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Abstract. Given a generalized log canonical or a Q-factorial log surface (X, D) defined over an
algebraically closed field of arbitrary characteristic we define and construct its almost minimal model,
whose underlying surface has singularities not worse than X and which differs from a minimal model
by a contraction of some curves supported in the boundary only. For boundaries of type rD, where
D is reduced and r ∈ [0, 1] ∩ Q, we show that if X is smooth or r ∈ [0, 1

2 ] ∪ {1} then the construction
respects (1− r)-divisorial log terminality and (1− r)-log canonicity. When X is singular and r ∈ ( 1

2 , 1)
this is false in general.

1. Main results

An important tool in the study of quasi-projective surfaces and of log surfaces is the logarithmic
version of the Minimal Model Program (MMP) [KM98], which finds a birational model whose log
canonical divisor has uniform numerical properties. It is well known that in dimensions bigger than
two a minimal model of a smooth projective variety can be singular [Mat02, Example 3.1.3]. The
same problem appears naturally for quasi-projective surfaces and log surfaces with nonzero boundary
[KM98, Example 3.49]. Whenever the MMP is used to understand the geometry of a smooth variety,
passing to a singular model makes the analysis more difficult. To avoid this, for log smooth surfaces
with reduced boundary Miyanishi developed the notion of an almost minimal model [Miy01, 2.3.11].
It is related to a minimal model by a well described morphism, which we call a peeling, see Definition
3.11, contracting only some curves supported in the boundary. For a log smooth surface with reduced
boundary an almost minimal model, unlike the minimal model, is smooth and one shows that it is in
fact log smooth. Understanding the process of almost minimalization gives an effective tool to analyze
log surfaces. In particular, it helps to obtain various structure theorems, see [Miy01, §2-3].

We show that the idea of almost minimalization can be used more widely. Given an MMP run
f : (X,D) −→ (X,D) on a log surface defined over an algebraically closed field of arbitrary character-
istic we define its almost minimalization f# : X −→ X ′ as the unique KX -MMP over X, see Definition
3.5, and we call (X ′, f#

∗ D) an almost minimal model of (X,D). By construction, when measured in
terms of log discrepancies, X ′ is not more singular than X (see Lemma 2.9). However, describing
log singularities of an almost minimal model requires a detailed analysis of the almost minimalization
morphism, which amounts to the analysis of reordering of contractions of log exceptional curves. For
this we introduce general notions of peeling, squeezing, redundant and almost log exceptional curves,
see Section 3C. The non-almost-minimality of a log surface is witnessed by the existence of an almost
log exceptional curve, necessarily not supported in the boundary, see Corollary 3.8. Almost log excep-
tional curves keep some extremal properties of log exceptional curves, which makes them especially
important. In particular, their intersection with the boundary is well controlled.

Given a quasi-projective surface one can make it into a log surface in numerous ways. The freedom
comes from a choice of a completion and from a choice of coefficients of boundary components. In
practice we concentrate on uniform boundaries, that is, the ones of type rD, where D is reduced
and r ∈ [0, 1] ∩Q. If (X, rD) is (1− r)-divisorially log terminal ((1− r)-dlt) or (1− r)-log canonical
((1−r)-lc), see Definition 2.5, then so is its image under the contraction of every log exceptional curve,
hence its minimal model, too. In general these properties of log singularities are not respected by the
process of almost minimalization, see Example 5.9. Nevertheless, we prove that they are inherited by
almost minimal models in case X is smooth or r ∈ [0, 1

2 ] ∪ {1}. For X singular and r ∈ (1
2 , 1) we

construct counterexamples.
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Theorem 1.1. Let (X,D) be a log surface with reduced boundary and let r ∈ [0, 1] ∩Q. Assume that
(X, rD) is (1− r)-dlt ((1− r)-lc) and one of the following holds:
(1) X is smooth,
(2) r ∈ [0, 1

2 ] ∪ {1}.
Then every almost minimal model of (X, rD) is (1 − r)-dlt (respectively, (1 − r)-lc). Moreover, if
1
r ∈ N then each intermediate model in the process of almost minimalization is (1− r)-lc.

The theorem implies for instance the following result by Miyanishi, see [Miy01, p. 105].

Corollary 1.2. An almost minimal model of a log smooth surface with a reduced boundary is log
smooth.

Proof. Let (X,D) be a log smooth surface with a reduced boundary. By Lemma 2.9 log discrepancies
of the underlying surfaces improve in the process of almost minimalization. Since X is terminal, each
of the intermediate models is terminal, hence smooth. Since (X,D) is dlt, the theorem implies that
an almost minimal model is dlt, hence log smooth. �

The new parameter r gives additional flexibility to the theory. Previously we treated the case
r = 1

2 [Pal19]. This instance of the construction turned out to be especially useful for the difficult
class of rational surfaces of log general type, which share many properties with projective surfaces
of general type and at the same time have rich birational geometry. The analysis of the process of
almost minimalization for r = 1

2 and complex affine X \D was a key tool in the recent proof of the
Coolidge-Nagata conjecture [Pal14], [KP17] and in obtaining classification results for rational cuspidal
curves [PP17], [PP19], [KP22]. Recently, it allowed to obtain strong classification results for Q-acyclic
surfaces [Peł21], an interesting class of plane-like surfaces studied for a long time, see [Miy01, §3.4].

The content of the article is as follows. We discuss necessary properties of the MMP in the class
of generalized MR log canonical surfaces introduced by Fujino, which contains Q-factorial and log
canonical surfaces. We discuss the geometry of log exceptional curves of the first and second kind; see
Definitions 2.3, 2.13. In Section 3A we discuss the process of reordering of contractions of an MMP
run of the first and second kind, including a characterization of MMP runs for surfaces as birational
morphisms increasing discrepancies of the contracted curves, see Corollary 3.2. We discuss the unique-
ness of almost minimalization and its properties for compositions in Section 3B. To effectively describe
the process we generalize Miyanishi’s ’theory of peeling’, defining the peeling of a boundary as a com-
position of a maximal sequence of contractions of log exceptional curves supported in the boundary
and its images, see Definition 3.11. We then describe how to construct an almost minimal model in
steps, successively contracting redundant components of D and almost log exceptional curves, which
are proper transforms of log exceptional curves, see Definition 3.12 and Remark 3.18. In Section 3E
we discuss analogous properties for contractions of log exceptional curves of the second kind, that is,
the ones intersecting the log canonical divisor trivially.

In Section 4 we review some properties of log canonical surface singularities and in Section 4C
we work out characterizations of peeling, redundant and almost log exceptional curves of the first
and second kind for a reduced boundary in a generality which later allows to use it in the analysis
of uniform boundaries. Since almost log exceptional and redundant curves are not necessarily log
exceptional themselves, log singularities can get worse in the process of almost minimalization. For
uniform boundaries we are able to give a complete description of such situations, and hence we are
able to control the behavior of log singularities under almost minimalization. Theorem 1.1 is proved
at the end of Section 5.

In Section 5D we introduce the notion of a weighted Kodaira dimension for quasi-projective surfaces
and in Section 6 we make an explicit discussion of the case r 6 1

2 .
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2. Preliminaries

We work over an algebraically closed field k of arbitrary characteristic. A curve is an irreducible
and reduced variety of dimension 1.

2A. Log Minimal Model Program for surfaces

Given a normal surface, a boundary is a Weil Q-divisor whose coefficients of irreducible components
are between 0 and 1. A log surface (X,D) consists of a normal projective surface X and a boundary D
such that KX +D is Q-Cartier. The Minimal Model Program works in the class of Q-factorial surfaces
and in the class of log canonical surfaces, see [Fuj12], [Tan14] and [FT12], cf. [KK94]. Recently it has
been generalized to the class of GMRLC log surfaces [Fuj21, Theorem 1.5], which contains both of
them.

Given a log surface (X,D) and a proper birational morphism from a normal surface f : Y −→ X,
the log pullback of D is defined as the unique Weil Q-divisor DY on Y such that
(2.1) KY +DY ∼Q f∗(KX +D) and f∗DY = D.

Definition 2.1. Let (X,D) be a log surface. If there exists a normal Q-factorial algebraic surface Y
and a proper birational morphism Y −→ X such that DY is a boundary then we say that (X,D) is a
generalized MR log canonical (GMRLC) surface.

A log surface is log smooth if X is smooth and D has simple normal crossings. Given a projective
morphism f : X −→ S from a normal surface X onto an algebraic variety S and a Q-Cartier divisor
D on X we say that D is f -nef (f -ample) if D · E > 0 (respectively, D · E > 0) for every curve E
contracted by f (cf. [KM98, Theorem 1.44]). We say that D is f -semi-ample if there exists a morphism
g : X −→ Y over S such that D ∼ g∗A for some f ◦ g−1-ample Q-Cartier divisor A on Y (cf. [Fuj11a,
Lemmas 4.13, 4.14]). We will use the following facts.

Lemma 2.2 ([Fuj21, 4.3, 4.4]). Let (X,D) be a GMRLC surface.
(1) If f : X −→ Z is a proper birational morphism onto a normal surface such that −(KX + D) is

f -nef then (Z, f∗Z) is GMRLC.
(2) If D′ is a boundary such that D′ 6 D then (X,D′) is GMRLC. In particular, KX and all compo-

nents of D are Q-Cartier.

By a contraction we mean a morphism between normal varieties which has connected fibers. Writing
a birational contraction between log surfaces as f : (X,D) −→ (X ′, D′) we always assume that D′ =
f∗D. The exceptional divisor Exc f is the sum of curves contracted by f .

Definition 2.3 (A log exceptional curve). Let (X,D) be a log surface. A curve l⊆ X is log exceptional
if
(2.2) l · (KX +D) < 0 and l2 < 0.
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By the logarithmic contraction theorem [Fuj21, Theorem 5.5] there exists a birational contraction
of l, which we denote by ctrl. It is known that l is a rational curve and l · (KX + D) > −2 [Fuj21,
Theorem 5.6]. We emphasize that the cone theorem and the contraction theorem hold for arbitrary
projective log surfaces, also in the relative form, but in this generality the log exceptional curve does
not have to be Q-Cartier, and then the direct image of a log canonical divisor can be non-Q-Cartier.

We have the following Corollary from Lemma 2.2.

Remark 2.4 (Direct images of Q-Cartier divisors). Let l be a log exceptional curve on a log surface
(X,D). The following hold.
(1) l is Q-Cartier if and only if the direct image of KX +D under ctrl is Q-Cartier.
(2) If l is Q-Cartier then its contraction maps Q-Cartier divisors to Q-Cartier divisors.
(3) If (X,D) is GMRLC then l is Q-Cartier.

Proof. Let f : (X,D) −→ (X ′, D′) be the contraction of l.
(1) Since KX +D is Q-Cartier, the claim follows from the linear equivalence KX +D ∼ f∗(KX′ +

D′) + al, where a > 0.
(2) Let G be a Q-Cartier divisor on X. Then G+ al for some a ∈ Q is a Q-Cartier divisor trivially

intersecting l, hence by the contraction theorem [Fuj21, Theorem 5.5(iii)] G + al = f∗C for some
Q-Cartier divisor C on X ′. Then f∗G = C is Q-Cartier.

(3) By Lemma 2.2 the divisor KX′ +D′ is Q-Cartier, hence (1) implies that l is Q-Cartier. �

If l is a log exceptional curve on a GMRLC log surface then KX + l is Q-Cartier by Lemma 2.2(2)
and Remark 2.4. Since the coefficient of l in D is at most 1 and D > 0, we get l · (KX + l) < 0. If
the log surface is log canonical of Q-factorial then it follows that l∼= P1, see [Tan14, Theorem 3.19],
cf. [KK94, Lemma 2.3.5].

By a partial MMP run on log surface (X,D) (a partial (KX +D) -MMP) we mean a composition
of a sequence of birational contractions

(2.3) (X,D) = (X1, D1) ϕ1−→ . . .
ϕn−−→ (Xn+1, Dn+1)

between log surfaces such that each ϕi is a contraction of a log exceptional curve on (Xi, Di). An
MMP run is a maximal partial MMP run.

Assume that (X,D) is GMRLC. Then each (Xi, Di) is a GMRLC log surface by Lemma 2.2(1) and
each Excϕi is automatically Q-Cartier by Remark 2.4. Moreover, if (X,D) is Q-factorial (respectively,
log canonical) then each (Xi, Di) is Q-factorial (respectively log canonical). The output of an MMP
run is minimal, i.e. has no log exceptional curve. By [Fuj21, Theorem 1.5] on a minimal GMRLC log
surface either the log canonical divisor is semi-ample or its negative is f -ample for some contraction
of positive relative dimension and relative Picard rank 1.

We note that a Q-factorial algebraic surface is automatically quasi-projective [Fuj12, Lemma 2.2]
and that every log terminal surface is Q-factorial, see Remark 2.7.

2B. Discrepancies

Singularities of log surfaces and their changes under a run of an MMP are conveniently measured in
terms of log discrepancies, see [KM98, §2.3]. Given a log surface (X,D) and an irreducible component
E of D we denote by coeffE(D) the coefficient of E in the irreducible decomposition of D. Given a
proper birational morphism from a normal surface f : Y −→ X for a prime divisor E on Y we define
the coefficient of E over (X,D) and the log discrepancy of E over (X,D), as, respectively (see (2.1))

(2.4) c(E;X,D) = coeffE(DY ) and ld(E;X,D) = 1− coeffE(DY ).

They depend only on the valuation of the field of rational function on X associated with E, not on
f . Let E(f) denote the set of prime divisors contracted by f . Then Exc f =

∑
E∈E(f)E. We have a

linear equivalence over Q:

(2.5) KY + f−1
∗ D + Exc f ∼ f∗(KX +D) +

∑
E∈E(f)

ld(E;X,D)E.

We write ld(E) instead of ld(E;X,D) if X and D are clear from the context. We call ldY (X,D) =∑
E∈E(f) ld(E;X,D)E the log discrepancy divisor. If S is a set of divisors over X then we put ld(S) =
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inf{ld(E) : E ∈ S}. A divisor over X is a divisor on some Y as above. It is exceptional if its image
on X has codimension bigger than 1. We define the log discrepancy of (X,D) as
(2.6) ld(X,D) = inf{ld(E;X,D) : E is an exceptional divisor over X}.
and the total log discrepancy of (X,D) as
(2.7) tld(X,D) = inf{ld(E;X,D) : E is a divisor over X}.
Thus tld(X,D) = min(ld(X,D), {ld(E) : E is a component of D}). We put ld(X) = ld(X, 0).
Definition 2.5 (ε-lc surfaces). Let ε ∈ [0, 1] ∩ Q. A log surface (X,D) is ε-log canonical (ε-lc) if
tld(X,D) > ε. It is ε-divisorially log terminal (ε-dlt) if it is ε-log canonical and ld(E(f)) > ε for some
log resolution f .

In particular, if (X,D) is ε-lc then the coefficients of components of D do not exceed 1−ε. However,
even if (X,D) is ε-dlt, the boundary D can have components with coefficient equal to 1− ε. Note also
that for ε 6= 0 an ε-lc log surface is log terminal, hence Q-factorial, see Remark 2.7.
Remark 2.6. When we blow up the point of intersection of two components of a boundary of a log
smooth surface with log discrepancies u1 and u2 then the new exceptional curve has log discrepancy
u1 + u2. It follows that the infimum in (2.7) can be computed on the set consisting of components of
D and exceptional curves of any fixed log resolution. Hence ε-divisorial log terminality for ε 6= 0 and
ε-log canonicity can be checked using any log resolution.
Remark 2.7 (Surface singularities and MMP). Let X be a normal surface. Since the intersection
matrix of a resolution of singularities of X is negative definite [Mum61], every Weil Q-divisor has a
uniquely determined pullback intersecting trivially all exceptional curves. This determines uniquely a
Q-valued intersection product of Weil Q-divisors on X consistent with the projection formula. Then
the formula (2.5) defining log discrepancies extends to pairs (X,D) for which KX+D is not necessarily
Q-Cartier. In particular, it allows to define numerically dlt (numerically lc) surfaces as the ones for
which log discrepancies of some log resolution are positive (non-negative), see [KM98, §4.1]. However,
it turns out that in both cases KX + D is in fact Q-Cartier. Numerically dlt surfaces have rational
singularities and are Q-factorial; see [KM98, 4.11, 4.12], [FT12, 6.3, 6.4]. Since the dual graphs of
minimal resolutions of numerically lc surfaces are classified, see [Kol92, §3] and [KM98, §4.1], the
rationality of numerically dlt surfaces can be verified directly, too [Art66, Theorem 3], and then the
Q-factoriality follows by [Lip69, 17.1].

