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Eremenko (November, 1986):
f: C — C transcendental entire;
“Escaping set”

I(f):={zeC:f"(z) = oo}

Theorem (Eremenko)
The escaping set I(f) is non-empty for all transcendental entire functions.
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A prologue in hexameters

Eremenko (November, 1986):
f: C — C transcendental entire;
“Escaping set”

I(f):={zeC:f"(z) = oo}

Theorem (Eremenko)
The escaping set I(f) is non-empty for all transcendental entire functions.

Corollary 1 (Eremenko)
Every connected component of the closure I(f) is unbounded.
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Every escaping point

can to infinity be joined

using a connected shape

all points of which themselves escape.

Eremenko’s Conjecture
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Eremenko’s Conjecture

Every escaping point

can to infinity be joined

using a connected shape

all points of which themselves escape.

Conjecture (Eremenko’s Conjecture)

Let f be any transcendental entire function.
Then every connected component of the escaping set /(f) is unbounded.
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f: C — C transcendental entire; Zp € I(f)

Eremenko’s Conjecture asks:
Is there an unbounded and connected set A > zy with A C I(f)?
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f: C — C transcendental entire; Zp € I(f)
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Can A be chosen furthermore such that
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Conjecture(s)

Variants of Eremenko’s Conjecture

f: C — C transcendental entire; Zp € I(f)
Eremenko’s Conjecture asks:
Is there an unbounded and connected set A > zy with A C I(f)?
Can A be chosen furthermore such that
@ Ais an arc connecting zg to co? (Strong version)
@ |4 — oo uniformly? (Uniform version)

Theorem (RottenfuBBer, R-G, Rickert, Schleicher; Ann. of Math. 2011)

There is a transcendental entire function f : C — C such that I(f) contains no
non-degenerate curves.
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The set sing(f~") consists of all:
@ Critical values: ¢ = f(z), where f'(z) = 0; and
@ Asymptotic values: a = lim f(y(t)), where ~(t) — oo.
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The set sing(f~") consists of all:

@ Critical values: ¢ = f(z), where f'(z) = 0; and

@ Asymptotic values: a = lim f(y(t)), where ~(t) — oo.
Eremenko-Lyubich class:

B := {f: C — C transcendental, entire : sing(f~') is bounded}.
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The set sing(f~") consists of all:

@ Critical values: ¢ = f(z), where f'(z) = 0; and

@ Asymptotic values: a = lim f(y(t)), where ~(t) — oo.
Eremenko-Lyubich class:

B := {f: C — C transcendental, entire : sing(f~') is bounded}.

Speiser class:

S := {f : C — C transcendental, entire : sing(f~") is finite}.
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The Eremenko-Lyubich class

The set sing(f~") consists of all:

@ Critical values: ¢ = f(z), where f'(z) = 0; and

@ Asymptotic values: a = lim f(y(t)), where ~(t) — oo.
Eremenko-Lyubich class:

B := {f: C — C transcendental, entire : sing(f~') is bounded}.

Speiser class:

S := {f : C — C transcendental, entire : sing(f~") is finite}.

Why do we care about these classes?
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@ Strong expansion near infinity (Eremenko-Lyubich).
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part|l: 1he @ A natural notion of hyperbolic functions in B (implying expansion and
Lyubich structural stability).
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@ Universal structure near infinity within a given parameter space.
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@ Universal structure near infinity within a given parameter space.

@ In particular, the strong and uniform variants of the conjecture depend only
on the “geometry” of the function.
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@ Strong expansion near infinity (Eremenko-Lyubich).

@ A natural notion of hyperbolic functions in B (implying expansion and
structural stability).

@ Universal structure near infinity within a given parameter space.

@ In particular, the strong and uniform variants of the conjecture depend only
on the “geometry” of the function.

@ (That is, they simultaneously hold or fail for all maps in the same
parameter space.)
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@ Strong expansion near infinity (Eremenko-Lyubich).
e @ A natural notion of hyperbolic functions in B (implying expansion and
ey structural stability).

@ Universal structure near infinity within a given parameter space.

@ In particular, the strong and uniform variants of the conjecture depend only
on the “geometry” of the function.

@ (That is, they simultaneously hold or fail for all maps in the same
parameter space.)

But: If f € B\ S, infinite parameter spaces and potential “Newhouse
phenomenon” ...
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The importance of being bounded

It can be very hard to control the components of the escaping set. For
example,
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The importance of being bounded

It can be very hard to control the components of the escaping set. For
example,
@ /(f)uU{oo} is always connected (Rippon-Stallard).
@ For f = exp, every path-connected components of /(f) is nowhere dense,
but /(f) is connected.
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What if the conjecture is false?

