SC) ≥ 0 and
if it has more than two cusps then SC is of general type. The literature on plane
cuspidal curves is rich, see for example [4, 7] and references there.

We now list some conjectural properties of smooth Q-homology planes.

Conjecture. Let S′ be a smooth Q-homology plane of general type and let
(S,D) be its minimal smooth completion.

(A) S′ has a plane divisor consisting of lines and conics.
(B) S′ admits a C(3∗)-ruling.
(C) (KS + D)2 = −2, or equivalently KS · (KS + D) = 0.
(D) S′ is rigid and has unobstructed deformations.
(E) The set of all possible Eisenbud –Neumann diagrams for smooth Q-ho-

mology planes is finite.

In [41] conjectures (A) – (C) have been stated and verified for all known smooth
Z-homology planes. Sugie [38] analyzed C(n∗)-rulings on smooth Q-homology planes
and classified possible singular fibers for n = 2. Flenner and Zaidenberg [6, Propo-
sition 6.12] have shown that part (D), which implies (C), holds for smooth Q-
homology planes of general type having linear plane divisors. See [47] for (D), (E)
and related conjectures.

Recently, the following result has been proved [11].



RECENT PROGRESS IN THE GEOMETRY OF Q-ACYCLIC SURFACES 285

Theorem 11.3. Let S′ be a smooth homotopy plane of general type. Then
AutS′ is cyclic, its action on S′ has a unique fixed point and is free off this point.

It is not known whether AutS′ has to be cyclic for a singular Q-homology plane
with smooth locus of general type.

12. Smooth locus of general type

Let S′ be a singular Q-homology plane with smooth locus S0 of general type,
i.e., κ̄(S0) = 2. By Lemma 6.2 S′ has a unique singular point and this point is of
quotient type. This means that Ê is either a chain if this point is a cyclic singularity
or a negative definite rational fork if not. Since S′ is logarithmic, it is rational. By
Theorem 10.1 it contains no topologically contractible curves, which implies that
the snc-minimal completion (S,D + Ê) of S0 is almost minimal. Arguing as above
we see that in fact this snc-minimal completion is unique and does not contain
nonbranching 0-curves. Again, there is no classification, but there are some partial
results.

Note that due to the existence of the transfer homomorphism for branched
coverings (cf. [37]) the quotient of a smooth Q-homology plane of general type by
its automorphism group is a Q-homology plane (with smooth locus of general type).

A priori there is no restriction on the Kodaira dimension of S′. However,
refining the methods of Koras –Russell [19] M. Koras and the author have obtained
the following theorem (this is also a part of the thesis of the author written under
the supervision of M. Koras, cf. [32]).

Theorem 12.1. Singular Q-homology planes with smooth locus of general type
have nonnegative Kodaira dimension.

The cases κ̄(S′) = 0, 1 and especially the case κ̄(S′) = 2 have not been analyzed
systematically as for now. Also the number of known examples is much smaller
than in the case of smooth Q-homology planes. For example, similarly as in the
smooth case, one could ask if S0 has a completion (S,D+Ê) admitting a birational
morphism f : S → P2 with f∗(D + Ê) a sum of lines and conics. Even the case
when f∗(D + Ê) is a sum of lines has not been studied.

In the known examples of singular Z-homology planes of general type the local
fundamental group of the singular point (which has order equal to d(Ê)) is cyclic
of order not bigger than six. As for now the following result in this direction has
been proved ([11]):

Theorem 12.2. A singular Z-homology plane with smooth locus of general
type has a cyclic quotient singularity.
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