We need the following results. Note that for surfaces intersections of Weil divisors with curves are
well defined by Remark 2.7, so the numerical definitions of f -nef and f -ample divisors extend to Weil
Q-divisors. We note that the two lemmas below work in any dimension under the assumption that
KX +D, KX′ + f∗D and A are Q-Cartier. For surfaces this assumption can be dropped.
Lemma 2.8 ([KM98, 3.38]). Let f : X −→ X ′ be a proper birational morphism between normal
surfaces and let D be a Q-divisor on X. If −(KX +D) is f -nef then for every exceptional divisor E
over X ′ we have

ld(E;X ′, f∗D) > ld(E;X,D).
If additionally −(KX+D) is f -ample and f is not an isomorphism over the generic point of the center
of E on X ′ then the inequality is strict.
Lemma 2.9 (Negativity lemma [KM98, 3.39]). Let f : X −→ X ′ be a proper birational morphism
between normal surfaces and let A be a Q-divisor on X. If f∗A is effective and −A is f -nef then A is
effective and SuppA = f−1(Supp f(A)).
Corollary 2.10 (f -nef canonical divisor). Let f : X −→ Y be a birational morphism between normal
surfaces such that KX is f -nef. Then f∗KY ∼ KX + E for some effective divisor E such that
SuppE ⊆ Supp Exc f . Moreover, if Exc f is connected then SuppE = Supp Exc f , unless E = 0.
Proof. Apply Lemma 2.9 to A = f∗KY −KX . �

Lemmas 2.8 and 2.2(1) give the following corollary.
Corollary 2.11. Let (X,D) be an ε-lc log surface for some ε > 0 and f : X −→ X ′ a birational
morphism onto a normal surface such that −(KX +D) is f -nef. Then (X, f∗D) is an ε-lc log surface.
If (X,D) is ε-dlt and −(KX +D) is f -ample then (X ′, f∗D) is ε-dlt.
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It follows from Corollary 2.11 that the outcome of an MMP run on an ε-dlt log surface is ε-dlt.
Example 2.12 reminds that in the above corollary it is important to have a bound on boundary
coefficients, as a contraction of a boundary component may decrease the global log discrepancy (but
not the total log discrepancy).

Example 2.12 (Global log discrepancy may decrease). Let X = Fn for n > 3. Let X −→ X ′ be the
contraction of the negative section D. We have (KX +D) ·D < 0, f∗D = 0 and ld(D;X ′, f∗D) = 2

n >
1− coeffD(D) = ld(D;X,D), in agreement with Lemma 2.9. At the same time we have ld(X ′, f∗D) =
2
n < 1 = ld(X,D).

2C. Curves of the second kind

Sometimes it is useful to contract curves intersecting the log canonical divisor trivially, too.

Definition 2.13. A curve l⊆ X is log exceptional of the second kind on (X,D) if

(2.8) l · (KX +D) = 0 and l2 < 0.

Such curves appear in the construction of a log canonical model. By [Tan14, Theorem 3.19], on
log canonical and on Q-factorial surfaces they are either isomorphic to P1 or O(m(KX + l))|l ∼= Ol

for every positive m for which m(KX + l) is Cartier. As an example the reader may consult [Miy01,
2.4.4-12], where a description of snc-minimal reduced boundary divisors consisting of log exceptional
curves of the second kind is given.

Remark 2.14. A log exceptional curve l of the second kind on a GMRLC log surface (X,D) is
Q-Cartier, unless l∩D = ∅ and l ·KX = 0.

Proof. If l is a component of D then it is Q-Cartier by Lemma 2.2. Assume it is not a component of
D. For f = ctrl: X −→ X ′ we have KX = f∗KX′ + al for some a > 0, so al is a Q-Cartier divisor.
If l · KX 6= 0 then a > 0 and hence l is Q-Cartier. We may thus assume that l · KX = 0. Then
l ·D = 0. It follows that l is disjoint from D. �

Let l be a curve on a GMRLC log surface (X,D). We say that l is an isolated reduced component
of D of elliptic type if l is a connected component of D such that coeffl(D) = 1 and l· (KX + l) = 0.
By Remark 2.14 l is Q-Cartier.

Lemma 2.15. Let l be a log exceptional curve of the first or second kind on a GMRLC log surface
(X,D). Then there exists a contraction ctrl: (X,D) −→ (Y,B) of l, unless one of the following holds:
(1) l is an isolated reduced component of D of elliptic type,
(2) l is a non-Q-Cartier KX-trivial curve disjoint from D.
If the contraction exists then (Y,B) is a GMRLC log surface and κ(KX +D) = κ(KY +B).

Proof. Assume that the contraction exists. Then (Y,B) is a GMRLC log surface by Lemma 2.2(1).
Let n be an integer such that n(KY +B) is Cartier. Since π∗(KX +D) = KY +B, we get h0(n(KX +
D)) 6 h0(n(KY +B)). Write π∗(KY +B) = KX +D−al for some a ∈ Q. Since l is log exceptional of
the first or second kind, we have a > 0, so h0(n(KY +B)) 6 h0(n(KX +D)−nal) 6 h0(n(KX +D)).

By Remark 2.14 and by (2) we may assume that l, and hence KX + l, is Q-Cartier. Let c =
coeffl(D). Assume that l·(KX+l) > 0. Then 0 = l·(KX+D) = l·(KX+l)+(1−c)(−l2)+l·(D−cl),
so since each term is non-negative, l is an isolated reduced elliptic component of D, which gives (1).
We may now assume that l · (KX + l) < 0. Then the existence of the contraction follows from
the logarithmic contraction theorem, see [Fuj21, Theorem 5.5] (note that (X, l) is not necessarily
GMRLC). �

We define a partial MMP run of the second kind as a composition of a sequence (2.3) of birational
contractions between log surfaces such that each ϕi is a contraction of a log exceptional curve of the
first or second kind on (Xi, Di). An MMP run of the second kind is a maximal partial MMP of the
second kind. If (X,D) is GMRLC then by Lemma 2.2(1) each (Xi, Di) is GMRLC.

We note that the existence of a contraction of a log exceptional curve of the second kind as in
Lemma 2.15 is subtle in general, see Example 2.16, so the MMP of the second kind may stop even
though a log exceptional curve of the second kind exists. Since log exceptional curves of the second
kind have trivial log discrepancy, it follows that if the initial log surface is log canonical then so is the
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final one. On the other hand, the process does not respect Q-factoriality, which is why it is better to
work with GMRLC surfaces.

The following example shows that the exception in Lemma 2.15(1) may occur. Part (1) is due to
Hironaka, see [Har77, Example 5.7.3].

Example 2.16 (Problems with contractions of curves of the second kind).
(1) A log exceptional curve of the second kind may be non-contractible. Let σ : X −→ P2 be a blowup

in distinct points p1, . . . , pn ∈ P2, n > 10 lying on an elliptic curve and let l⊆ X be the proper
transform of that curve. We have KX + l∼ 0 and l2 = 9− n < 0, so l is log exceptional of the
second kind on (X, l). If there exists a contraction of l then the points are Z-linearly dependent
in the group law of σ(l). Indeed, denoting the contraction by π : X −→ Y and taking a very
ample divisor H on Y not passing through π(l) we see that the divisor σ∗π∗H meets the elliptic
curve only in the chosen points, hence induces a nontrivial relation between p1, . . . , pn. Choosing
the points to be independent we get lwhich is not contractible (in the category of schemes). Such
choice is possible as long as the rank of the elliptic curve, dimQ(Pic0(σ(l)) ⊗ Q), is not smaller
than n, for instance infinite. For algebraically closed fields the latter holds if and only if the field
is not an algebraic closure of a finite field, see [FJ74, Theorem 10.1] and [Tan14, Fact 2.3].

(2) A contraction of a log exceptional curve of the second kind may destroy Q-factoriality. Let
π : X −→ Y be the minimal resolution of a projective cone over an elliptic curve E ⊆ P2 and let l

be the exceptional divisor. Being smooth, X is Q factorial. Clearly, l∼= E and l· (KX + l) = 0 by
adjunction, so l is log exceptional of the second kind. We have Cl(Y ) ∼= Cl(E) [Har77, Exercise
II.6.3(a)] and the line over any non-torsion point of E is a non-Q-Cartier Weil divisor, hence Y is
not Q-factorial. Note that KY is Q-Cartier by adjunction, [KM98, Theorem 5.50].

Remark 2.17. Let us note that in Example 2.16(1) it is also possible to choose the centers of the
blowup so that the contraction of l exists. To see this let the centers be the points of intersection
of the cubic σ(l) with some curve C ⊆ P2 of degree at least 4 meeting it normally. Then the linear
system of C ′ := σ−1

∗ C contains l+ (degC − 3)σ−1
∗ L, where L is a line not passing through the points

of C ∩ σ(l), hence contains no curve in the base locus. It follows that some |nC ′|, n > 0 has no base
points. Since for any curve U 6= l we have U ·C ′ = U · l+ (degC − 3)σ(U) ·L > 0, we see that |nC ′|
is the contraction of l.

3. Almost minimalization

3A. Relative MMP and reordering contractions

Although a run of an MMP on a log surface (X,D) improves log singularities (Lemma 2.8), sin-
gularities of the underlying surface X may easily get worse for contractions of exceptional curves
contained in the boundary. For instance, even if X is smooth, its image may be singular, see Example
3.14. Passing to almost minimal models allows to delay such contractions. Before going into details,
we need some preparations.

Recall that given a projective morphism of normal varieties f : X −→ Y and a divisor D on X one
defines the relative MMP over Y . For surfaces we simply require that in the sequence (2.3) proper
transforms of the contracted curves are contained in the fibers of f . Then each (Xi, Di) has an induced
projective morphism fi : Xi −→ Y . The following result will be used frequently, cf. [Kol13, 1.35] and
[Fuj11b].

Lemma 3.1 (The minimal model of a birational morphism). Let (X,D) be a GMRLC log surface and
f : X −→ Y a birational morphism onto a normal surface. Then there is a unique (KX+D)-MMP run
over Y , which we denote by fD,min. Moreover, fD,min factors through the contraction of f -exceptional
curves E with ld(E;Y, f∗D) > ld(E;X,D).

Proof. (1) Let l, m be distinct log exceptional curves on (X,D) contracted by f and let g : (X,D) −→
(X ′, D′) be the contraction of m. By Lemma 2.2 (X ′, D′) is a (GMRLC) log surface. Since Exc f is
negative definite, g(l)2 < 0. We have g∗(KX′+D′) = KX+D−um, where u = (m·(KX+D))/m2 > 0,
hence g(l) · (KX′ +D′) = l· g∗(KX′ +D′) 6 l· (KX +D) < 0. Thus the image of l is log exceptional
on (X ′, D′), too. By induction we infer that the exceptional divisor of fD,min is determined uniquely,
hence fD,min is unique by the normality of a minimal model.
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Put B = f∗D. We have KX + f−1
∗ B + Exc f − f∗(KY + B) =

∑
E∈E(f) ld(E;Y,B)E. Since

ld(E;X,D) = 1− coeffE(D), we can write this as

(3.1) KX +D − f∗(KY +B) =
∑

E∈E(f)
(ld(E;Y,B)− ld(E;X,D))E.

Put aE := ld(E;Y,B) − ld(E;X,D). By the uniqueness of fD,min it is sufficient to show that there
exists a partial (KX +D)-MMP over Y which contracts exactly the components with aE > 0. We may
assume that E+(f) := {E ∈ E(f) : aE > 0} is nonempty. Since the intersection matrix of the divisor
A :=

∑
E∈E+(f) aEE is negative definite, we get 0 > A2 =

∑
E∈E+(f) aEE · A, hence aEE · A < 0 for

some E ∈ E+(f). Then E · (KX +D) 6 E · A < 0, so E is log exceptional on (X,D). We obtain the
desired partial (KX +D)-MMP over Y by induction. �

A birational morphism of log surfaces f : (X,D) −→ (Y,B) is called log crepant (respectively,
crepant) if f∗(KY +B) = KX +D (respectively, f∗KY = KX). For the definition of an MMP run of
the second kind see Section 2C.

Corollary 3.2 (A characterization of MMP runs). Let (X,D) be a GMRLC log surface. Let f : X −→
Y be a birational morphism onto a normal surface and let E(f) denote the set of prime divisors
contracted by f . Then the following hold.
(1) f is an MMP run of the first kind on (X,D) if and only if ld(E;Y, f∗D) > ld(E;X,D) for all

E ∈ E(f).
(2) If ld(E;Y, f∗D) > ld(E;X,D) for all E ∈ E(f) then f = σ ◦ f ′, where f ′ is an MMP run of

the second kind on (X,D) and σ : (X ′, f ′∗D) −→ (Y,B) is a crepant morphism whose exceptional
curves are non-Q-Cartier and disjoint from f ′∗D.

Proof. By Lemma 2.8 we may assume that ld(E;Y, f∗D) > ld(E;X,D) and by Lemma 3.1 we may
assume that ld(E;Y, f∗D) = ld(E;X,D) for each E ∈ E(f). Lemma 2.2 implies that (Y, f∗D) is a
GMRLC log surface. By Lemma 2.15 we may assume that each log exceptional curve of the second
kind on (X,D) is as in (1) or (2). In particular, it follows that Exc f = E1 +E2, where E1 and E2 are
disjoint, all components of E1 are connected components of D of elliptic type and all components of
E2 are non-Q-Cartier, KX -trivial and disjoint from D. Let E be a component of E1. Gluing X − E
with Y − f(Exc f − E) we see that there exists a contraction of E; denote it by τ . It is log crepant,
its image is again a log surface. Thus we may contract components of E1 one by one, hence we may
in fact assume that E1 = 0, in which case the claim is trivial. �

Corollary 3.3 (Reordering MMP contractions). Assume that f : (X,D) −→ (X ′, D′) is a partial
MMP run of the first (second) kind on a GMRLC log surface and that f ′ : (X,D) −→ (Y,B) is a
birational morphism onto a GMRLC log surface with Exc f ′ 6 Exc f . Then f ◦ (f ′)−1 : (Y,B) 99K
(X ′, D′) is a partial MMP run of the first kind (respectively, of the second kind composed with a
crepant morphism whose exceptional curves are non-Q-Cartier and disjoint from the direct image of
B). Moreover,
(3.2) κ(KX +D) = κ(KY +B) = κ(KX′ +D′).

Proof. The rational map α := f ◦ (f ′)−1 is defined off the image of the exceptional divisor of f ′. We
argue that it is regular. We may assume that Exc f is connected, so its image is a point x′ ∈ X ′

and hence there exists an affine neighborhood U ⊆ X of x′. Let y ∈ f ′(Exc f ′). For some open
neighborhood V of y it maps V \{y} to U . Since y ∈ Y is a normal point, α is regular at y, see [Eis95,
Corollary 11.4].

By assumption (Y,B) is GMRLC. Since f is an MMP run of the first (second) kind, we have
ld(E;X,D) > ld(E;X ′, D′) (respectively, ld(E;X,D) > ld(E;X ′, D′)) for every E ∈ E(α) by Lemma
2.8. Since B = f∗D, we have ld(E;Y,B) = 1− coeffE(B) = 1− coeffE(D) = ld(E;X,D), so the claim
about α is a consequence of Corollary 3.2.

Given a birational morphism σ : X1 −→ X2 and a divisor D on X1 we have an induced injection
H0(X1, D) ↪→ H0(X2, σ∗D). It follows that κ(KX + D) 6 κ(KY + B) 6 κ(KX′ + D′). Since
(X,D) −→ (X ′, D′) is a composition of contractions of log exceptional curves of the first and second
kind, we have κ(KX +D) = κ(KX′ +D′). �

The corollary says in particular that if f is a partial MMP run then so is f ◦ (f ′)−1. The following
example reminds that in general this is not true for f ′.
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Example 3.4 (Reordering contractions). Let l1 be a (−1)-curve on a smooth projective surface X and
let l2 be a (−2)-curve meeting l1 once. The contraction of l1 +l2 is a composition of the contraction of
l1 followed by the contraction of the image of l2, which is a (−1)-curve, hence both resulting surfaces
are smooth. But it is also a composition of the contraction of l2 onto a singular (canonical) surface
Y followed by the contraction of l′1, the image of l1. Here l2 is not log exceptional on X, but l′1 is log
exceptional on Y .

3B. The definition of an almost minimalization

An inductive construction of an almost minimal model was given by Miyanishi in the special case
of log smooth surfaces with reduced boundary, see [Miy01, p. 107]. In [Pal19] we generalized the con-
struction in an analogous way to smooth completions of affine surfaces with half-integral boundaries.
Here we give a general simple definition.

Given a GMRLC log surface X (with no boundary) and a birational morphism onto a normal
surface f : X −→ Y we denote the unique relative MMP given by Lemma 3.1 by f# : X −→ Xf and
the resulting minimal model of f by fmin := f0,min : Xf −→ Y . This gives a commutative diagram
with KXf being fmin-nef:

(3.3)
X

f#
//

f ��

Xf

fmin~~
Y

Given a divisor D on X we put Df := f#
∗ D. Note that by Lemma 2.9 we have f∗minKY > KXf .

Definition 3.5 (Almost minimalization). Let f : (X,D) −→ (X,D) be a partial MMP run of a first
or second kind on a GMRLC log surface. Then f# : X −→ Xf , that is, the unique KX -MMP over
X, is called a (partial) almost minimalization of f and the log surface (Xf , Df ) is called an almost
minimal model of (X,D).

Remark 3.6. In Definition 3.5 the divisor KX and all components of D are Q-Cartier by Lemma
2.2. Since (X,D) is GMRLC, the same holds for KX and the components of D. On the other hand,
Remark 2.4 implies that KXf and the components of Df are Q-Cartier. Since (X,D) is GMRLC, the
surface X, and hence the surface Xf , is GMRLC. Moreover, Xf is Q-factorial (log canonical) if X is
Q-factorial (respectively, log canonical).