The importance of being bounded

It can be very hard to control the components of the escaping set. For
example,
@ /(f)uU{oo} is always connected (Rippon-Stallard).
@ For f = exp, every path-connected components of /(f) is nowhere dense,
but /(f) is connected.
In B: may gain control via a geometric-combinatorial principle.
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Geometric-Combinatorial Principle |
(R-G, Acta Math. 2010)
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Geometric-Combinatorial Principle I
(Mihaljevi¢-Brandt TAMS 2012)
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Maps with trivial combinatorics

Definition (Disjoint-type function)
A transcendental entire function f is of disjoint type if there is a compact and
connected set K such that

@ sing(f~') c K, and

@ f(K) C interior(K).
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@ f(K) C interior(K).
Equivalently, f is hyperbolic with connected Fatou set.
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Maps with trivial combinatorics

Definition (Disjoint-type function)
A transcendental entire function f is of disjoint type if there is a compact and
connected set K such that
@ sing(f~') c K, and
@ f(K) C interior(K).
Equivalently, f is hyperbolic with connected Fatou set.

e If f is of disjoint type, then J(f) has uncountably many connected
components, each of which is an unbounded, closed, connected set.
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Disjoint-type functions

Maps with trivial combinatorics

Definition (Disjoint-type function)
A transcendental entire function f is of disjoint type if there is a compact and
connected set K such that
@ sing(f~') c K, and
@ f(K) C interior(K).
Equivalently, f is hyperbolic with connected Fatou set.

e If f is of disjoint type, then J(f) has uncountably many connected
components, each of which is an unbounded, closed, connected set.

@ The example from [RRRS] (containing no nondegenerate curves) is of
disjoint type.
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Disjoint-type functions

Maps with trivial combinatorics

Definition (Disjoint-type function)
A transcendental entire function f is of disjoint type if there is a compact and
connected set K such that
@ sing(f~') c K, and
@ f(K) C interior(K).
Equivalently, f is hyperbolic with connected Fatou set.

e If f is of disjoint type, then J(f) has uncountably many connected
components, each of which is an unbounded, closed, connected set.

@ The example from [RRRS] (containing no nondegenerate curves) is of
disjoint type.
@ What topology can these components have?
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Let f € B be a transcendental entire function of disjoint type.
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Let f € B be a transcendental entire function of disjoint type.
What can we say about the possible topology of the components of J(f)?
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A sonnet

Question
Let f € B be a transcendental entire function of disjoint type.
What can we say about the possible topology of the components of J(f)?

We give an almost complete answer using the notion of arc-like continua.
(R-G, 2014)
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The uniform Eremenko conjecture

Let f be a transcendental entire function of disjoint type, and let C be an
invariant component of J(f). Then the following are equivalent:

@ CU {0} is an indecomposable continuum;
@ the uniform version of Eremenko’s conjecture fails for some zy € C N I(f).
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Let f be a transcendental entire function of disjoint type, and let C be an
invariant component of J(f). Then the following are equivalent:
Part ll: The @ CU {0} is an indecomposable continuum;

uniform

Eremenko @ the uniform version of Eremenko’s conjecture fails for some zy € C N I(f).

conjecture

Theorem 2

There is a disjoint-type entire function f such that, for every component C of
J(f), the set C U {0} is a pseudo-arc.

(The pseudo-arc is a certain hereditarily indecomposable continuum.)



More non-uniform escape
There is a disjoint-type entire function f and a component C of J(f) such that
@ C is an arc to infinity;
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More non-uniform escape

There is a disjoint-type entire function f and a component C of J(f) such that
@ C is an arc to infinity;
e CcC ),
@ | does not tend to infinity uniformly.
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Back to Eremenko’s Conjecture

@ Trivial/simple geometry (e.g. exponential maps / finite order) implies
Eremenko’s Property for f.
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@ Trivial/simple geometry (e.g. exponential maps / finite order) implies
Eremenko’s Property for f.
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uniform @ Trivial/simple combinatorics (e.g.disjoint type / bounded postsingular sets)

Eremenko

conjecture implies Eremenko’s Property for f.
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Back to Eremenko’s Conjecture

@ Trivial/simple geometry (e.g. exponential maps / finite order) implies
Eremenko’s Property for f.

@ Trivial/simple combinatorics (e.g.disjoint type / bounded postsingular sets)
implies Eremenko’s Property for f.

@ We now know what geometry is necessary for a (potential)
counterexample; the next step would be to control the combinatorics.
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Special thanks to Samuel Taylor Coleridge, Publius Vergilius Maro, the German national football team, Henri Poincaré, William Shakespeare,

Oscar Wilde and Giacomo da Lentini.
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