Lasse Rempe-Gillen

Eremenko's
Conjecture(s

Part II: The Eremenko-Lyubich class

Part III: Th uniform Eremenko conjecture

Eremenko's Conjecture and the Eremenko-Lyubich class

An epic poem in three parts (sadly unfinished)

Lasse Rempe-Gillen

Department of Mathematical Sciences, University of Liverpool

Perspectives of Modern Complex Analysis Bedlewo, July 2014

Part II: Th Eremenko Lyubich class

Part III: The uniform Eremenko conjecture

A prologue in hexameters

Eremenko (November, 1986):

Part I: Eremenko's Conjecture(s)

Part II: The Eremenko-Lyubich class

Part III: Thuniform
Eremenko

Part II: The Eremenko Lyubich class

Part III: Th uniform Eremenko conjecture

A prologue in hexameters

Eremenko (November, 1986):

 $f: \mathbb{C} \to \mathbb{C}$ transcendental entire;

Eremenko's Conjecture(s)

Part II: The Eremenko-Lyubich class

Part III: The uniform Eremenko conjecture

A prologue in hexameters

Eremenko (November, 1986):

 $f: \mathbb{C} \to \mathbb{C}$ transcendental entire;

"Escaping set"

$$I(f):=\{z\in\mathbb{C}:f^n(z)\to\infty\}$$

A prologue in hexameters

Eremenko (November, 1986):

 $f:\mathbb{C}\to\mathbb{C}$ transcendental entire:

"Escaping set"

$$I(f):=\{z\in\mathbb{C}:f^n(z)\to\infty\}$$

Theorem (Eremenko)

The escaping set I(f) is non-empty for all transcendental entire functions.

A prologue in hexameters

Eremenko (November, 1986):

 $f:\mathbb{C}\to\mathbb{C}$ transcendental entire:

"Escaping set"

$$I(f):=\{z\in\mathbb{C}:f^n(z)\to\infty\}$$

Theorem (Eremenko)

The escaping set I(f) is non-empty for all transcendental entire functions.

Corollary 1 (Eremenko)

Every connected component of the closure $\overline{I(f)}$ is unbounded.

Part II: Th Eremenko Lyubich class

Part III: Th uniform Eremenko conjecture

Eremenko's Conjecture

Every escaping point can to infinity be joined using a connected shape all points of which themselves escape. Part II: The Eremenko Lyubich class

Part III: The uniform Eremenko conjecture

Eremenko's Conjecture

Every escaping point can to infinity be joined using a connected shape all points of which themselves escape.

Conjecture (Eremenko's Conjecture)

Let *f* be any transcendental entire function.

Then every connected component of the escaping set I(f) is unbounded.

Variants of Eremenko's Conjecture

 $f: \mathbb{C} \to \mathbb{C}$ transcendental entire; $z_0 \in I(f)$

Eremenko's Conjecture asks:

Is there an unbounded and connected set $A \ni z_0$ with $A \subset I(f)$?

- A is an arc connecting z_0 to ∞ ? (Strong version)
- $f^n|_A \to \infty$ uniformly? (Uniform version)

Eremenko Lyubich class

Part III: The uniform Eremenko conjecture

Variants of Eremenko's Conjecture

 $f: \mathbb{C} \to \mathbb{C}$ transcendental entire; $z_0 \in I(f)$

Eremenko's Conjecture asks:

Is there an unbounded and connected set $A \ni z_0$ with $A \subset I(f)$?

- A is an arc connecting z_0 to ∞ ? (Strong version)
- $f^n|_A \to \infty$ uniformly? (Uniform version)

Variants of Eremenko's Conjecture

 $f: \mathbb{C} \to \mathbb{C}$ transcendental entire; $z_0 \in I(f)$

Eremenko's Conjecture asks:

Is there an unbounded and connected set $A \ni z_0$ with $A \subset I(f)$?

- A is an arc connecting z_0 to ∞ ? (Strong version)
- $f^n|_A \to \infty$ uniformly? (Uniform version)

Part II: The Eremenko Lyubich

Part III: Th uniform Eremenko

Variants of Eremenko's Conjecture

Variants of Eremenko's Conjecture

 $f: \mathbb{C} \to \mathbb{C}$ transcendental entire; $z_0 \in I(f)$

Eremenko's Conjecture asks:

Is there an unbounded and connected set $A \ni z_0$ with $A \subset I(f)$?