The geometry of (Xf , Df ) is to be studied. It follows from the definition that an almost minimal-
ization is a composition of contractions of lifts of some log exceptional curves on (X,D) and its images
under the contractions constituting f . The analysis of how these contractions affect the geometry of
the boundary comes down to the analysis of reordering MMP contractions for (X,D). It is well-known
that in general changing the order of contractions may lead to worse singularities of the intermediate
surfaces, see Example 3.4.

Lemma 3.7 (Relative minimalization and composition). Let f : X −→ Y and g : Y −→ Z be
birational morphisms between normal projective surfaces. Assume that X and Y are GMRLC. Then

(3.4) (g ◦ f)# = (g ◦ fmin)# ◦ f#.

Moreover, (g ◦ fmin)# factors through (g# ◦ fmin)# and the latter morphism contracts the proper
transform of Exc g#.

Proof. Put h = g ◦ f . As noted above, Xf , Yg and Xg#◦f and Xg◦f are GMRLC. By definition
(g ◦ fmin)# ◦ f# is a KX -MMP run over Z, hence by uniqueness, see Lemma 3.1, we have (g ◦ f)# =
(g ◦ fmin)# ◦ f#. Moreover (g# ◦ fmin)# ◦ f# is a KX -MMP over Yg, hence over Z, so (g ◦ f)# factors
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through it by uniqueness. This gives a commutative diagram

(3.5)

X
f#

//

f
""

Xf
(g#◦fmin)#

//

fmin
��

(g◦fmin)#

""
Xg#◦f

��

// Xg◦f

��

Y
g#

//

g
%%

Yg

��
Z

To show that (g# ◦fmin)# contracts the proper transform of G := Exc g# it is sufficient to construct
a KXf -MMP over Yg which contracts the proper transform of G. Put α = fmin. Take a component
m of G intersecting KY negatively and let σ : Y −→ Y ′ be its contraction. By Corollay 2.10 we have
KXf = α∗KY − E for some effective α-exceptional divisor E. Put m′ = α−1

∗ m. Then m′ · KXf 6
m′ · α∗KY = m ·KY < 0, so there exists a KXf -MMP over Y ′ contracting m′ whose outcome is a
birational morphism α′ : X ′ −→ Y ′ for whichKX′ is α′-nef. Thus we may replace Xf , Y , α : Xf −→ Y ,
g# : Y −→ Yg with X ′, Y ′, α′ : X ′ −→ Y ′ and g# ◦ σ−1 : Y ′ −→ Yg and we continue the construction
until the whole proper transform of G is contracted. �

Corollary 3.8. If f : (X,D) −→ (X,D) is an MMP run of the first (second) kind on a GMRLC log
surface then fmin is an MMP run on (Xf , Df ) of the first (second) kind such that Excα consists of
some components of Df and, in case f is of the second kind, of some KXf -trivial curves disjoint from
Df .

Proof. In the formula (3.1) for fmin we have aE > 0 for all exceptional curves contracted by fmin.
Assume some aE is positive. Then as in the proof of Lemma 3.1 we get a log exceptional curve E
on (Xf , Df ). We have E · Df < −E · KXf 6 0, so E is a component of D. By Remark 3.6 E is
Q-Cartier, so its contraction, call it σ, is a part of an MMP run over X and maps Q-Cartier divisors
to Q-Cartier divisors. We have σ∗(σ∗KXf ) = KXf + uE for some u > 0, hence σ∗KXf is nef. By
induction we may thus assume that fmin is log crepant. Let E be an exceptional component of fmin.
We have E ·Df = −E ·KXf 6 0. If the inequality is strict then

By Corollary 3.3 we may assume that f = fmin. Decompose f as f = f ′ ◦ σ, where σ : X −→ X ′

is a contraction of a log exceptional curve l of the first (second) kind on (X,D). Since KX is f -nef,
σ∗KX′ = KX + ul for some u > 0, which implies that KX′ is f ′-nef. By induction with respect to
the number of exceptional components of Exc f we reduce the proof to the case f = σ. If l is not a
component of D then 0 6 l ·D 6 l · (KX +D) 6 0, so the assertion is clear. �

Remark 3.9. Let the notation be as in Lemma 3.7. We note that (g ◦ f)# may contract more than
(g# ◦ α)# ◦ f#. For instance, if X is minimal over Y (that is, KX is f -nef) and Y is minimal over Z
(that is, KY is g-nef) then the latter morphism is the identity. But it can happen that at the same
time X is not minimal over Z, so (g ◦ f)# is not an isomorphism; see Example 3.10.

The following example shows that for two birational morphisms f : X −→ Y and g : Y −→ Z such
that KX is f -nef and KY is g-nef the divisor KX does not have to be (g ◦ f)-nef. By [a1, . . . , an]
we denote an snc divisor which is a chain of rational curves with subsequent selfintersection numbers
equal to −a1,−a2, . . . ,−an, respectively; cf. Section 4A.

Example 3.10 (Relatively nef canonical divisors under composition). Consider a smooth projective
surface X with a divisor [n1, 1, n2] on it, where n1, n2 are positive integers such that n1 > 3 and
n2 > 2+ 4

n1−2 . Let A be the (−1)-curve and letDi, i = 1, 2 be the component with self-intersection−ni.
Let h : X −→ Z be the contraction of A+D1 +D2 and let f : X −→ Y be the contraction of D1 +D2.
Then g = h◦f−1 : Y −→ Z is the contraction of f∗A. We have f∗KY = KX +(1− 2

n1
)D1 +(1− 2

n2
)D2,

hence f∗A ·KY = 1− 2
n1
− 2
n2
> 0. It follows that KX is f -nef and KY is g-nef, but KX is not h = g◦f -

nef. Still, h∗KZ −KX = f∗(g∗KZ −KY ) + (f∗KY −KX) is effective by Corollary 2.10.
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3C. Peeling and squeezing

Let (X,D) be a log surface. Given an MMP run ψ : (X,D) −→ (X,D), by Corollary 3.3 its almost
minimalization ψam := ψ# : (X,D) −→ (Xψ, Dψ) induces an MMP run ψmin = ψ◦ψ−1

am : (Xψ, Dψ) −→
(X,D) such that KXψ is ψmin-nef:

(3.6)
(X,D) ψam //

ψ %%

(Xψ, Dψ)

ψmin
��

(X,D)

Conversely, using (3.4) we can construct an almost minimal model of (X,D) in steps in parallel to a
construction of an MMP run ψ. We now discuss how to conveniently group these steps. Note that
Excψmin ⊆ Dψ by Corollary 3.8. The distinction between log exceptional curves contained and not
contained in the boundary leads to the definition of a peeling, cf. [Miy01, 2.3.3.6].

Definition 3.11 (Peeling, almost minimality). Let (X,D) be a log surface.
(1) A partial peeling of (X,D) (and ofD) is a partial MMP run α on (X,D) for which Excα ⊆ SuppD.

A peeling is a maximal partial peeling, i.e. a partial peeling which cannot be extended to a partial
peeling with a strictly bigger number of contracted curves.

Let α be a partial peeling of (X,D). We have a unique decomposition α = αmin ◦ αam.
(2) αam is called an α-squeezing of (X,D).
(3) α is called pure if KX is α-nef. In this case we say that (X,D) is α-squeezed.
(4) If (X,D) is α-squeezed and (α(X), α∗D) is minimal then (X,D) is called α-almost minimal.
We say that (X,D) is almost minimal (respectively, squeezed) if it is α-almost minimal (respectively,
α-squeezed) for some pure peeling α.

Definition 3.12 (Redundant and almost log exceptional curves). Let α be a pure partial peeling of
a log surface (X,D) and let l⊆ X be a curve. We say that:
(1) l is α-almost log exceptional if l* D and α(l) is log exceptional on (α(X), α∗D),
(2) l is α-redundant if l⊆ D, l ·KX < 0 and α(l) is log exceptional on (α(X), α∗D).
A curve is almost log exceptional (redundant) if it is α-almost log exceptional (respectively, α-
redundant) for some pure peeling α.

We use terms like ’α-redundant’ and ’redundant with respect to α’ interchangeably. A peeling
restricts to an isomorphism of X \D onto its image. Since a redundant curve intersects KX negatively,
for smoothX it is in particular a (−1)-curve. A redundant component ofD or an almost log exceptional
curve on (X,D) is in general not log exceptional itself, so while it can be contracted, the contraction is
not a part of an MMP run for (X,D). In particular, the effect of the contraction on (log discrepancies
of) log singularities requires a more careful analysis. Squeezing should be thought of as a useful
preparation for running an almost MMP by pre-contracting some components of D without making
the singularities of the underlying surface X worse.

Corollary 3.13.
(1) Let α be a pure partial peeling of (X,D). Then (X,D) is α-squeezed if D contains no α-redundant

component. It is α-almost minimal if additionally there are no α-almost log exceptional curves on
(X,D).

(2) (X,D) is almost minimal if and only if there exists an MMP run ψ on (X,D) for which ψam is an
isomorphism.

Proof. (1) follows from definitions. (2) If (X,D) is α-almost minimal then we take ψ = α. Now
ψam is an isomorphism, because KX is ψ-nef. Conversely, if ψam is an isomorphism then KX is ψ-nef,
hence Excψ ⊆ D by Corollary 3.8, so ψ is a pure peeling. �

Example 3.14 (Peeling and almost minimality). Let Fn, n > 2 be a Hirzebruch surface. Let C
be the negative section and Fi, i = 1, . . . , N , N > 1 be distinct fibers of the P1-fibration. Put
D = cC +

∑N
i=1wiFi, where c, w1, . . . , wN ∈ Q∩ [0, 1]. The peeling morphism is either the identity or

it contracts C. In each case the log surface (Fn, D) is almost minimal. The peeling morphism does
contract C if and only if C · (K + D) < 0, that is, if n(1 − c) +

∑N
i=1wi < 2. For instance, if all
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coefficients of D are equal to r then the condition reads as n(1− r) +Nr < 2, so peeling contracts C
if and only if N = 1 and r ∈ [1− 1

n−1 , 1].

Example 3.15 (An almost minimal surface with an α-almost log exceptional curve). Blowing up
three times on P1 × P1 we construct a smooth P1-fibered surface X with a unique degenerate fiber
T1 + T2 + T3 + L where Ti, i = 1, 2, 3 are (−2)-curves and L is a (−1)-curve meeting T2. Let F1, F2
be two smooth fibers and T0 be a section meeting T3 and having self-intersection number equal to
0. Put D = T1 + T2 + T3 + T0 + F1 + F2. The curve L is a unique (−1)-curve on X intersecting D
once. Let α be the contraction of T1 + T2. It is a pure partial peeling. There are two log exceptional
curves on (α(X), α∗D): α(T3) and α(L). Let ψ be the contraction of T1 + T2 + T3. It is an MMP run
with singular image ψ(X). (Another MMP run ψ′ has Excψ′ = T1 + T2 + L, in which case ψ′(X) is
smooth). We infer that (X,D) is a log smooth almost minimal log surface. Since L is α-almost log
exceptional, (X,D) is not α-almost minimal. Thus, on an almost minimal log surface there may exist
curves which are almost log exceptional with respect to some pure partial peeling.

Almost log exceptional (respectively, α-redundant) curves will be also called almost log exceptional
(respectively, α-redundant) curves of the first kind. Their numerical characterization will be discussed
in the next sections. For their analogues of the second kind see Definition 3.25. For convenience the
following result is formulated jointly for both kinds.

Lemma 3.16 (Almost log exceptional vs redundant). Let α be a pure partial peeling of (X,D). If
A ⊆ X is an α-almost log exceptional curve of the first or second kind then
(1) A ·KX < 0,
(2) for every s ∈ (0, 1] ∩Q the morphism ctrα(A) ◦α is a peeling of (X,D + sA),
(3) A is α′-redundant of the first kind on (X,D+ sA) for some pure partial peeling α′ of (X,D+ sA)

with Excα′ ⊆ Excα.

Proof. Let (X,D) be the image of α and let ϕ : X −→ Y be the contraction of α(A). By Corollary
2.10 we have A·KX 6 A·α∗(KX) = α(A)·KX . Since A * D, we have α(A)·KX 6 α(A)·(KX+D) 6 0.
For a curve of the first kind the latter inequality is strict and for a curve of the second kind A ·KX 6= 0
by definition, which gives (i). By Lemma 2.8 for every prime divisor E contracted by α we have

ld(E;Y, ϕ∗D) > ld(E;X,D) > ld(E;X,D) = ld(E;X,D + sA).

On the other hand,

ld(A;Y, ϕ∗D) > ld(A;X,D) = 1 > 1− s = ld(A,X,D + sA).

By Corollary 3.2 the morphism ϕ ◦ α : (X,D + sA) −→ (Y, ϕ∗D) is a peeling, hence (ii). Since α is
pure, A is the only curve in Excα + A intersecting KX negatively, hence there exists α′ as in (iii).

�

3D. Effective almost minimalization

The following lemma shows how to conveniently construct an almost minimal model of a log surface
(X,D) in parallel to a minimal model. It shows also that the construction generalizes Miyanishi’s
construction for log smooth surfaces (with the squeezing a being an analogue of an snc-minimalization),
see [Miy01, 2.3.11], cf. Remark 3.20

Lemma 3.17 (Effective almost minimalization). Given a log surface (X,D) there exists a commutative
diagram

(3.7)
(X,D) ψ0 //

ψ0 %%

(X1, D1)
α1
��

ψ1 // (X2, D2)
α2
��

ψ2 // . . .
ψn // (Xn+1, Dn+1)

αn+1
��

(X1, D1)
ψ1 // (X2, D2)

ψ2 // . . .
ψn // (Xn+1, Dn+1)

where
(1) ψ0 is a partial peeling and ψi for i > 1 is a composition of a contraction of a single log exceptional

curve Ai * Di and a partial peeling,
(2) αi is a pure partial peeling for i > 1,
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(3) ψ0 = (ψ0)am and of ψi = (ψi ◦ αi)am for i > 1, hence ψi is a composition of a contraction of an
αi-almost log exceptional curve Ai := (αi)−1

∗ Ai ⊆ Xi with a τi-squeezing, where ψi ◦αi = τi ◦ctrAi.
(4) ψ := ψn ◦ . . . ◦ ψ0 is an MMP run and (Xn+1, Dn+1) is a minimal model of (X,D).
(5) ψ := ψn ◦ . . . ◦ ψ0 = ψam and (Xn+1, Dn+1) is an almost minimal model of (X,D).
Every MMP run ψ on (X,D) can be obtained this way. Moreover, for every such diagram we have:
(6) n is the number of ψ-exceptional curves not contained in D.
(7) ld(Xi+1) > ld(Xi) for i > 0, where X0 = X,
(8) κ(KXi +Di) = κ(KX +D) for i > 1,

Proof. Clearly, every MMP run ψ on (X,D) can be decomposed (non-uniquely) as ψ = ψn ◦ . . . ◦ψ0,
where ψi are as in (1). We define inductively ψi to be an almost minimalization as in (3) and hence
by Corollary 3.8 we get the induced αi as in (2). By Lemma 3.16 Ai ·KXi < 0, so ψi is a composition
of a contraction of Ai with a τi-squeezing. Parts (4) and (6) follow from definition and part (5) follows
from equation (3.4). (7) is a consequence of the definition of almost minimalization and of Lemma
2.8. (8) follows from Corollary 3.3. �

Remark 3.18 (Summary). The above lemma shows that an almost minimal model of a given log
surface (X,D) can be constructed inductively as follows.
(1) Choose a maximal pure partial peeling morphism α of (X,D) and consider the triple (X,D,α).
(2) If there exists a curve l⊆ X such that α(l) is log exceptional then put D′ := D in case l⊆ D

and D′ := D+ l otherwise, let σ be an ctrl◦α-squeezing of (X,D′) and let α′ be a maximal pure
partial peeling extending ctrl◦α ◦ σ−1. Replace (X,D,α) with (σ(X), σ∗D′, α′) and repeat.

(3) The final (X,D) is an almost minimal model and α is a pure peeling morphism onto a minimal
model.

In part (2) note that l is necessarily a redundant component of D or an α-almost log exceptional
curve, hence a redundant component of D′. Also, σ is the composition of successive contractions
of redundant components of D′ and its respective images which are contained in l+ Excα and its
respective images.

Remark 3.19. In Lemma 3.17 choose ψ0 to be a peeling and ψi for i > 1 to be a composition of
a contraction of a single log exceptional curve Ai * Di and a peeling. Then in Lemma 3.17 αi are
(pure) peeling morphisms and (Xi, Di) are squeezed.

Remark 3.20 (Comparison with Miyanishi’s construction). Let (X,D) be a log smooth surface with
a reduced boundary. In this case there is already a definition of an almost minimal model by Miyanishi
[Miy01, 2.3.11] which is very close the one above. The difference is that in our construction ψ (and
ψ) contracts slightly less. To see the difference let C ⊆ D be a superfluous component, that is, a
(−1)-curve meeting at most two other components of D, each at most once in the sense of intersection
theory. In particular βD(C) 6 2. In Miyanishi’s construction we contract C, which is natural (as
then log smoothness is preserved), but not necessary in general and causes some minor problems.
Indeed, if βD(C) 6 1 then C is log exceptional, so there is no difference with our definition, but if
βD(C) = 2 then C · (KX + D) = 0, so C is log exceptional of the second kind, see Definition 2.8. If
such C does not meet any maximal admissible (rational) twig or fork of D (see Section 4) then it is
not almost log exceptional in our sense and does not need to be contracted. In fact it is not possible to
assure in general that the contraction of C is a part of some MMP run. Still, if one wants to contract
such curves too, then this can be done after an almost minimal model in the sense of our definition
is reached. Lemma 3.24 assures that after such additional contractions the image of (X,D) remains
almost minimal.

3E. Analogues for curves of the second kind

We now discuss analogs of the above definitions for curves of the second kind. The following lemma
implies that contractions of log exceptional curves of the second kind (if they exist, see Example 2.16)
can be delayed until an almost minimal model is reached and then they respect minimality. Recall
that given an effective Q-divisor D =

∑
diDi, where Di are distinct prime components of D we put

bDc =
∑
bdicDi, where bdic is the greatest integer not bigger than di.

Lemma 3.21 (Delaying contractions of the second kind). Let γ : (X,D) −→ (X,D) be a log crepant
birational morphism between log surfaces and let ψ : (X,D) −→ (Y ,B) be a partial MMP run of the
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first kind or of the second kind with bDc = 0. Then there exists ψ : (X,D) −→ (Y,B), an MMP
run of the first (respectively, second) kind with γ−1

∗ (Excψ) 6 Excψ, such that the induced birational
morphism γ : (Y,B) −→ (Y ,B) is log crepant. In particular, if (X,D) is minimal then (X,D) is
minimal.

Proof. By induction we may assume that ψ contracts a single log exceptional curve l of the first
(second) kind. Put l′ = γ−1

∗ l. We have l′ · (KX +D) = l · (KX +D), so l′ is log exceptional of the
first (second) kind. Contract successively l′ and log exceptional curves of the first kind contained in
the successive images of D. In case l′ is log exceptional of the second kind the contraction exists by
Lemma 2.15, since the assumption bDc = 0 implies that D has no isolated reduced components of
elliptic type. Denote the resulting morphism by ψ : (X,D) −→ (Y,B) and the induced rational map
by γ : (Y,B) 99K (Y ,B). Since Y is normal, γ is a birational morphism. This gives a commutative
diagram

(3.8)
(X,D)

γ

��

ψ // (Y,B)

γ
��

(X,D) ψ // (Y ,B)

Since ψ does not decrease log discrepancies, we have ψ∗(KY + B) = KX + D − E, where E is an
effective divisor, whose support is contained in Supp(Excψ); cf. (3.1). Let A be a component of Exc γ
and let A be its proper transform on X. We have A ⊆ Exc γ, so A · (KY +B) = A · (KX +D)−A ·E 6
A · (KX + D) = A · γ∗(KX + D) = 0. On the other hand, A · (KY + B) > 0 by the definition of ψ,
hence A · (KY +B) = 0. It follows that γ is log crepant. �

Remark 3.22. Let γ : (X,D) −→ (X,D) and ψ : (X,D) −→ (Y ,B) be as in Lemma 3.21, with
l= Excψ irreducible of the second kind. As long as the contraction of l′ = γ−1

∗ l exists, for instance
l′ is not an isolated reduced component of D of elliptic type, cf. Lemma 2.15, then all claims of the
above Lemma hold. Indeed, since γ ◦ ψ = ψ ◦ γ is log crepant, KY +B = γ∗(KY +B) is Q-Cartier.

However, it may happen that l′ is not contractible (in the category of schemes), even though l is,
see Example 3.23.

Example 3.23 (Non-reversible order of contractions of log exceptional curves of the second kind).
Let σ : X −→ P2 be a blowup as in Example 2.16(1) and let l be the proper transform of the cubic.
Assume that the centers, say p1, . . . , pn of σ are chosen so there exists a contraction of l; denote it by
ψ : X −→ Y , cf. Remark 2.17. Now pick a point p ∈ l not lying over any σ(pi), i = 1, . . . n. Denote
by γ : X −→ X be the blowup at p and put l= γ−1

∗ l, where E is the exceptional curve of γ. Clearly,
l and E are log exceptional curves of the second kind on (X, l) and by construction we have a log
crepant contraction γ of E followed by the contraction of γ(l). If there exists a contraction of l then
the induced morphism contracts the image of E, that is, the order or contractions can be reversed and
we get a commutative diagram (3.8). However, this is not always possible. Indeed, the existence of
the contraction implies that σ(p), p1, . . . pn are Z-linearly dependent in the group law of σ(l). If the
field is not an algebraic closure of a finite field then we can always pick p so that this is impossible;
cf. Example 2.16.

Lemma 3.24 (Advancing contractions of the second kind). Let α : (X,D) −→ (X,D) be a pure partial
peeling morphism and let γ : (X,D) −→ (Y ,B) be a log crepant morphism between log surfaces. Then
there exists a contraction γ : (X,D) −→ (Y,B) onto a log surface of the proper transform of Exc γ and
a commutative diagram of contractions

(3.9)

(X,D)

α
��

γ // (Y,B)

α
��

(X,D) γ // (Y ,B)

where α is a partial peeling morphism. If α is a peeling then α is a peeling.

Proof. By induction we may assume that Exc γ consists of a single log exceptional curve l of the
second kind. Let E = Excα and letD′ be the proper transform ofD onX. We first prove the existence
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of γ. We may assume that E 6= 0 and that each connected component of E meets l := α−1
∗ l. Put

Ẽ = E − ldX(X,D). We have
Ẽ = α∗(KX +D)− (KX +D

′),
so for every component E0 of E we get E0 · Ẽ = −E0 · (KX + D

′) 6 −E0 · D
′
6 0, because α is

pure. By Lemma 2.9 we obtain Ẽ > 0. We have ld(E0;X,D) > ld(E0;X,D) = 1 − coeffE0(D) > 0,
so ldX(X,D) > 0. We deduce that l is a log exceptional curve of the second kind on (X,D′ + Ẽ).
Note that the latter is a log surface, as each component of E is Q-Cartier by, see Remark 2.4. By
Lemma 2.15 it is sufficient to consider the case when l is a connected component of Supp(D′ + Ẽ).
Then l · Ẽ = 0, so since l meets every connected component of SuppE, Lemma 2.9 implies that
Ẽ = 0. Then l is a connected component of SuppD′. We have (α∗KX −KX) + (α∗D −D′) = 0, so
by Corollary 2.10 we get α∗KX = KX and α∗D = D

′. It follows that D′ · E = 0, hence l · E = 0; a
contradiction. Thus γ exists.

The induced rational map α is regular due to the normality of Y . Since for every prime exceptional
component E0 of E we have ld(E0;Y ,B) > ld(E0;X,D), by Corollary 3.3 the morphism α is a partial
peeling. We have γ∗(KY +B) = KX +D, which implies that a proper transform of a log exceptional
curve on (Y ,B) is log exceptional on (X,D). Therefore, if α is a peeling then α is a peeling. �

In an analogy to Definition 3.12 we introduce the following definition.

Definition 3.25 (Redundant and almost log exceptional curves of the second kind). Let α be a pure
partial peeling of a log surface (X,D) and let l⊆ X be a curve. We say that:
(1) l is α-redundant of the second kind if l⊆ D, l·KX < 0 and α(l) is log exceptional of the second

kind on (α(X), α∗D),
(2) l is α-almost log exceptional of the second kind if l* D, l ·KX 6= 0 and α(l) is log exceptional

of the second kind on (α(X), α∗D).
A curve is almost log exceptional of the second kind (redundant of the second kind) if it is α-almost
log exceptional (respectively, α-redundant) of the second kind for some pure partial peeling α.

Recall that if l is an almost log exceptional curve of the first or second kind on (X,D) then by
Lemma 3.16 we have l ·KX < 0. In particular, almost log exceptional curves of the second kind and
redundant curves of the second kind can be contracted.

The following example shows in particular that in the situation of Lemma 3.24 the morphism α
needs not to be pure, and hence (Y,B) does not need to be almost minimal, even if (Y ,B) is minimal.

Example 3.26 (Non-purity of the induced peeling). Let X be a smooth surface containing a chain
[1, 2], that is, two smooth rational curves l and D, such that l2 = −1, D2 = −2 and l · D = 1.
The peeling morphism α : (X,D) −→ (X,D) is the contraction of D (here D = 0), so it is pure and
α∗(KX +D) ∼ KX . It follows that l is almost log exceptional of the first kind. After the contraction
of l the image of D is a (−1)-curve, so the induced peeling contracting the image of D is not pure.

Similarly, consider a smooth surface X containing a chain [2, 1, 0]. Let D1 = [2], l = [1] and
D2 = [0] be its components. Put D = D1 + D2. The peeling morphism α : (X,D) −→ (X,D) is the
contraction of D1, so it is pure and α∗(KX + D) ∼ KX + D2. It follows that now l is almost log
exceptional of the second kind. Again, after the contraction of l the image of D is [1,−1], so the
induced peeling contracts the (−1)-curve, hence is not pure.

Definition 3.27 (Almost minimalization of the second kind). Let ψ : (X,D) −→ (X,D) be a partial
MMP run of the second kind.
(1) We call ψam a partial almost minimalization of the second kind of (X,D).
(2) If Excψ ⊆ SuppD then ψ is a partial peeling of (X,D) of the second kind and ψam a partial

ψ-squeezing of the second kind.
(3) If ψ is maximal then ψ (respectively, ψam) is called a minimalization (respectively, almost mini-

malization) of the second kind of (X,D).
(4) If ψ is a maximal partial peeling of the second kind then it is called peeling of the second kind and

ψam is called a squeezing of the second kind.

Remark 3.28. By Lemma 3.21 contractions of the second kind can be delayed, hence any MMP run
of the second kind is a composition of an MMP run with a log crepant morphism. By (3.4) it follows
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that an almost minimalization of the first kind extends to an almost minimalization of the second
kind. On the image of (X,D) under (almost) minimalization of the second kind there can exist log
exceptional curves of the second kind which are not contractible in the category of algebraic varieties
or which are contractible but the direct image of a log canonical divisor is not Q-Cartier, cf. Example
2.16.

4. Almost minimalization for reduced boundaries

We want to obtain a more explicit description of the process of almost minimalization for log
surfaces whose boundary is uniform, that is, all coefficients of prime components are equal to some
fixed number r ∈ [0, 1]. Before we do this we need to review the well-known case r = 1 in detail.

4A. Discriminants and log canonical subdivisors

Let X be a smooth projective surface and D a reduced divisor on X. We introduce or recall (see
[Fuj82], [Miy01]) some notions and notation related to the geometry of divisors and specific subdivisors,
which will be later used to discuss log discrepancy divisors and peeling morphisms. We do not assume
that D is a simple normal crossing divisor. We denote the number of components of D by #D.

By pa(D) we denote the arithmetic genus of D, that is, pa(D) := 1
2D · (KX + D) + 1. We have

pa(D1 +D2) = pa(D1)+pa(D)+D1 ·D2−1 for any divisors D1, D2 on X. Given a reduced subdivisor
T 6 D we call

(4.1) βD(T ) = T · (D − T )

the branching number of T in D. A tip of D is a component with βD 6 1 and a branching component
of D is a component with βD > 3. We say that D is rational if all its components are rational. A
component of D is admissible if it is smooth rational and its self-intersection number is at most (−2).

Let D1, . . . , Dn be the components of D. We put Q(D) = [−Di ·Dj ]i,j6n and d(0) = 1 and we call

d(D) := det(Q(D))

the discriminant of D; it does not depend on the chosen order of vertices.

Lemma 4.1 (Splitting formula for discriminants). Assume D1, D2 are two reduced divisors on a
smooth projective surface which have no common component and which intersect in unique components
T1 6 D1 and T2 6 D2, respectively. Then

(4.2) d(D1 +D2) = d(D1)d(D2)− (T1 · T2)d(D1 − T1)d(D2 − T2).

Proof. The proof follows from the additivity of the determinant function with respect to column
addition and its behavior on block-triangular matrices. �

In particular, if D is a reduced divisor with a tip D1 and this tip meets a component D2 6 D then

(4.3) d(D) = (−D2
1)d(D −D1)− d(D −D1 −D2).

If D is connected then we call it a rational tree if pa(D) = 0 and a we call it a rational cycle if
pa(D) = 1, D is not a smooth elliptic curve and has no branching component. A rational tree is
simply a connected rational snc-divisor with no rational cycle as a subdivisor. Each component of a
reducible rational cycle is rational and has βD = 2. A rational cycle is degenerated if it is not snc. In
this case it is a nodal or cuspidal rational curve or a sum of two smooth rational curves intersecting at
a unique point with multiplicity two or a triple of smooth rational curves passing through a common
point, each two meeting normally. A rational tree with no branching component is a rational chain.
If D is a rational chain or a rational cycle, and the components are ordered so that Di meets Di+1 for
i ∈ {1, . . . n− 1}, then we write D = [−D2

1, . . . ,−D2
n] in the first case and D = ((−D2

1, . . . ,−D2
n)) in

the second case. A sequence consisting of an integer r repeated k times will be abbreviated by (r)k. A
rational chain and a rational cycle are admissible if they have admissible components and are negative
definite. For chains the second condition is in fact redundant and for a reducible rational cycle it is
equivalent to one of the inequalities −D2

i 6 2 to being strict.
A component T of D is called superfluous if it is a (−1)-curve meeting at most two other components

of D, each at most once. Equivalently, after the contraction of T the image of T is a simple normal
crossing point of the image of D. Note that a log smooth completion of a smooth quasi-projective
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surface is minimal (does not dominate non-trivially some other log smooth completion) if and only if
the boundary contains no superfluous component which are not connected components of the boundary.

A rational chain T is ordered if it has a fixed ordering of its components T (1), . . . , T (m) such that
T (i) · T (i+1) = 1 for i ∈ {1, . . . ,m − 1}. By T> we denote the same chain with the opposite order of
components. The tip of a nonzero ordered chain is by definition tip(T ) = T (1). For i > 1 we put

(4.4) d(i)(T ) = d(T (i+1) + · · ·+ T (m)) and d(i)(T ) = d(T (1) + · · ·+ T (i−1))

with d(i)(0) = d(i)(0) = 0. We put also d′(T ) = d(1)(T ) = d(T − tip(T )). Let T be an admissible
ordered chain. By Lemma 4.1

(4.5) d(T ) = (−tip(T ))2d′(T )− d′(T − tip(T )).

We have 0 6 d′(T ) < d(T ) and gcd(d(T ), d′(T )) = 1, see [Fuj82, 3.5]. We put

(4.6) δ(T ) = 1
d(T ) ∈ Q ∩ (0, 1] and ind(T ) = d′(T )

d(T ) ∈ Q ∩ [0, 1)

and we call ind(T ) the inductance of T .

We now define some specific subdivisors T 6 D and depict their extended dual graphs (see [KM98,
Definition 4.6]). White graph vertices correspond to components of T and their weights (if displayed)
are negatives of their self-intersection numbers. Black vertices representD−T (they are not necessarily
distinct). The number of edges between two vertices is the intersection number of the represented
components, see Fig. 1.

A nonzero (rational) chain T 6 D whose all components are non-branching in D, that is βD(T ) 6 2,
is called a (rational) twig of D if some component of T is a tip of D (βD 6 1) and a segment of D
otherwise. A segment is non-degenerate if T meets D normally (this holds for instance if T has at
least three components). A twig is a maximal twig of D if it is not properly contained in another twig
of D. A twig whose support is a connected component of D is called a rod of D. A twig which is not
a rod comes (and will be considered) with a unique order in which tip(T ) is a tip of D.

Let F be a rational tree with a unique branching component B and three maximal twigs T1, T2,
T3. Then we call F a (rational) fork, we write F = 〈B;T1, T2, T3〉 and we say that F is of type
(−B2; d(T1), d(T2), d(T3)). We put

(4.7) δ(F ) := δ(T1) + δ(T2) + δ(T3).

By a (−2)-fork (respectively, a (−2)-chain) we mean an fork (respectively, a chain) consisting of
(−2)-curves. By a fork of D we mean a fork which is a connected components of D. By Lemma 4.1

(4.8) d(F ) = d(T1)d(T2)d(T3)(−B2 − ind(T>1 )− ind(T>2 )− ind(T>3 )).

A fork F with admissible components is called and admissible fork if δ(F ) > 1 and is called a log
canonical fork if δ(F ) = 1 and not all components of F are (−2)-curves.

A rational tree T 6 D is called a bench of D if T is a connected component of D which contains a
chain (called central chain) C = C1+. . .+Cn, n > 1 with tips C1, Cn such that T−C = T1+T2+T3+T4,
Ti = [2] for i = 1, 2, 3, 4, Ti ·C1 = 1 for i = 1, 2 and Ti ·Cn = 1 for i = 3, 4. A bench is log canonical if
the central chain is admissible and does not consist of (−2)-curves only.