- A is an arc connecting z_0 to ∞ ? (Strong version)
- $f^n|_A \to \infty$ uniformly? (Uniform version)

Variants of Eremenko's Conjecture

 $f: \mathbb{C} \to \mathbb{C}$ transcendental entire: $z_0 \in I(f)$

Eremenko's Conjecture asks:

Is there an unbounded and connected set $A \ni z_0$ with $A \subset I(f)$?

Can A be chosen furthermore such that

- A is an arc connecting z_0 to ∞ ? (Strong version)
- $f^n|_{\Delta} \to \infty$ uniformly? (Uniform version)

Theorem (Rottenfußer, R-G. Rückert, Schleicher: Ann. of Math. 2011)

There is a transcendental entire function $f: \mathbb{C} \to \mathbb{C}$ such that I(f) contains no non-degenerate curves.

The set $sing(f^{-1})$ consists of all:

- Critical values: c = f(z), where f'(z) = 0; and
- Asymptotic values: $a = \lim f(\gamma(t))$, where $\gamma(t) \to \infty$.

$$\mathcal{B} := \{ f : \mathbb{C} \to \mathbb{C} \text{ transcendental, entire } : \text{sing}(f^{-1}) \text{ is bounded} \}.$$

$$\mathcal{S} := \{f : \mathbb{C} \to \mathbb{C} \text{ transcendental, entire : } sing(f^{-1}) \text{ is finite}\}.$$

The set $sing(f^{-1})$ consists of all:

- Critical values: c = f(z), where f'(z) = 0; and
- Asymptotic values: $a = \lim f(\gamma(t))$, where $\gamma(t) \to \infty$.

Eremenko-Lyubich class:

$$\mathcal{B} := \{ f : \mathbb{C} \to \mathbb{C} \text{ transcendental, entire } : \text{sing}(f^{-1}) \text{ is bounded} \}$$

Speiser class

$$\mathcal{S} := \{ f : \mathbb{C} \to \mathbb{C} \text{ transcendental, entire } : \text{sing}(f^{-1}) \text{ is finite} \}.$$

The set $sing(f^{-1})$ consists of all:

- Critical values: c = f(z), where f'(z) = 0; and
- Asymptotic values: $a = \lim f(\gamma(t))$, where $\gamma(t) \to \infty$.

Eremenko-Lyubich class:

$$\mathcal{B} := \{ f : \mathbb{C} \to \mathbb{C} \text{ transcendental, entire } : \text{sing}(f^{-1}) \text{ is bounded} \}$$

Speiser class

$$\mathcal{S} := \{ f : \mathbb{C} \to \mathbb{C} \text{ transcendental, entire } : \text{sing}(f^{-1}) \text{ is finite} \}.$$

Lasse Rempe-Gillen

Part I: Eremenko's Conjecture(s)

Part II: The Eremenko Lyubich class

Part III: The uniform Eremenko conjecture

The Eremenko-Lyubich class

The set $sing(f^{-1})$ consists of all:

- Critical values: c = f(z), where f'(z) = 0; and
- Asymptotic values: $a = \lim f(\gamma(t))$, where $\gamma(t) \to \infty$.

Eremenko-Lyubich class:

$$\mathcal{B} := \{ f : \mathbb{C} \to \mathbb{C} \text{ transcendental, entire } : \text{sing}(f^{-1}) \text{ is bounded} \}.$$

Speiser class

$$S := \{ f : \mathbb{C} \to \mathbb{C} \text{ transcendental, entire } : \text{sing}(f^{-1}) \text{ is finite} \}.$$

The set $sing(f^{-1})$ consists of all:

- Critical values: c = f(z), where f'(z) = 0; and
- Asymptotic values: $a = \lim f(\gamma(t))$, where $\gamma(t) \to \infty$.

Eremenko-Lyubich class:

$$\mathcal{B} := \{ f : \mathbb{C} \to \mathbb{C} \text{ transcendental, entire } : \text{sing}(f^{-1}) \text{ is bounded} \}.$$

Speiser class:

$$S := \{f : \mathbb{C} \to \mathbb{C} \text{ transcendental, entire } : \text{sing}(f^{-1}) \text{ is finite} \}.$$

The set $sing(f^{-1})$ consists of all:

- Critical values: c = f(z), where f'(z) = 0; and
- Asymptotic values: $a = \lim f(\gamma(t))$, where $\gamma(t) \to \infty$.