A rational tree T 6 D is called a half-bench of D if T contains a chain (again called a central chain)
C = C1 + . . . + Cn, n > 1 with tips C1, Cn such that T − C = T1 + T2, Ti = [2] and Ti · C1 = 1 for
i = 1, 2 and T · (D−T ) = Cn · (D−T ) = 1. In particular, a half-bench of D is a fork of type (b; 2, 2, t)
or a chain [2, b, 2] for some b, t > 2. It is log canonical if C is admissible.
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• ◦ . . . ◦
Twig

• ◦ . . . ◦ •
Non-degenerate segment

◦ . . . ◦
Rod

◦

. . .

◦ . . . ◦ . . . ◦
Fork

2◦ ◦ . . . ◦ 2◦

2◦ 2◦
Bench

• ◦ . . . ◦ 2◦

2◦
Half-bench

Figure 1. Log canonical subdivisors

Remark 4.2.
(1) For every admissible chain T we have δ(T ) + ind(T ) 6 1 with the equality for a (−2)-chain only.

Hence for a fork F with admissible twigs and δ(F ) > 1 we infer from (4.8) and from Sylvester’s
criterion that F is negative if and only if F is admissible (equivalently −B2 > 2).

(2) If a fork with δ = 1 or a bench consists of (−2)-curves then its discriminant vanishes. By elementary
properties of determinants it follows that a fork with admissible twigs and δ = 1 is negative definite
if and only if it is log canonical (equivalently, is not a (−2)-fork). Similarly, a bench with an
admissible central chain is negative definite if and only if it is admissible (equivalently, its central
chain is not a (−2)-chain).

Lemma 4.3 (Log terminal and log canonical subdivisors). Let p ∈ X be a germ of a normal singular
surface and let D be a reduced divisor on X. Let E be the exceptional divisor of a minimal resolution
π : X −→ X. Put D = π−1

∗ D + E. We have ld(E(π);X,D) > 0 if and only if one of the following
holds:
(1) D = 0 and E is either an admissible fork or an admissible rod of D,
(2) D 6= 0 and E is a rational admissible twig of D.
We have ld(E(π);X,D) = 0 if and only if one of the following holds:
(3) D = 0 and E is one of the following:

(a) a smooth elliptic curve with negative self-intersection number,
(b) a (possibly degenerated) admissible rational cycle,
(c) a log canonical fork,
(d) an admissible bench.

(4) D 6= 0, E · (D − E) = 1 and E is a log canonical half-bench of D.
(5) D 6= 0, E · (D − E) = 2 and E is a segment of D (possibly degenerated).
Conversely, each nonzero divisor E as above has a negative definite intersection matrix and in cases
other than (3a) and (3b) it contracts to a rational singularity.

Proof. A direct arithmetic proof independent of the characteristic of the base field is given in [Kol92,
3.2.7, 3.4.1]; cf. [Kol13, 3.39, 3.40]. Since we do not assume that p ∈ (X,D) is log canonical (we
consider a minimal resolution, not a minimal log resolution), in (3b) we allow degenerate cycles -
necessary minor corrections of the arguments in [Kol92, (3.1.4), (3.1.5)] can be done easily. Concerning
the rationality of log canonical singularities see also [Art62, 2.3] and [Kol13, 2.28]. �

Recall that in case chark = 0 log terminal singularities are locally analytically isomorphic to
quotient singularities, that is, the ones obtained as quotients of A2 by the actions of finite subgroups
of GL(2,k), see [Bri68, Satz 2.10], cf. [Ish14, §7.4]. For an admissible chain T this is the action of the
cyclic group 〈ζ〉 ⊆ k∗ of order d(T ), given by ζ · (x, y) = (ζx, ζd′(T )y), see [BH+04, III.5].
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4B. Barks

To write down explicit compact formulas for the log discrepancy divisor in case of uniform boundaries
we use barks (cf. [Miy01, 2.3.5.2]). Let T be an admissible ordered chain. Define the bark of T as (see
(4.4))

(4.9) Bk′ T =
m∑
i=1

d(i)(T )
d(T ) T (i).

In particular, the coefficients of tip(T ) and T (m) in Bk′ T are ind(T ) and δ(T ), respectively. We put

(4.10) Bk> T = Bk′(T>).

Denoting by δji the Kronecker delta, from (4.5) we infer that

(4.11) T (i) · Bk′ T = −δ1
i .

Definition 4.4 (Bark). Assume that X is smooth and D is reduced.
(1) If E is a maximal admissible twig of D but not a rod of D, we put BkD E = Bk′E.
(2) If E is an admissible rod of D then we pick any order which makes it an ordered twig and we put

BkD E = Bk′E + Bk>E.
(3) If E is an admissible fork ofD we denote its maximal twigs by T1, T2, T3 and the central component

by E0 and we put

BkD E = u(E0 +
3∑
i=1

Bk> Ti) +
3∑
i=1

Bk′ Ti, where u =
∑3
i=1 δ(Ti)− 1

−E2
0 −

∑3
i=1 ind(T>i )

.

We extend the definition of BkD additively for disjoint sums of admissible twigs, rods and forks.
Finally, we define the bark of D by BkD := BkD(Excπ), where π is the unique pure peeling morphism
for (X,D), see Lemma 4.5.

4C. Peeling, redundant and almost log exceptional curves

We now discuss notions related to almost minimality for reduced boundaries. Many results con-
cerning minimal and almost minimal models of log surfaces with reduced boundary were obtained in
the 80s in particular by T. Fujita, M. Miyanishi, S. Tsunoda and F. Sakai, see for instance [Fuj82],
[Fuj79], [MT84], [Sak84]. The results we present below are close to [Miy01, 2.3.3-3.5]. We do not
claim originality, but the proposed formulation and line of reasoning will be used to obtain analogous
results for (1 − r)-log canonical surfaces with uniform boundary rD. For a definition of a peeling of
the first and second kind see Definitions 3.11(1) and 3.27(2).

Lemma 4.5 (Peeling and squeezing for a reduced boundary). Assume that X is smooth and D is
reduced.
(1) A contraction of some number of admissible forks, admissible rods and admissible twigs of D is a

pure partial peeling. Every pure partial peeling is of this type.
(2) A contraction of some number of divisors E as in Lemma 4.3 is a pure partial peeling of the second

kind. Every pure partial peeling of the second kind is of this type.
(3) L ⊂ D is redundant of the first kind if and only if it is a (−1)-curve such that either βD(L) 6 1

or βD(L) = 2 and L meets some admissible twig of D.
(4) L ⊆ D is redundant of the second kind if and only if it is a (−1)-curve with βD(L) = 2 which

meets no admissible twig of D.
In particular, if D contains no superfluous (−1)-curve (is snc-minimal) then (X,D) is squeezed and
if (X,D) is squeezed then it has a unique peeling.

Proof. (1), (2) Denote the contraction by α : (X,D) −→ (X,D). We may assume that Excα is
connected. By Lemma 4.3 for every component E of Excα we have ld(E;X,D) > 0 = ld(E;X,D)
and the inequality is strict in case (1). By Lemma 3.1 α factors through a peeling α0 contracting all
components of E for which the inequality is strict. Thus α = α0 and α is a proper peeling. This gives
(1). Let α1 : (X,D) −→ (X ′, D′) be a maximal partial peeling of the second kind with Excα1 ⊆ Excα
extending α0. Then α2 = α ◦α−1

1 : (X ′, D′) −→ (X,D) is log crepant. Suppose that α 6= α1. Suppose
that Excα2 is reducible. Let E0 be its component. Then Excα1+E0 is as in Lemma 4.3, neither a cycle
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nor elliptic, hence contracts to a rational singularity. But then α1 is not maximal; a contradiction.
Thus Excα2 is irreducible.

Conversely, if α is a pure partial peeling of the second kind then it is also a minimal resolution of
X, hence Excα is as in Lemma 4.3.

(3), (4) Assume that L is α-redundant of the first or second kind for some pure partial peeling
α. Denote by E the sum of connected components of Excα meeting L and let σ : X −→ X be the
contraction of E + L. Put D = f∗D and q = σ(E + L). If E = 0 then we get 0 = L · (KX + D) =
−2 + βD(L), hence βD(L) = 2, which gives (4). We may thus assume that E 6= 0. By Lemma 2.8 log
discrepancies of components of E + L with respect to (X,D) are positive, hence by Corollary 3.2 σ
is a partial peeling of D + L. It follows that log discrepancies of arbitrary exceptional curves over q
are non-negative. If X is smooth then the log discrepancy of the exceptional curve of the blowup of q
equals 2−multqD, hence D has normal crossings at q. Assume that X is singular. Let π : X̃ −→ X be
the minimal resolution of singularities and let D̃ be the total reduced transform of D. Then π is a pure
partial peeling of D̃ and by (1) D̃ has normal crossings in a neighborhood of the exceptional divisor.
It follows that L contracts to an snc-point of the image of D, which means that L is a superfluous
(−1)-curve. This gives (3).

Finally, suppose that (X,D) is squeezed and has more than one peeling morphism. There are
connected components E1 and E2 of exceptional divisors of these peelings such that E1 � E2, E2 � E1
and E1 meets E2. By (1) E1 and E2 are admissible twigs of D, hence E1 ∪E2 is an admissible rod of
D. It follows that both peelings contract E1 ∪ E2; a contradiction. �

Remark 4.6. Assume D as above is connected and squeezed of the second kind (contains no (−1)-
curve with βD 6 2). Then (X,D) has a unique peeling of the second kind except the following
cases:
(1) D is a bench consisting of (−2)-curves.
(2) D is a rational cycle which either consists of (−2)-curves or is negative definite but non-contractible

algebraically.

Proof. Suppose that (X,D) has at least two distinct peeling morphisms of the second kind. There
are connected components E1 and E2 of their exceptional divisors such that E1 � E2, E2 � E1 and
E = E1 ∪ E2 is connected. It follows that E1, E2 are of type (2), (4) or (5) in Lemma 4.3. Assume
first that, say, E2 contains a non-nc point of D. Then it is of type (5) with #E2 6 2. Then D is
a degenerate rational cycle with two or three components. By the maximality of peelings E is not
algebraically contractible, hence D = E. Since its components have self-intersection numbers at most
(−2), D is semi-negative definite, which is a special case of (2). We may thus assume that E contains
only nc points of D. Then E is a chain, a fork of type (b; 2, 2, n), a bench or a non-degenerate rational
cycle, and its components have self-intersection numbers at most (−2). By the maximality of peelings
E is not algebraically contractible and is a bench or a rational cycle, hence D = E. This gives (1) or
(2). �

The following lemma is a generalization of [Miy01, Section 2.3.6-8]. The original more computational
proof is for D which is snc.

Lemma 4.7 (Almost log exceptional curves for a reduced boundary). Assume X is smooth and D
is reduced. Let A be an α-almost log exceptional curve of the first or second kind, where α is a pure
partial peeling with exceptional divisor E. Then A is a (−1)-curve and one of the following holds.
(1) A · D 6 1 and if A is of the first kind then the inequality is strict or the point of intersection

belongs to some admissible twig, rod or fork of D,
(2) A ·D = 2 and there is a rod E1 of D meeting A once, in a tip of D. Moreover, if A meets another

connected component E2 of E then one of the following holds:
(a) E2 is an admissible twig of D. It meets A in a tip of D or E1 consists of (−2)-curves.
(b) E2 is a rod of D.

Proof. Let α : (X,D) −→ (X,D) be the partial peeling morphism for which α(A) is log exceptional
of the first or second kind. Since α is pure, by Corollary 2.10 we have α(A) ·KX > A ·KX . We have
also 0 > α(A) · (KX + D) > α(A) ·KX . If A is of the first kind, the first inequality is strict, hence
A ·KX < 0. If A is of the second kind then this is so by definition. But A2 < 0, so in each case A is a
(−1)-curve. We may assume that E +A is connected. We may also assume that E 6= 0, as otherwise
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(1) holds. If A ·D = 1 and A is of the first kind then we have α(A) · (KX +D) < 0 = A · (KX +D), so
the point of intersection of A and D belongs to E. Let γ : (X,D) −→ (Y ,B) be the contraction of the
log exceptional curve α(A) and let α′ : (Y,B) −→ (Y ,B) be the minimal resolution of singularities.
Put E′ = Excα′. Since X is smooth, we have a morphism of log surfaces γ : (X,D) −→ (Y,B), such
that α′ ◦ γ = γ ◦ α. By Lemma 2.11, (Y ,B) is log terminal, hence by Lemma 4.5, E′ = 0 or E′ is an
admissible twig, rod or fork of B. In particular, it contains no (−1)-curve, hence γ is a composition of
successive contractions of (−1)-curves in E+A and its images. Moreover, since B is a sum of rational
trees and is nc in a neighborhood of E′, every (−1)-curve contracted by a blowdown being a factor of
γ is superfluous in the respective image of D. In particular, A ·D 6 2.

Assume that A ·D = 2. Since E′ is a sum of rational trees, so is E + A, hence E1 6= E2. Since E′
is a sum of admissible twigs, rods and forks of B, one of Ei, say E1, is necessarily a rod of D met by
A in a tip. If E2 is not a connected component of D then it is a twig of D such that γ∗(E1 +A+E2)
is a twig of B, which gives (a). We may therefore assume that E2 is an admissible fork or rod of D.
Since γ∗(E1 +A+ E2) is an admissible rod or fork of B, we get (a) or (b). �

Remark 4.8 (Almost log exceptional vs log exceptional).
(1) Let A be as in Lemma 4.7. If A · D = 0 then A is log exceptional, if A · D = 1 then it is log

exceptional of the second kind, if A ·D = 2 we have A · (KX +D) > 0.
(2) In Lemma 4.7(2) the fact that A+Excα is negative definite and A is α-almost log exceptional (and

hence that after the contraction of α(A) all log discrepancies increase) gives additional restrictions
on the weights of E1 and E2, see Example 4.9.

Example 4.9 (An almost log exceptional curve). Consider a smooth projective surface X with a
rational chain [n, 1,m] on it with n > m > 2. Let A be the (−1)-curve and let D be the sum of the
other two components. The peeling morphism α : (X,D) −→ (X, 0) is simply the contraction of D.
We see that D +A is contractible if and only if n > 3. The contraction of A+D in each case gives a
log terminal singularity. We have

α(A) ·KX = A · (KX +D − BkD) = 1−A · BkD = 1− 2
n
− 2
m
,

so we see that A is almost log exceptional of the first kind if and only if m = 2 and n > 3 or m = 3
and n ∈ {3, 4, 5}. It is almost log exceptional of the second kind if and only if (m,n) ∈ {(3, 6), (4, 4)}.

5. Almost minimalization for uniform boundaries

As it follows from Example 3.14, to develop a reasonable general description of peeling morphisms
and almost minimal models for a log surface for (X,D) one needs to add restrictions on the coefficients
of D. We now study general uniform boundaries, that is, boundaries equal to rD, where D is a reduced
divisor. We call r the weight of the boundary. Weight r = 0 means that no boundary is considered,
so there is no peeling and almost minimal is the same as minimal. Weight r = 1 was discussed in
the previous section. Below we assume that r ∈ Q ∩ (0, 1], (X,D) and (X,D) are (Q-factorial) log
surfaces.

5A. Comparing different weights

Lemma 5.1. Assume (X, rD), where D is reduced, is (1−r)-lc. Let α : X −→ X be a proper birational
morphism. Put D = α−1

∗ D + Excα. Then α : (X, rD) −→ (X, rD) is a partial peeling of the second
kind. If (X, rD) is (1 − r)-dlt then α is of the first kind, unless r = 1 and some center of α is a
normal crossing point of (X,D).

Proof. Let E be a prime component of Excα. We have ld(E;X, rD) > 1− r = ld(E;X, rD), hence
α is a partial peeling of the second kind by Corollary 3.2. Assume (X, rD) is (1 − r)-dlt and either
r < 1 or r = 1 but no center of α is an nc-point of (X,D). By Remark 2.6 ld(E;X, rD) > 1 − r, so
the corollary shows that α is of the first kind. �

Lemma 5.2 (Pure peeling varying with r). Assume r < 1 and α : (X, rD) −→ (X, rD), where D is
reduced, is a pure partial peeling of the first (second) kind. Let r′ > r. Then the following hold.
(1) α : (X, r′D) −→ (X, r′D) is a pure partial peeling of the first (second) kind.
(2) If D is connected and ld(α;X, rD) > 1− r then ld(α;X, r′D) > 1− r′ and the inequality is strict,

unless α∗KX = K and α∗D = D.
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(3) If X is smooth then every connected component of Excα is a twig, rod or fork of D or it is a
(−2)-segment of D (see Lemma 4.3(5)).

Proof. (1) By definition α is a composition of birational contractions X = X1 −→ . . . −→ Xn+1 = X,
where Xi −→ Xi+1 contracts a log exceptional curve li ⊆ Xi, i = 1, . . . , n of the first (first or second)
kind. Denote the boundary on Xi, which is the direct image of D, by Di and the composition
X −→ Xi by αi. By assumption, for the proper transform l′i of li on X we have l′i · KX > 0. By
Corollary 2.10 we have α∗iKXi = KX +E for some effective divisor E supported in Supp Excαi. Hence
li ·KXi = l′i · α∗iKXi > l′i ·KX > 0. Since r > 0, it follows that li ·Di < 0 (6 0), hence

li · (KXi + r′Di) = li · (KXi + rDi) + (r′ − r)li ·Di < 0 (6 0).
We infer by induction that αi is a partial peeling of the first (second) kind for (X, r′D).