Eremenko-Lyubich class:

$$\mathcal{B} := \{ f : \mathbb{C} \to \mathbb{C} \text{ transcendental, entire } : \text{sing}(f^{-1}) \text{ is bounded} \}.$$

Speiser class:

$$S := \{f : \mathbb{C} \to \mathbb{C} \text{ transcendental, entire } : \text{sing}(f^{-1}) \text{ is finite} \}.$$

Part III: The uniform Eremenko conjecture

A soliloquy

Part II: The Eremenko-Lyubich class

Part III: The uniform Eremenko conjecture

- Strong expansion near infinity (Eremenko-Lyubich).
- A natural notion of *hyperbolic functions* in $\mathcal B$ (implying expansion and structural stability).
- Universal structure near infinity within a given parameter space.
- In particular, the strong and uniform variants of the conjecture depend only on the "geometry" of the function.
- (That is, they simultaneously hold or fail for all maps in the same parameter space.)

- Part I: Eremenko's Conjecture(s
- Part II: The Eremenko-Lyubich class
- Part III: The uniform Eremenko conjecture

- Strong expansion near infinity (Eremenko-Lyubich).
- A natural notion of *hyperbolic functions* in \mathcal{B} (implying expansion and structural stability).
- Universal structure near infinity within a given parameter space.
- In particular, the strong and uniform variants of the conjecture depend only on the "geometry" of the function.
- (That is, they simultaneously hold or fail for all maps in the same parameter space.)

- Part I: Eremenko's Conjecture(s
- Part II: The Eremenko-Lyubich class
- Part III: The uniform Eremenko conjecture

- Strong expansion near infinity (Eremenko-Lyubich).
- A natural notion of *hyperbolic functions* in \mathcal{B} (implying expansion and structural stability).
- Universal structure near infinity within a given parameter space.
- In particular, the strong and uniform variants of the conjecture depend only on the "geometry" of the function.
- (That is, they simultaneously hold or fail for all maps in the same parameter space.)

- Part I: Eremenko's Conjecture(s
- Part II: The Eremenko-Lyubich class
- Part III: The uniform Eremenko conjecture

- Strong expansion near infinity (Eremenko-Lyubich).
- A natural notion of *hyperbolic functions* in \mathcal{B} (implying expansion and structural stability).
- Universal structure near infinity within a given parameter space.
- In particular, the strong and uniform variants of the conjecture depend only on the "geometry" of the function.
- (That is, they simultaneously hold or fail for all maps in the same parameter space.)

- Part I: Eremenko's Conjecture(s
- Part II: The Eremenko-Lyubich class
- Part III: The uniform Eremenko conjecture

- Strong expansion near infinity (Eremenko-Lyubich).
- A natural notion of *hyperbolic functions* in $\mathcal B$ (implying expansion and structural stability).
- Universal structure near infinity within a given parameter space.
- In particular, the strong and uniform variants of the conjecture depend only on the "geometry" of the function.
- (That is, they simultaneously hold or fail for all maps in the same parameter space.)

- Part I: Eremenko's Conjecture(s
- Part II: The Eremenko-Lyubich class
- Part III: The uniform Eremenko conjecture

- Strong expansion near infinity (Eremenko-Lyubich).
- A natural notion of *hyperbolic functions* in \mathcal{B} (implying expansion and structural stability).
- Universal structure near infinity within a given parameter space.
- In particular, the strong and uniform variants of the conjecture depend only on the "geometry" of the function.
- (That is, they simultaneously hold or fail for all maps in the same parameter space.)

Part III: The uniform Eremenko conjecture

What if the conjecture is false?

The importance of being bounded

It can be very hard to control the components of the escaping set. For example,

- $I(f) \cup \{\infty\}$ is always connected (Rippon-Stallard).
- For $f = \exp$, every path-connected components of I(f) is nowhere dense, but I(f) is connected.

Part II: The Eremenko-Lyubich class

Part III: The uniform Eremenko conjecture

What if the conjecture is false?

The importance of being bounded

It can be very hard to control the components of the escaping set. For example,

- $I(f) \cup \{\infty\}$ is always connected (Rippon-Stallard).
- For f = exp, every path-connected components of I(f) is nowhere dense, but I(f) is connected.

Lyubich class
Part III: The uniform

uniform
Eremenko
conjecture

What if the conjecture is false?

The importance of being bounded

It can be very hard to control the components of the escaping set. For example,

- $I(f) \cup \{\infty\}$ is always connected (Rippon-Stallard).
- For $f = \exp$, every path-connected components of I(f) is nowhere dense, but I(f) is connected.

class

What if the conjecture is false?