(2) We have K + rD > α∗(KX +D), which we write as ( r′r − 1)KX +KX + r′D > ( r′r − 1)α∗KX +
α∗(KX + r′D), hence K + r′D > ( r′r − 1)(α∗KX −K) + α∗(KX + r′D). Since α is pure, by Corollary
2.10 we have α∗KX −K > 0, so K + r′D > α∗(KX + r′D). Assume that ld(α;X, r′D) = r′. Then
the latter lemma gives α∗KX = K, as otherwise Supp(α∗KX −K) = Supp Excα, which contradicts
the assumption. Similarly, Lemma 2.8 gives ldX(X, rD) = rExcα, hence α∗D = D. Assume X is
smooth.

(3) Take r′ = 1. By (1) α is a pure peeling of D. By (2) and by Lemma 4.3 we may assume that
α∗
X

= K and α∗D = D. Then Excα consists of (−2)-curves with βD = 2. Since the latter divisor is
negative definite, it is a segment of D.

�

Corollary 5.3 (Resolutions for (1− r)-log canonical (X, rD)). Let (X, rD), where D is reduced, be
a germ of a singular (1− r)-lc surface and let E be the exceptional divisor of the minimal resolution
of X. Then E is as in Lemma 4.3 and the following hold:
(1) If r = 1 then D is snc or D = E is a nodal rational curve.
(2) If r < 1 then E is as in case (1), (2) (hence D is snc) or it is as in case (5), with E = [(2)k],

k ∈ {1, 2}. In latter case, denoting the unique common point of E and D − E by q, we have:
(a) k = 1, q ∈ D − E is an ordinary cusp and r 6 3

7 ,
(b) k = 1, q ∈ D − E is smooth and r 6 2

3 ,
(c) k = 1, q ∈ D − E is a point of normal crossings of D of multiplicity 2 and r 6 1

2 ,
(d) k = 2, q ∈ D − E is smooth and r 6 1

2 .
Moreover, if (X, rD) is (1− r)-lt then the inequalities are strict.

Proof. For r 6= 1 cases other than (1), (2) and (5) are impossible due to Lemma 5.2. The remaining
restrictions come from a straightforward computation of log discrepancies of exceptional divisors of a
minimal log resolution (instead of a minimal resolution). �

5B. Formulas for the log discrepancy divisor

Lemma 5.4 (Log discrepancy for a uniform boundary). Assume that X is smooth and D is reduced.
Let α : (X,D) −→ (X,D) be a contraction of (some) admissible twigs, rods and forks of D. Denote by
T the sum of connected components of Excα which are twigs but not rods of D. Then (see Definition
4.4)
(5.1) ldX(X, rD) = BkD(Excα) + (1− r) Bk> T.
Assume α is a pure partial peeling of (X, rD). Then ldX(X, rD) is an effective divisor whose coef-
ficients belong to (1 − r, 1]. Moreover, ld(U ;X, rD) = 1 for a component U or Excα if and only if
the connected component of Excα containing U is an admissible rod or admissible fork of D which
consists of (−2)-curves only.
Proof. Assume first that r = 1. The log discrepancy divisor is uniquely determined by the equations
U · (K + D − ldX(X,D)) = 0 where U runs through components of E := Excα. We may assume
that E is connected. By (4.11) in cases (1) and (2) of Definition 4.4 the equations hold for Bk′E and
Bk′E + Bk>E, respectively. In case (3) we see that the divisors E0 +

∑3
i=1 Bk> Ti and

∑3
i=1 Bk′ Ti

intersect trivially with all components of T1 + T2 + T3. Then (5.1) follows from the equation E0 ·
ldX(X,D) = E0 · (K +D) = 1. For r 6= 1 we need to show that

KX + rα−1
∗ D + E = α∗(KX + rD) + BkD(E) + (1− r) Bk> T.
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Subtracting the equality for r = 1 and dividing by 1− r we see that it is sufficient to prove that
(5.2) α∗D = α−1

∗ D + Bk> T,
and hence that α−1

∗ D + Bk> T intersects trivially with every component U of T . This is easy to see.
Indeed, we may assume that T is a single admissible twig with components T (i), i = 1, . . . ,m and
U = T (i) for some i. Then U · (α−1

∗ D + Bk> T ) = δmi + U · Bk> T = 0 by (4.11).
Assume α is a pure partial peeling for (X, rD). Then ld(X, rD) > 1 − r by Corollary 2.11. Put

G = E − BkD(E) + (1− r) Bk> T . For each component Ej of E we have
0 = Ej · α∗(KX + rD) = Ej · (KX + rα−1

∗ D +G) > Ej ·G,
because α is pure. By Lemma 2.9 we see that G = 0 or G > 0 and SuppG = SuppE. The case G = 0
happens when Ej ·KX = Ej · α−1

∗ D = 0 for each j, that is, when G is an admissible rod or fork of D
consisting of (−2)-curves only. �

Every peeling can be decomposed as a squeezing followed by a pure peeling (see Lemma 3.17).
The part consisting of squeezing will be studied in the next section. As for the part consisting of a
pure peeling the following corollary together with Lemma 5.4 give an explicit description of the log
discrepancy divisor.

Corollary 5.5 (Uniqueness of peeling for squeezed surfaces). Assume that X is smooth, D is reduced
and (X, rD) is squeezed. Then (X,D) has a unique pure peeling.

Proof. By Lemma 5.2 the exceptional locus of every pure partial peeling of rD consists of some
admissible forks, rods and twigs of D. The contractions start with tips, so we infer that a support of
a maximal pure partial peeling morphism is unique. �

Let (X,D) be a (Q-factorial) log surface and let π : X −→ X be a proper birational morphism. For
every prime exceptional divisor E we put
(5.3) E[(X,D) := c(E;X,D)E = (1− ld(E;X,D))E
and we extend this notation additively to reduced divisors supported in Supp Excπ. Usually we skip
the lower index (X,D), as it is clear from context. We have DX = π−1

∗ D+ Exc[ π, so the equivalence
(2.5) reads as
(5.4) KY + π−1

∗ D + Exc[ π ∼ π∗(KX +D).

Remark 5.6. Assume (X,D) is log smooth, D reduced and snc-minimal. Let D denote the direct
image of D after peeling of rD. In [Miy01], where the case r = 1 is discussed, the divisor DX =
D − BkD is denoted by D#. In [Pal19], where we discussed the case r = 1

2 for resolutions of planar
rational cuspidal curves, we used the notation D[ for 2DX (which is in disagreement with the above
notation, so we abandon it).

Corollary 5.7 (Log pullback for a uniform boundary). Assume X is smooth, D is reduced and
(X, rD) is squeezed. Let α : (X, rD) −→ (X, rD) be a partial peeling of rD. Denote by T the sum of
connected components of Excα which are twigs but not rods of D. Then
(5.5) Exc[ α = E − BkD(Excα)− (1− r) Bk> T.
The divisor Exc[ α has coefficients belonging to [0, r) and Supp Excα \ Supp Exc[ α consists of the
support of (−2)-rods and (−2)-forks of D.

Corollary 5.8 (Characterization of almost log exceptional curves). AssumeX is smooth, D is reduced
and let α : (X, rD) −→ (X, rD) be a pure partial peeling. Then A * D is α-almost log exceptional of
the first (second) kind if and only if A is a (−1)-curve such that the following hold:
(1) A+ Excα is negative definite,
(2) A · (rα−1

∗ D + Exc[ α) < 1 (= 1).

Proof. Put A = α(A). Clearly, (1) is equivalent to A2
< 0. We may assume (1) holds. We have

A · (KX + rD) = A · (KX + D̃), where D̃ = rα−1
∗ D + Exc[ α, so we only need to show that if A is

almost log exceptional of the first or second kind then it is a (−1)-curve. We have A · (KX + D̃) < 0
(6 0), so since D̃ is effective and A * D by definition, we get A ·KX < 0 (in the case of second kind
we have A ·KX 6= 0 by definition). Since A2 < 0, A is a (−1)-curve. �
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5C. Peeling and squeezing for uniform boundaries

We discuss the effect of squeezing on log singularities for surfaces of type (X, rD), with X smooth
and D reduced. Since partial squeezing is not a partial MMP run, it does not necessarily respect
(1− r)-(divisorial) log terminality. This is exactly the case in the following example.

Example 5.9 (Partial squeezing does not respect (1−r)-log terminality of (X, rD)). Let r ∈ (0, 1]∩Q,
n ∈ N+ and N ∈ N be such that 1

r 6 N 6
1
r + 1

n . Blowing up over a point p ∈ P2 we create a P1-fibered
surface X with a unique degenerate fiber F = [2, . . . , 2, 1, n] and a section U which is a (−1)-curve
meeting F in a tip of a maximal (−2)-chain ∆ ⊂ F . Let α : X −→ X be the contraction of ∆ and let
D = F1 + . . .+ FN + U + ∆, where F1, . . . , FN are distinct non-degenerate fibers. Put D = α∗D and
U = α(U). Then (X, rD) is (1− r)-dlt and α : (X, rD) −→ (X, rD) is a pure peeling. We have

U
2 = − 1

n
< 0 and U · (KX + rD) = r(N − 1

n
)− 1 6 0,

so U is log exceptional of the first or second kind and hence U is α-redundant of the first or second kind.
Let σ : X −→ X ′ be the contraction of U . Put D′ = σ∗D. Then ld(U ;X ′, rD′) = 2− r − rN 6 1− r,
so while (X, rD) is (1− r)-dlt, (X ′, rD′) is not. If 1

r < N < 1
r + 1

n then U is α-redundant of the first
kind and (X ′, rD′) is not even (1− r)-lc. Moreover, although (X, rD) is (1− r)-log terminal and U is
almost log exceptional, (X, r(D + U)) is not (1− r)-log terminal.

We note also that U · (KX + r(D−U)) = rN − 1 > 0, so U is not log exceptional on (X, r(D−U))
and hence U is not almost log exceptional on (X, r(D − U)). Still, U is log exceptional on (X, rD)
and U is redundant on (X, rD).

0◦ 0◦ . . .
0◦ (N vertices)

◦
1

◦
2

. . . ◦
2

(n vertices)

Figure 2. The dual graph of D in Example 5.9.

The following characterization plays a key role in the proof of Theorem 1.1.

Lemma 5.10. Let (X, rD) be a log surface with X smooth, D reduced, r ∈ (0, 1]∩Q. Let α : (X, rD) −→
(X, rD) be a contraction some admissible twigs T1, . . . , Tk of D and let l6 D be a (−1)-curve. Put
δ =

∑k
i=1

1
d(Ti) and ind> =

∑k
i=1 ind(T>i ). Then α(l) is log exceptional of the first or second kind if

and only if the following inequalities hold
(5.6) ind> < 1,

(5.7) rβD−E(l) 6 2− k + δ − (1− r)(1− ind>),
where the equality in (5.7) holds exactly when α(l) is of the second kind.

Proof. Put l = α∗l, R = α−1
∗ D − l, δi = δ(Ti) = 1/d(Ti) and ind>i = ind(T>i ). By (4.11) we have

α∗l= l+
∑
i Bk> Ti. We compute l

2 = l · α∗l= l · (l+
∑
i Bk> Ti) = −1 + ind>, and

l · (KX + rD) = l · α∗(KX +D) + (r − 1)l · α∗D = l · (KX +R+ l+
∑
i

(Ti − Bk Ti))+

+(r − 1)l · (R+ l+
∑
i

Bk> Ti) = −2 + l ·R+
∑
i

(1− δi) + (r − 1)(l ·R− 1 +
∑
i

ind>i ) =

= k − δ − 1 + r(l ·R− 1) + (r − 1) ind> .
It follows that l is log exceptional of the first or second kind if and only if ind> < 1 and rl · R 6
2− k + δ − (1− r)(1− ind>), with the equality for the second kind only. �

Recall that a divisor on a smooth surface contracts to a smooth point if its support is the support of
the exceptional divisor of a birational contraction onto a smooth surface. Such a divisor is necessarily
a rational tree whose discriminant is equal to 1.
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Proposition 5.11 (Description of redundant components). Let (X, rD) be a log surface with X
smooth, D reduced, r ∈ (0, 1] ∩ Q. Let α be a pure partial peeling of (X, rD) of the second kind and
l6 D a (−1)-curve such that α(l) is log exceptional of the first (second) kind. Denote by E the sum
of connected components of Excα meeting l and put R = D− l−E. Then one of the following holds.
(1) r = 1 and βD(l) 6 2 (so l is log exceptional of the first or second kind). If the intersection of E

and D − E is not normal then E is a degenerate segment of D, so #E 6 2.
(2) r 6= 1, l is of the first (second) kind and

(a) E ·R = 0 and l+ E is a rational chain which contracts to a smooth point.
(b) l+ E is a rod or twig of D.

(3) βD(l) = 3, E · R = 0, r = 1
2 and l+ E is one of [3, 1, 3], [1, (2)m−1, 3], m > 1, [3, 1, 2, 3]. In

particular, all components of l+ E are of the second kind.
(4) βD(l) = 3, E ·R = 0, r = 2

3 and l+E is one of [2, 1, 4], [2, 1, 3, 2]. In particular, α is not of the
first kind and α(l) is of the second kind.

(5) E is a (−2)-twig such that 0 6 l ·R− 1
r 6

1
#E+1 .

(6) E is a sum of two twigs of D, [2] and [3], l ·R = 1 and 1
2 6 r 6

4
5 .

In cases (5) and (6) the inequalities on the right (respectively, left) become equalities if and only if
α(l) (respectively, l) is of the second kind.

Proof. If E = 0 then l is log exceptional of the first (second) kind, which is a part of (1) or (2a). We
may therefore assume that E 6= 0. To avoid confusion below we refer to the cases of Lemma 4.3 as
(L1)-(L5). By Lemma 5.2 α is a pure partial peeling of the second kind of rD, and E is as in (L2),
(L4) or (L5). Moreover, since E + l is negative definite, in cases (L4) and (L5) E does not consist of
(−2)-curves, so r = 1. Consider the case r = 1. By Lemma 3.21 we have α = α2 ◦ α1, where α1 is a
peeling of the first kind and α2 contracts some number of log exceptional curves of the second kind.
It follows that l is α1-redundant, so βD(l) 6 2 by Lemma 4.5. If the intersection of E and D − E is
not normal then E is a degenerate segment of D, which gives (1).

We may further assume that r < 1. Then E = T1 + . . .+ Tk, where T1, . . . , Tk are admissible twigs
of D and k > 1. It follows that l·E = k and E ·R = 0. Put δ =

∑k
i=1

1
d(Ti) and ind> =

∑k
i=1 ind(T>i ).

Denote the contraction of α(l) by σ : α(X) −→ X. Put D = σ∗α∗D and q = σ(α(l)) ∈ X.
Assume that q ∈ X is singular. Let π : X̃ −→ X be the minimal resolution of singularities. Since

X is smooth, we get a factorization σ = π ◦ ϕ. Put D̃ = ϕ∗D and Ẽ = ϕ∗E.

(5.8)

(X, rD)

α

��

ϕ // (X̃, rD̃)

π
��

(α(X), rα∗D) σ // (X,D)

Since α is a partial peeling of rD, Corollary 3.2 implies that π is a partial peeling of rD̃. Since
π is minimal, it is pure, hence Ẽ is as in Lemma 4.3. By Lemma 5.2 Ẽ is a sum of admissible
twigs, rods, forks and (−2)-segments of D̃. If βD(l) 6 2 then, since E 6= 0, l is superfluous in
D (hence log exceptional of the first kind on (X, rD)), which gives (2a) or (2b). We are left with
case βD(l) > 3. Then ϕ(l) is not a point of simple normal crossings of D̃, so Ẽ is a degenerate
(−2)-segment of D̃. The fact that l is not superfluous in D restricts possible types of blowing ups
constituting ϕ−1. Let G be a component of E not contracted by ϕ. Since π∗KX = K

X̃
and π∗D = D′,

we have ld(G;X, rD) = 1 − r = ld(G;X, rD). By Lemma 2.8 it follows that α(l) is of the second
kind. For #Ẽ = 2 we obtain l+ E = [3, 1, 3] and hence r = 1

2 . Assume #Ẽ = 1. Then there exists
m > 1 such that l+ E = [1, (2)m−1, 3] or l+ E = [2, 1, 3, (2)m−2, 3], where [3, (2)−1, 3] := [4]. Since
α(l) · (Kα(X) + rα∗D) = 0, we obtain r = 1

2 and r = 2m
4m−1 , respectively. In the second case the log

discrepancy of the component of T1 = [3, (2)m−2, 3] meeting l equals u = 1
4m(1 + (1 − r)(2m − 1)).

Since the contraction of T1 is a peeling of the second kind, we have u > 1− r, hence 2m
2m+1 6 r, which

gives m = 1 and r = 2
3 . This gives part of (3) and (4).

We may therefore assume that q ∈ X is smooth. It follows that l is superfluous in E + l, hence
k ∈ {1, 2}. Assume that k = 1. Then E = [(2)m] for some m > 1. In particular, ind(E>) = 1− 1

m+1 .
The inequality (5.7) gives βD−E(l) 6 1

r + 1
m+1 , where the equality holds if α(l) is log exceptional
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of the second kind. Note that by Lemma 5.10 l is log exceptional of the first kind if and only if
βD(l) < 1

r , that is, if βD−E(l) < 1
r . If the latter inequality holds we get (2a), otherwise we get (5).

We are left with the case k = 2. Put di = d(Ti). We may and shall assume that d1 > d2. Since
q ∈ X is smooth, we have d(l+ E) = 1. By Lemma 4.1 we obtain 1 = d(l+ E) = d1d2(1 − ind>).
Hence gcd(d1, d2) = 1 and 1− ind> = 1

d1d2
> 0. The former implies that d1 − 1 > d2 > 2. By Lemma

5.10 we obtain
d1d2r` ·R > d1 + d2 − 1 + r.

We may assume that l is not log exceptional of the first kind, as otherwise we get (2a). This gives
0 6 l · (K + rD) = −1 + r(l ·R− 1). We obtain

(5.9) 1
l ·R+ 1 6 r 6

d1 + d2 − 1
d1d2l ·R− 1 .

It follows that (d1d2l ·R− 1) 6 (d1 + d2 − 1)(l ·R+ 1), hence l ·R(d1 − 1)(d2 − 1) 6 d1 + d2. Since
d1 − 1 > d2, we obtain l · R(d2 − 1) 6 2. Suppose that l · R = 2. Then d2 = 2 and d1 6 4, hence
d1 = 3. The inequality 5.9 gives r 6 4

11 . But then T1 · (K + rD) = 1− 2r > 0, which contradicts the
fact the α is a peeling of the second kind.

Thus l ·R = 1 and the above inequality reads as

(5.10) 1
2 6 r 6

d1 + d2 − 1
d1d2 − 1 .

It follows that (d1 − 2)(d2 − 2) 6 4, hence d2 6 3 and d1 6 5. Assume that d2 = 3. Since l+ E
contracts to a smooth point, we get T2 = [3] and T1 = [3, 2] or T2 = [2, 2] and T1 = [4]. But in the
second case we get r > 6

11 , so the contraction of T1 is not a partial peeling of the second kind of rD.
In the first case we have r = 1

2 , which gives the remaining part of (3).
Finally, assume that d2 = 2. Since l+ E contracts to a smooth point, we get T1 = [(2)m−1, 3]

for some m > 1. The log discrepancy of the (−3)-curve equals u = 1
2m+1(1 + (1 − r)m). Since the

contraction of T1 is a peeling of the second kind, we get u > 1 − r, hence 1 − 1
m+1 6 r. Then (5.10)

gives m
m+1 6

2m+2
4m+1 , so m ∈ {1, 2}. For m = 2 we get r = 2

3 , which gives the remaining part of (4). For
m = 1 we get 1

2 6 r 6
4
5 , which gives (6). �

Lemma 5.12. Assume X is smooth, D is reduced, r ∈ (0, 1]∩Q and (X, rD) is (1−r)-dlt ((1−r)-lc).
Denote by π : X̃ −→ X the minimal resolution of singularities and put D̃ = π−1(D) + Excπ. If α is
a pure partial peeling of (X, rD) of the first (second) kind then α ◦ π is a partial peeling of (X̃, rD̃) of
the first (respectively, second) kind. It is pure, unless D is irreducible and π−1

∗ D is a (−1)-curve with
β
D̃
6 2.

Proof. By Corollary 3.2 and Lemma 3.21 π is a partial peeling of the first (second) kind, hence so
is α̃ = α ◦ π. Assume that α̃ is not pure. It sufficient to prove that D is irreducible, because then
in Lemma 5.11 we have R = 0, so β

D̃
(D) 6 2. We may assume that α = ctrγ(l) ◦γ, where γ ◦ π is

pure and l ⊆ D. By assumption l̃: = π−1
∗ l is a (−1)-curve. Let E1 = Excπ and E2 = π−1

∗ Exc γ.
Then E = E1 + E2 is as in Lemma 5.11. In particular, l · E 6 2 and each connected component
of E is an admissible chain or an admissible fork. It follows that the same holds for E1, hence
Supp BkE = SuppE. Since α is pure, we have 0 6 l ·KX = l · (K

X̃
+ E1 − BkE1) < −1 + l · E1,

hence l · E > l · E1 > 2. We obtain E = E1 and l · BkE 6 1. This fails in cases (3)-(6). Assume we
have case (2a) and let T1, T2 be the maximal twigs of D̃ constituting E. With the notation as in the
proof of the lemma we get 1 − l · Bk = 1 − ind>−δ = 1

d1d2
− 1

d1
− 1

d2
< 0; a contradiction. Thus we

have case (1) or (2b) with R = 0. Hence D is irreducible. �

Proposition 5.13. Assume that (X, rD), where D is reduced, is (1 − r)-dlt ((1 − r)-lc) or that X
is smooth. If ψ is a pure partial peeling of (X, rD) of the first (second) kind then ψam is a partial
(X, rD)-MMP of the first (respectively, second) kind.

Proof. Let X = ψ(X) and D = ψ∗D. By Lemma 3.7 we may assume that ψ = ctrα(l) ◦α, where α is
a pure partial peeling of the second kind of rD and l⊆ X. Let π : X̃ −→ X be the minimal resolution
of singularities and let α̃ = α ◦ π. Put l̃= π−1

∗ l, D̃ = π−1
∗ D + Excπ, ψ̃ := ψ ◦ π and E = Exc α̃. By

Lemma 5.12 α̃ is a partial peeling of rD̃ of the first or second kind.
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Since ψ is a peeling, we have l⊆ D. Then α(D) 6= 0, so Lemma 5.12 implies that α̃ is pure. Let
σ = ctrl. Then ψ ◦σ−1 : (σ(X), σ∗D) −→ (X, rD) is a partial peeling of the first (second) kind. Since
π is a peeling of the second kind, l· (KX + rD) 6 l̃· (K

X̃
+ rD̃). We infer that if l̃ is log exceptional

of the first (second) kind then l is log exceptional of the first (second) and hence (σ(X), rσ∗D) is
(1 − r)-lt ((1 − r)-lc) or, respectively, X is smooth. But due to (3.4) in the latter situation we are
done by induction with respect to # Excψam. We may therefore assume that l̃ is not log exceptional
of the first kind, hence E is as in Lemma 5.11(4)-(6). Let E1 6 E be the maximal (−2)-twig meeting
l̃. The contraction of l̃+ E1 is a peeling of rD̃ of the first (second) kind and at the same time ψ̃am
factors through it. By Lemma 3.3 the contraction of π(l̃+E1) is a peeling of the first (second) kind of
rD and we check easily that ψam factors through it. But the image of (X, rD) under this contraction
is (1− r)-lt ((1− r)-lc) or, respectively, σ(X) is smooth, so again we are done by induction. �

Lemma 5.14. Assume that X is smooth, D is reduced and r ∈ [0, 1] ∩ Q. Let l * D be an α-
almost log exceptional curve of the first (second) kind for some pure partial peeling α of rD of the
first (respectively, second) kind. Let E be the sum of connected components of Excα meeting l. Put
R = D − E. Then one of the following holds:
(1) l is superfluous in D + l,
(2) l+ E = [1, (2)k−1] for some k > 1 and E is a twig or rod of D.
(3) l·D = 2, r = 1

2 , l+E = [1, (2)m−1, 3], m > 1 and R meets E+l at the point l∩E. In particular,
all components of l+ E are of the second kind.

(4) l ·D = 3, r = m
2m+1 , l+ E = [1, (2)m−1, 3] for some m > 1, and R · E = 0. In particular, α is

not of the first kind and α(l) is of the second kind.
(5) l · D = 3, E · R = 0, r = 1

2 and l+ E is one of [3, 1, 3], [2, 1, 4] or [2, 1, 3, (2)m−2, 3] for some
m > 2. In particular, α is not of the first kind and α(l) is of the second kind.

(6) l is log exceptional of the first (second) kind and l+ E contracts to a smooth point.

Proof. Let σ : α(X) −→ X be the contraction of α(l) and let π : X̃ −→ X be the minimal resolution
of singularities. Denote by ϕ : X −→ X̃ the induced morphism. Denote by q ∈ X the image of α(l).
Put D = σ∗α∗D, Ẽ = Excπ, and D̃ = ϕ∗D; see the diagram (5.8).

Consider the case r = 1. By Lemma 3.21 we have α = α2 ◦ α1, where α1 is of the first kind and
α2 is log crepant. Then l is α1-almost log exceptional, so by Lemma 4.7 it is superfluous in D + l.
Therefore, we may and will assume that r < 1 and that l is not superfluous in D + l.

In the smooth case the proof is an elementary computation. We may assume that q ∈ X is singular.
By Lemma 5.2(3) every connected component of E is a twig, rod or fork of D or it is a (−2)-segment
of D. Since l is not superfluous in D + l, the divisor D̃ is not snc in (every) neighborhood of
Ẽ, which implies that Ẽ is a degenerated (−2)-segment of D̃. Let G be a component of E not
contracted by ϕ. Since π∗KX = K

X̃
and π∗D = D̃, we have ld(G;X, rD) = 1 − r = ld(G;X, rD).

By Lemma 2.8 it follows that α(l) is log exceptional of the second kind. Since l is not superfluous in
D + l, the log surface (X,D + l) is dominated by the minimal log resolution over the point ϕ(l). If
#Ẽ = 2 we get l+ E = [3, 1, 3] and hence r = 1

3 . Assume #Ẽ = 2. Then l+ E = [1, (2)m−1, 3] or
l+ E = [2, 1, 3, (2)m−2, 3] for some m > 1, where [3, (2)−1, 3] := [4]. In the first case we get r = 1

2 if
E is a twig of D and r = m

2m+1 if E is a rod of D. In the second case we get r = 1
2 . This gives (3), (4)

and (5). �

Example 5.15. Let a > 2 be an integer and let r ∈ (1− 1
3a−4 , 1] ∩Q. Consider a log smooth surface

(X̃, B), where B is reduced and has a twig T = [3, 1, 3, a], T 6= B. Denote by T1, . . . , T4 subsequent
components of T and by σ : X̃ −→ X the contraction of T3 + T4. Put D = σ∗(T − T2), l = σ(T2)
and E = σ(T1). Let α be the contraction of E and ψ : X −→ X the contraction of E + l. We have
E · (KX + D) = 1 − 3r < 0. By (5.5) we have c(T3;X, rD) = 2a−2+r

3a−1 , and c(T4;X, rD) = 3a−5+3r
3a−1 .

Since r > 1− 1
3a−4 , we infer that (X, rD) is (1− r)-lt for and σ is a pure partial peeling. Since r > 1

2 ,
we get l· (KX + rD) = 3ar−a−1

3a−1 > 0. We compute α(l) · (Kα(X) + rα∗D) = r−4/3
3a−1 < 0. Since T1 is not

a (−1)-curve, ψam contracts only l. We conclude that:
(a) (X, rD) is (1− r)-dlt,
(b) l is α-almost log exceptional (and not log exceptional) on (X, rD),
(c) (X ′, rD′) := ψam(X, rD), the almost minimal model of (X, rD), is not (1− r)-lt,
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(d) ψam is not an MMP run for (X, rD).
Part (d) is a consequence of (a) and (c). For (c) note that the exceptional divisor of the minimal
resolution is a segment of the reduced total transform of D′, contrary to Lemma 5.2(c). Another way
to see (c) is a direct computation: we have ld(T3;X ′, rD′) = 3

2a−1(1− r) 6 1− r and ld(T4;X ′, rD′) =
(a+1)
2a−1 (1− r) 6 1− r, so (X, rD) is not even (1− r)-lc, unless r = 1 or a = 2.

Theorem 5.16 (The effect of squeezing on log singularities). Assume X is smooth, D is reduced,
r ∈ (0, 1] ∩ Q and (X, rD) is (1 − r)-dlt ((1 − r)-lc). Let σ : (X, rD) −→ (X ′, rD′) be a partial
squeezing of the second kind. Then X ′ is smooth and the following hold:
(1) If (X ′, rD′) contains no redundant curves of the first kind passing through σ(Excσ) (in particular,

if σ is a squeezing) then (X, rD) is (1− r)-dlt (respectively, (1− r)-lc).
(2) If 1

r is an integer then (X ′, rD′) is (1− r)-lc.

Proof. Since X is smooth, redundant curves of the first and second kind are in particular (−1)-
curves, so the smoothness of X ′ is clear. Let Ẽ be the exceptional divisor of some partial pure peeling
morphism α and let U ⊂ D be an α-redundant curve of the first or second kind. Let E be the sum
of connected components of Ẽ meeting U . Denote by σ′ : X −→ Y the contraction of U and by σ
the contraction of α(U). Put B = σ′∗D. We may assume that U is not log exceptional of the first
(respectively, first or second) kind, as otherwise we are done by Corollary 2.11 and induction. If
r = 1 then we are in case (3) of Lemma 5.11 with E 6= 0, which implies that U meets two distinct
components of D and hence we are done by induction. We may thus assume that r < 1. We are
therefore in case (1) or (2) of Lemma 5.11.

(1) We argue that σ is a peeling of rD, and hence (X ′, rD′) is (1−r)-dlt (respectively, (1−r)-lc) by
Corollary 2.11. By Corollary 3.3 and (3.4) we may assume that Ẽ = E, so we have U ⊆ Excσ ⊆ U+E.
Consider case (1) of Lemma 5.11. Let U ′ be the component of the (−2)-twig E meeting U . We have
βD−E(U) − 1

r 6
1

#E+1 . The contraction of E′ = σ′∗(E − U ′) is a peeling of (Y, rB). We compute
βB−E′(U ′) = (U + U ′) · (D − E) = U · (D − E) = βD−E(U), hence βB−E′(U ′)− 1

r 6
1

#E+1 <
1

#E′+1 .
This means that U ′ is redundant of the first kind. By assumption there are no redundant curves of
the first kind passing through σ(Excσ), so by induction we get Excσ = U + E, which shows that
σ = σ ◦ α is a peeling. Consider case (2) of Lemma 5.11. Write E = U1 + U2, with U1 = [2] and
U2 = [3]. The curve σ′(U1) is redundant of the first kind and after its contraction the image of σ′(U2)
is redundant of the first kind. The composition of these three contractions equals σ = σ ◦ α, which is
a peeling.

(2) Since 1
r is an integer, after the contraction of U we are in case (1) of Lemma 5.11 with βD−E(U) =

1
r . We have U · (KX +rD) = −1+r(−1+βD−E(U)+U ·E) = r(U ·E−1) = 0, so U is log exceptional
of the second kind. Then (X ′, rD′) is (1− r)-lc by Corollary 2.11. �

Proof of Theorem 1.1. Let ψ : (X, rD) −→ (X, rD) be an MMP run and let ψ = ψam. Let α be
a pure partial peeling morphism with Excα ⊆ Excψ and let U ⊆ X be α-redundant or α-almost
log exceptional. We may assume that E + U is connected. We may also assume that the image of
(X, rD) after the contraction of U is not (1 − r)-dlt (respectively, not (1 − r)-lc), because otherwise
we are done by induction using (3.4). Since (X, rD) is (1 − r)-dlt (respectively, (1 − r)-lc), (X, rD)
is (1 − r)-dlt (respectively, (1 − r)-lc). By Lemma 3.16 ψ is a peeling of (X, r(D + U)) and U is
α-redundant (note that (X, r(D + U)) is not necessarily (1 − r)-dlt). By Lemma 2.11 U is not log
exceptional on (X, rD), so we are in case (1) or (2) of Lemma 5.11. Let σ : (X, rD) −→ (X ′, rD′) be
the contraction of U + E. As noticed in the proof of Theorem 5.16 σ is a peeling of (X, r(D + U)),
and hence (X ′, rD′) is (1− r)-dlt (respectively, (1− r)-lc). In particular, σ = σam. Then again we are
done by induction using (3.4). �

Remark 5.17. Assume D is uniform, that is, D = rDred for some r ∈ (0, 1] ∩ Q, and (X,D) is
(1 − r)-lt ((1 − r)-lc). Choose an MMP run ψ : (X,D) −→ (X,D) as in Remark 3.19, that is, each
time give priority to contractions of rays supported in D and its images. Then the proof of Theorem
1.1 shows that each of the intermediate log surfaces (Xi, Di), i > 1 in Lemma 3.17 is (1 − r)-dlt
(respectively, (1− r)-lc).
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5D. Weighted Kodaira dimension of open varieties

We now make a digression to define the weighted Kodaira dimension of a (not necessarily complete)
algebraic variety S. We assume that dimS and the base field k are such that each variety of dimension
dimS over k has a log resolution of singularities which is an isomorphism over the smooth locus. This
is true for instance if dimS 6 3 or chark = 0.