The importance of being bounded

It can be very hard to control the components of the escaping set. For example,

- $I(f) \cup \{\infty\}$ is always connected (Rippon-Stallard).
- For $f = \exp$, every path-connected components of I(f) is nowhere dense, but I(f) is connected.

Eremenko's Conjecture

Lasse Rempe-Gillen

Part I: Eremenko's Conjecture(s

Part II: The Eremenko-Lyubich class

Part III: The uniform Eremenko conjecture

Geometric-Combinatorial Principle I

(R-G, Acta Math. 2010)

Dynamics

Eremenko's Conjecture

Lasse Rempe-Gillen

Part I: Eremenko's Conjecture(s

Part II: The Eremenko-Lyubich class

Part III: The uniform Eremenko conjecture

Geometric-Combinatorial Principle II

(Mihaljević-Brandt TAMS 2012)

Dynamics

Maps with trivial combinatorics

Eremenko-

Definition (Disjoint-type function)

A transcendental entire function f is of *disjoint type* if there is a compact and connected set K such that

- $sing(f^{-1}) \subset K$, and
- $f(K) \subset \operatorname{interior}(K)$.

Equivalently, *f* is hyperbolic with connected Fatou set.

- If f is of disjoint type, then J(f) has uncountably many connected components, each of which is an unbounded, closed, connected set.
- The example from [RRRS] (containing no nondegenerate curves) is of disjoint type.
- What topology can these components have?

Part III: The uniform Eremenko conjecture

Definition (Disjoint-type function)

A transcendental entire function f is of *disjoint type* if there is a compact and connected set K such that

- $sing(f^{-1}) \subset K$, and
- $f(K) \subset \operatorname{interior}(K)$.

- If f is of disjoint type, then J(f) has uncountably many connected components, each of which is an unbounded, closed, connected set.
- The example from [RRRS] (containing no nondegenerate curves) is of disjoint type.
- What topology can these components have?

Lasse Rempe-Gillen

Part I: Eremenko's Conjecture

Part II: The Eremenko-Lyubich class

Part III: Th uniform Eremenko conjecture

Disjoint-type functions

Lasse Rempe-Gillen

Part I: Eremenko's Conjecture(s

Part II: The Eremenko-Lyubich class

Part III: The uniform Eremenko conjecture

Disjoint-type functions

Part I: Eremenko's Coniecture(

Part II: The Eremenko-Lyubich class

Part III: Th uniform Eremenko conjecture

Disjoint-type functions

Part I: Eremenko's Conjecture(s

Part II: The Eremenko-Lyubich class

Part III: The uniform Eremenko conjecture

Definition (Disjoint-type function)

A transcendental entire function f is of *disjoint type* if there is a compact and connected set K such that

- $sing(f^{-1}) \subset K$, and
- $f(K) \subset \operatorname{interior}(K)$.

- If f is of disjoint type, then J(f) has uncountably many connected components, each of which is an unbounded, closed, connected set.
- The example from [RRRS] (containing no nondegenerate curves) is of disjoint type.
- What topology can these components have?

Part III: The uniform Eremenko conjecture

Definition (Disjoint-type function)

A transcendental entire function f is of *disjoint type* if there is a compact and connected set K such that

- $sing(f^{-1}) \subset K$, and
- $f(K) \subset \operatorname{interior}(K)$.

- If f is of disjoint type, then J(f) has uncountably many connected components, each of which is an unbounded, closed, connected set.
- The example from [RRRS] (containing no nondegenerate curves) is of disjoint type.
- What topology can these components have?

Part III: The uniform Eremenko conjecture

Definition (Disjoint-type function)

A transcendental entire function f is of *disjoint type* if there is a compact and connected set K such that

- $sing(f^{-1}) \subset K$, and
- $f(K) \subset \operatorname{interior}(K)$.

- If f is of disjoint type, then J(f) has uncountably many connected components, each of which is an unbounded, closed, connected set.
- The example from [RRRS] (containing no nondegenerate curves) is of disjoint type.
- What topology can these components have?

Eremenko's Conjecture

Lasse Rempe-Gillen

Part I: Eremenko's

Part II: The Eremenko-Lyubich class

Part III: The uniform Eremenko conjecture

Disjoint-type functions

Eremenko's Conjecture

Lasse Rempe-Gillen

Part I: Eremenko's Conjecture

Part II: The Eremenko-Lyubich class

Part III: Th uniform Eremenko conjecture

Disjoint-type functions

Lasse Rempe-Gillen

Part I: Eremenko's

Part II: The Eremenko-Lyubich class

Part III: Th uniform Eremenko coniecture

Disjoint-type functions

Part III: The uniform Eremenko conjecture

A sonnet

Part I: Eremenko's Conjecture(

Part II: Th Eremenko Lyubich class

Part III: The uniform Eremenko conjecture

Question

Let $f \in \mathcal{B}$ be a transcendental entire function of disjoint type.