By a completion of S we mean a pair (X,D) consisting of a normal complete varietyX and a reduced
Weil divisor D. Given a Q-Cartier divisor F on X we denote by κ(X,F ) ∈ {−∞, 0, 1, . . . ,dimX} the
Iitaka dimension of F , that is, the supremum of dimensions of images of rational maps determined by
linear systems |mF |.

Definition 5.18. Let S be a variety as above and let r ∈ [0, 1]∩Q. If S is smooth then we define the
weighted Kodaira dimension of S of weight r as
(5.11) κr(S) := κ(X,KX + rD)
where (X,D) is some log smooth completion of S. If S is singular we put κr(S) := κr(S̃), where S̃ is
a resolution of singularities of S.

Lemma 5.19. The weighted Kodaira dimension is well defined, that is, it does not depend on the
choice of (X,D).

Proof. Let (X ′, D′) and (X,D) be two log smooth completions of S. We have a rational map
f : X ′ 99K X which restricts to an isomorphism on S. Taking the closure of the graph of f , Γ ⊆ X×X ′,
we obtain completion of S dominating (X,D) and (X ′, D′). There exists a resolution of singularities
π : Γ̃ −→ Γ which is an isomorphism over S and such that D̃ := π−1(Γ \ S) ∪ Exc(π) is snc. Re-
placing (X,D) with (Γ, D̃) we may therefore assume that f is a morphism of completions. We have
D′ = f−1

∗ D + Exc f . Since (X,D) is log smooth, (X, rD) is (1 − r)-log canonical, so ldX′(X, rD) is
effective. Then
(5.12) f∗(KX + rD) ∼Q KX′ + rf−1

∗ D + Exc f − ldX′(X, rD) 6 KX′ + rD′,

so h0(m(KX + rD)) 6 h0(m(KX′ + rD′)) for each m. Since f∗(KX′ + rD′) = KX + rD, the equality
holds. �

Clearly, we have κr′(S) 6 κr(S) for r′ 6 r, hence κ(X) 6 κr(S) 6 κ(S).

Remark 5.20. The proof shows that if S has a completion (X,D) which is (1− r)-log canonical then
κr(S) = κ(KX + rD).

Definition 5.21. For a smooth variety S we define the Kodaira positivity threshold of S as
(5.13) κt(S) := inf{r : κr(S) > 0} ∈ {−∞} ∪ [0, 1]

We note that if S is a surface then the infimum can be replaced with a minimum, see [Miy01,
2.2.6.1] (the proof works for snc Q-divisors) or [Fuj84]; for related more general results the reader may
consult [Kol92, 11.2.1], [Fuj12, Corollary 1.2] and [Tan14, Theorem 1.2].

The number κt(S) is an interesting invariant for open varieties with completion of negative Kodaira
dimension (κ0(S) = −∞). For instance, it is an open problem whether for every Q-acyclic affine
variety S of arbitrary dimension one has κt(S) > 0. So far this is known only for curves and surfaces
as a consequence of rationality of S, see [GP99]. As another example we note that it is an open
problem whether for every smooth Q-acyclic surface S one has κt(S) > 1

2 , see [Pal19, Conjecture 4.7]
and [Peł21].
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6. Uniform boundaries with weight r 6 1
2

Recall that exceptional divisors of minimal resolutions of canonical (du Val) singularities are (−2)-
chains or admissible (−2)-forks. Their Dynkin diagrams are Ak for k > 1, Dk for k > 1 and Ek for
r = 6, 7, 8. We say that a singular point is of type A?

k, k > 1 if the exceptional divisor of the minimal
resolution is

E = [(2)k−1, 3].
If E is a connected component of D we say that it is an A?

k-rod of D. If the index k is irrelevant we
will speak about singularities of type A?. By convention, we choose an order of components on E such
that the (−3)-tip is the last component. If the base field has characteristic zero then an A?

k-singularity
is exactly a Hirzebruch–Jung surface singularity 1

2k+1(1, k), that is, a germ of {z2k+1 = xyk}, see
[BH+04, III.5].

As before, let r ∈ (0, 1] ∩ Q, let X be a projective surface and D a divisor on X. Assume X is
smooth, D is reduced and (X, rD) is squeezed; see Corollary 3.13. Denote by α : (X, rD) −→ (X, rD)
a partial pure peeling morphism and put E = Excα. Note that by Corollary 5.5 α can be extended
to a unique pure peeling morphism. By Lemma 5.2, E is a sum of admissible forks, admissible rods
and admissible twig of D. Denote the sum of the connected components of E which are twigs (but
not rods) of D by T . By the definition of E[ (5.3) we have KY + rπ−1

∗ D+E[ ∼ π∗(KX + rD), where
by Corollary 5.7

(6.1) E[ = E − BkD(E)− (1− r) Bk> T.

Moreover, 0 6 E[i < rEi for every exceptional prime divisor Ei and E[i = 0 if and only if the connected
component of Excα containing Ei is a (−2)-fork or a (−2)-rod of D.

Corollary 6.1. Assume X is smooth and D is reduced. Let α : X −→ X be a birational contraction.
Put E = Excα and k = #E.
(1) If E is a (−2)-rod or a (−2)-fork of D then coeffU (E[) = 0 for every component U of E.
(2) If E is a (−2)-twig of D then coeffE(i)(E[) = ir

k + 1.

(3) If E is an A?
k-rod of D (so E = [(2)k−1, 3]) then coeffE(i)(E[) = i

2k + 1.

Proof. This is a consequence of (5.7) and (4.9). �

Lemma 6.2 (Peeling and squeezing for r 6 1
2). Assume that X is smooth and D is reduced. If

0 < r 6 1
2 then the following hold.

(1) A contraction of some of (−2)-twigs, admissible (−2)-forks and A?
k-rods of D with

(6.2) k <
r

1− 2r ∈ (0,∞]

is a pure partial peeling. Every pure partial peeling of (X, rD) is of this type.
(2) L ⊆ D is redundant of the first or second kind if and only if it is a (−1)-curve meeting at most

one (−2)-twig ∆ contracted by the pure partial peeling and such that

(6.3) βD−∆(L) 6 1
r

+ 1
d(∆) ,

where the equality holds exactly when L is of the second kind.

Proof. Let α : (X, rD) −→ (X, rD) be a pure partial peeling morphism and let L be a curve not
contracted by α. Let ∆1, . . . ,∆n be all (−2)-twigs of D meeting L contracted by α. Put ∆ =
∆1 + . . .+ ∆n, D = α∗(D), L = α(L), β = βD−∆(L) and δ =

∑n
i=1

1
d(∆i) . We compute

L · (KX + rD) = L ·KX + r(L2 + β) + L · E[ = L ·KX(1− r) + r(2pa(L)− 2 + β) + r(L ·∆− δ),
hence
(6.4) L · (KX + rD) = L ·KX(1− r) + r(2pa(L) + β − 2 + L ·∆− δ)
Since d(∆i) > 2, we have L ·∆− δ > n

2 .
(1) From (6.4) we see that if L is a (−2)-curve in D−∆ then L · (KX + rD) = r(β−2+L ·∆− δ) =

r(βD(L)− 2− δ). This implies that a contraction of some (any) (−2)-twigs, (−2)-rods and admissible
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(−2)-forks is a partial pure peeling morphism and every pure partial peeling morphism contracting
only (−2)-curves is of this type.

Assume that α(L) is log exceptional and L · KX > 0. By (6.4), pa(L) = 0 and by the above
observations we may assume that L ·KX > 1. We obtain 0 > (1− r)L ·KX + r(β + L ·∆− δ − 2) >
(1− r)L ·KX − 2r, hence L ·KX = 1 and n

2 6 β + L ·∆− δ < 3− 1
r 6 1. It follows that β = 0 and

n 6 1, so ∆ + L is a rod [(2)k−1, 3] with L = [3] and k > 1 such that 1
r < 2 + 1

k . Conversely, for such
a rod L ·KX > 0 and after the contraction of ∆ the curve L is log exceptional.

(2) Let α : X −→ X be a pure partial peeling and L ⊂ D a (−1)-curve such that L := α(L) is log
exceptional of the first or second kind. By (1) we may assume that ∆ := Excα is a sum of (−2)-twigs
meeting L. Since ∆+L is negative definite, we may in fact assume that ∆ is a single (−2)-twig meeting
L, possibly zero. Since L is log exceptional of the first or second kind, (6.4) gives β 6 1

r + 1
d(∆) . �

Remark 6.3. We note that the condition (6.2) is empty for r = 1
2 and gives k = 0 for r 6 1

3 . Also,
while for r = 1 peeling contracts all admissible twigs, for r 6 1

2 only (−2)-twigs are contracted. On
the other hand, while an snc-minimal divisor D is automatically squeezed, it is not so for r 6 1

2 . In
fact, the smaller r is the more (−1)-curves in D are contracted by a squeezing morphism for (X, rD).

Notation 6.4. Assume that X is smooth, D is reduced and 0 < r 6 1
2 . We define:

(1) Γ as the sum of all (−2)-rods and admissible (−2)-forks of D,
(2) Λ as the sum of all A?

k-rods of D with k < r
1−2r . (Recall that we order each such chain so that

the (−3)-curve is the last component.)
(3) ∆ as the sum of maximal (−2)-twigs in D − Γ− Λ,

For a connected component of Λ, say Λ0 = [(2)k−1, 3], with the above fixed ordering convention
definition (4.9) gives:

(6.5) Bk′ Λ0 =
k∑
i=1

2(k−i)+1
2k+1 Λ(i)

0 and Bk> Λ0 =
k∑
i=1

i
2k+1Λ(i)

0

We define Bk′ Λ by extending additively the above formula for connected components of Λ. It follows
that
(6.6) Bk′ Λ + 2 Bk> Λ = Λ.
Analogously, for ∆ we have BkD ∆ + Bk>∆ = ∆ and for Γ we have BkD Γ = Γ.

Corollary 6.5. Assume that X is smooth, D is reduced, 0 < r 6 1
2 and (X, rD) is squeezed. Let

α : (X, rD) −→ (X, rD) denote be the unique peeling morphism. Then:
(1) Excα = Γ + Λ + ∆,
(2) Exc[ α = Bk> Λ + rBk>∆.

Proof. Part (1) is proved in Lemma 6.2 and part (2) follows from Corollary 6.1. �

As in case r = 1, the above computations give a description of (1− r)-dlt singularities.

Lemma 6.6 ((1− r)-dlt singularities for r 6 1
2). Let 0 < r 6 1

2 and let (X, rD), with D reduced, be a
germ of a log surface at a point p ∈ X. Let E be the exceptional divisor of the minimal log resolution
of singularity π : X −→ X and let D = π−1

∗ D +E. If (X, rD) is (1− r)-dlt then one of the following
holds:
(1) E is a nonzero admissible (−2)-rod or admissible (−2)-fork or A?

k-rod of D with k < r
1−2r (hence

D = 0 and p ∈ X is singular - canonical or of type A?),
(2) E is a nonzero (−2)-twig of D (hence p ∈ X is singular canonical and p ∈ D),
(3) p ∈ X is smooth and π is a partial squeezing of rD, hence is a composition of contractions of

(−1)-curves as in Lemma 6.2(2).
Conversely, if one of the above holds and (X, rD) is squeezed in case (3) then (X, rD) is (1− r)-dlt.

Proof. Assume (X, rD) is (1− r)-dlt. By Lemma 5.1 we see that π : (X, rD) −→ (X, rD) is a partial
peeling. We can decompose it as π = π′′ ◦ π′, where π′′ is a minimal resolution, hence a pure peeling
by the same lemma. If p ∈ X is singular then by Lemma 6.2(1) we get (1) and (2) for the exceptional
divisor of π′′. But in this case a minimal resolution is at the same time a log resolution, so π′ = id.
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Conversely, the divisor D is snc, so (X, rD) is (1− r)-dlt. In case (1) and (2) π is a partial peeling
by Lemma 6.2, so (X, rD) is (1− r)-dlt. In case (3) we get the same claim by Theorem 5.16. �

Remark 6.7 (Multiplicity for (1−r)-dlt singularities). Assume (X, rD), with D reduced, is (1−r)-dlt
and p ∈ X is smooth. Then

(6.7) multp(D) < 1 + 1
r
.

If 1
r is an integer then for every infinitely near point q of p we have

(6.8) multq(D) 6 1 + 1
r
,

where D is the total reduced transform of D.
Proof. Let σ be a blowup at p with exceptional divisor E. Then

KX + rD − σ∗(KX + rD) = (1− rE ·D)E = −r(multp(D)− 1− 1
r )E,

which gives (6.7). Assume 1
r is an integer. By Lemma 6.6(3) the minimal log resolution, and hence σ,

is a squeezing. Then the above formula shows that (6.8) holds by Theorem 5.16. �

Example 6.8. If 1
r is not an integer then the condition (6.8) may fail for infinitely near points of

p. This happens for instance for an ordinary cusp when r ∈ (1
2 ,

4
5 ], as the multiplicity of one of the

infinitely near points equals 3; cf. Lemma 6.2(2).

We now describe almost log exceptional curves for r = 1
2 . A similar characterization is possible

for smaller r, but the number of cases grows as r decreases. Since on squeezed log surfaces of type
(X, rD) the peeling morphism is unique, we may and will speak about almost log exceptional curves
meaning that they are almost log exceptional with respect to this unique peeling.
Lemma 6.9 (Almost log exceptional curves for r = 1

2). Let X be a smooth projective surface and D
a reduced divisor such that (X, 1

2D) is squeezed. Put E = Γ + Λ + ∆ (see Notation 6.4 and Corollary
6.5). A curve A * D is almost log exceptional of the first kind on (X, 1

2D) if and only if it is a
(−1)-curve such that one of the following holds:
(1) A ·D 6 1. If A · T = 1 for some component T ⊆ E then T is a tip of ∆ (not necessarily of D) or

of a rod of Γ + Λ or it is the middle component of [2, 2, 3] - a connected component of Λ.
(2) A ·D = 2, and A meets two different components T1, T2 of D, such that

(a) T1 ⊆ D − E and T2 is a tip of ∆, of Λ, or of a (−2)-rod of Γ,
(b) T1 ⊆ D − E and T2 is the middle curve of a connected component [2, 2, 3] of Λ,
(c) T1, T2 are (−3)-curves in Λ,
(d) T1 is a (−3)-curve in Λ, and T2 = [2] .

(3) A ·D = 3 and A · (D − E) = 1, A meets a connected component [2] of Γ and a (−3)-curve in Λ.
A curve A * D is almost log exceptional of the second kind on (X, 1

2D) if and only if it is a (−1)-curve
such that
(4) A ·D = 2 and A · E = 0 or
(5) A ·D = 3 and A meets E once, in a tip of Γ.

Proof. Let α : (X, 1
2D) −→ (X, 1

2D) be the unique peeling morphism. We have E = Excα = Γ +
Λ + ∆. Put R = D − E. Let A be almost log exceptional of the first or second kind on (X, 1

2D). By
Lemma 3.16, A is α-redundant of the first kind on (X, 1

2(D + A)). By Lemma 6.2 it is a (−1)-curve
meeting at most one (−2)-twig ∆A of D +A and such that

A · (D −∆A) < 2 + 1
d(∆A) .

It follows that A · D 6 2 + A · ∆A 6 3. Moreover, since ∆A is a twig of D + A met by A, it is a
(−2)-rod of D (in particular a connected component of Γ) met by A in a tip.

The negative definiteness of E + A implies that A does not meet a (−2)-fork in Γ and if it meets
∆ + Γ then only once, in a tip. Similarly, if it meets Λ then each connected component at most once,
either in a tip or in the middle component of [2, 2, 3]. For A ·D 6 1 we get (1). We may thus assume
that A ·D ∈ {2, 3}. If A · E = 0 then A · (KX + 1

2R + E[) = −1 + 1
2A ·D > 0, which gives (4). We

may thus assume that A · E 6= 0, too.
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Consider the case A · D = 2. Then A is of the first kind, because otherwise A · (R + 2E[) =
−2A ·KX = 2, hence A · E > 2A · E[ = −A · (2KX + R) = 2 − A · R = A · E, which is impossible.
By the negative definiteness of E +A, we see that T1 6= T2 and that in case A ·R = 1 we have (2a) or
(2b). Similarly, in case A ·R = 0 we get (2c) or (2d).

Consider the case A ·D = 3. Then A ·∆A = 1 and A · (D−∆A) = 2. In particular, A ·R 6 2. The
negative definiteness of E +A implies that A · (Γ−∆A) = A ·∆ = 0 and A ·R 6= 0, hence we get (3)
or (5). If A is of the second kind then A · E[ = 1− 1

2A ·R, which holds for (5) and fails for (3). �

The characterization in Lemma 6.9 gives the following corollary.

Corollary 6.10. Let X be a smooth projective surface and D a reduced divisor which contains no
superfluous (−1)-curve (for instance D is snc-minimal or (X, 1

2D) is squeezed). If a curve A * D is
almost log exceptional of the first kind on (X, 1

2D) then A ∩ (X \D) is isomorphic to P1, A1, A∗ or
A∗∗ = A1 \ {0, 1}. In the last case A meets three connected components of D (in particular X \D is
not affine), each once in the sense of intersection theory; one of them is [2] and the second [3, 2, . . . , 2]
and A meets the (−3)-curve.
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