Part I: Eremenko's Conjecture(s

Part II: The Eremenko Lyubich class

Part III: The uniform Eremenko conjecture

Question

Let $f \in \mathcal{B}$ be a transcendental entire function of disjoint type. What can we say about the possible topology of the components of J(f)?

Part I: Eremenko's Conjecture(s

Part II: Th Eremenko Lyubich class

Part III: The uniform Eremenko conjecture

Question

Let $f \in \mathcal{B}$ be a transcendental entire function of disjoint type. What can we say about the possible topology of the components of J(f)?

We give an almost complete answer using the notion of arc-like continua. (R-G, 2014)

Part I: Eremenko's Conjecture(s

Part II: Th Eremenko Lyubich class

Part III: The uniform Eremenko conjecture

Theorem 1

Let f be a transcendental entire function of disjoint type, and let C be an invariant component of J(f). Then the following are equivalent:

- $C \cup \{\infty\}$ is an indecomposable continuum;
- the uniform version of Eremenko's conjecture fails for some $z_0 \in C \cap I(f)$.

Theorem 2

There is a disjoint-type entire function f such that, for every component C of J(f), the set $C \cup \{\infty\}$ is a pseudo-arc.

Part III: The uniform Eremenko coniecture

The uniform Eremenko conjecture

Theorem 1

Let f be a transcendental entire function of disjoint type, and let C be an invariant component of J(f). Then the following are equivalent:

- $C \cup \{\infty\}$ is an indecomposable continuum;
- the uniform version of Eremenko's conjecture fails for some $z_0 \in C \cap I(f)$.

Theorem 2

There is a disjoint-type entire function f such that, for every component C of J(f), the set $C \cup \{\infty\}$ is a pseudo-arc.

(The pseudo-arc is a certain hereditarily indecomposable continuum.)

Part II: The Eremenko Lyubich class

Part III: The uniform Eremenko conjecture

More non-uniform escape

Theorem 3

There is a disjoint-type entire function f and a component C of J(f) such that

- C is an arc to infinity;
- \circ $C \subset I(f)$;
- fⁿ|_C does not tend to infinity uniformly

Part III: The uniform Eremenko conjecture

More non-uniform escape

Theorem 3

There is a disjoint-type entire function f and a component C of J(f) such that

- C is an arc to infinity;
- \bullet $C \subset I(f)$;
- $f^n|_C$ does not tend to infinity uniformly.

Part III: The uniform Eremenko conjecture

More non-uniform escape

Theorem 3

There is a disjoint-type entire function f and a component C of J(f) such that

- C is an arc to infinity;
- \bullet $C \subset I(f)$;
- $f^n|_C$ does not tend to infinity uniformly.

Part III: The uniform Eremenko conjecture

Back to Eremenko's Conjecture

- Trivial/simple geometry (e.g. exponential maps / finite order) implies Eremenko's Property for f.
- Trivial/simple combinatorics (e.g.disjoint type / bounded postsingular sets)
 implies Eremenko's Property for f.
- We now know what geometry is necessary for a (potential)
 counterexample; the next step would be to control the combinatorics.

Part III: The uniform Eremenko conjecture

Back to Eremenko's Conjecture

- Trivial/simple geometry (e.g. exponential maps / finite order) implies Eremenko's Property for f.
- Trivial/simple combinatorics (e.g.disjoint type / bounded postsingular sets) implies Eremenko's Property for *f*.
- We now know what geometry is necessary for a (potential)
 counterexample; the next step would be to control the combinatorics.

Back to Eremenko's Conjecture

- Trivial/simple geometry (e.g. exponential maps / finite order) implies Eremenko's Property for f.
- Trivial/simple combinatorics (e.g.disjoint type / bounded postsingular sets) implies Eremenko's Property for *f*.
- We now know what geometry is necessary for a (potential) counterexample; the next step would be to control the combinatorics.

Part III: The uniform Eremenko conjecture

Happy Birthday, Alex!

Special thanks to Samuel Taylor Coleridge, Publius Vergilius Maro, the German national football team, Henri Poincaré, William Shakespeare, Oscar Wilde and Giacomo da Lentini.