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Abstract. These are the notes for my two 90 minutes talks on some
aspects of SPDEs with Lévy noise presented during the semester on
SPDEs in EPF Lausanne and then in the Institute of Applied Math-
ematics, Chinese Academy of Sciences. The first talk was devoted to
analytical aspects of the theory: the form of the generator of a Markov
semigroup in finite and infinite dimensional spaces, properties of the
transition semigroup of a Lévy process and the Lévy–Khinchin formula.
The second talk was concerned with stochastic integration with respect
to a Poisson random measure on L

p-spaces, and with time regularity of
solutions to SPDEs driven by Lévy processes.

1. Introduction

In this paper we can only focus on a few aspects of the theory of SPDEs
driven by Léve noise. The choice of topics is to some extend arbitrary and
reflexes the current area of interest of the author.

Therefore we start with the classical Courrège theorem giving the form
of the generator of a Markov transition semigroup on a state space R

d. Then,
following Itô, we show that the corresponding Markov family is defined by a
stochastic ordinary differential equation. Let A be the generator of a Markov
transition semigroup on R

d. Define Aψ = Aψ(0). Obviously, A is a linear
functional satisfying the minimum principle: Aψ ≥ 0 if ψ has a global mini-
mum at 0. We present a theorem from the recent book of Stroock [29] which
characterizes linear functionals satisfying the minimum principle. We con-
clude the topic of the representation of Markov semigroups and families with
results (Theorems 3 and 4) dealing with a semigroup on a possibly infinite-
dimensional state space.

The work has been supported by Polish National Science Center grant
DEC2013/09/B/ST1/03658. The author acknowledges the Centre Interfacultaire
Bernoulli, Ecole Polytechnique Fédérale de Lausanne for hospitality.
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The problem of the representation of Markov families is one of the moti-
vation to study Léve processes. Therefore in Section 3 we recall the definition
of a Lévy process, and then we investigate analytical properties of its transi-
tion semigroup. In particular we are interested on which function space the
transition semigroup is strongly continuous, and what is its generator. Sec-
tion 4 is devoted to the Lévy–Khinchin decomposition and Lévy–Khinchin
formula. We recall the classical results of Kruglov and De Acosta on the ex-
istence of exponential moments of a Lévy process. We recall also the Kinney
theorem on the existence of a càdlàg modification of a Markov process taking
values in a metric space.

In Section 5 we introduce the theory of integration with respect to a
square integrable Lévy process taking values in a Hilbert space. We study
also the problem of the existence of a solution to SPDE driven by a square
integrable Lévy process. Our general existence result (Theorem 13) will be
applied to the stochastic heat equation.

In Section 6 we discuss the problem whether in stochastic integration
integrands must be predictable. It is an important issue in the case of SDEs
in infinite dimensional spaces since in infinite dimensional case very often
the solution does not have càdlàg modification or left limits. Therefore one
cannot write the diffusion term in the typical for finite dimensional case form
b(u(t−))dL(t).

Section 7 deals with stochastic integration with respect to Poisson ran-
dom measure. We give examples of equations. We introduce the concept of an
impulsive white noise, which to some extend is a jump analog of the Brownian
sheet.

The last section is concerned with the existence of càdlàg solutions to
SPDEs driven by a Lévy process or Poisson random measure. We show that
in general the solution does not need to be càdlàg. However, we present also
some criteria for the existence of a càdlàg solution.

2. Representation of Markov processes

We recall the Courrège result (see [5]) on the form of the generator A of a
Markov semigroup on R

d. Then we will try to find a Markov family defined
by a stochastic differential equation whose generator is A. We will finish this
section with some partial results valid in infinite dimensional spaces.

2.1. Finite dimensional case

Let Pt(x, ·), t ≥ 0, x ∈ E, be a transition probability. Then the corresponding
transition semigroup (Pt) is given by

Ptψ(x) =

∫

E

Pt(x, dy)ψ(y), ψ ∈ Bb(E),

where Bb(E) is the space of all bounded measurable real-valued functions on
E.
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Let us denote by C0(R
d) the space of continuous functions having 0 limit

at infinity and by C∞
0 (Rd) the space of infinitely differentiable functions with

all derivatives of orders ≥ 0, continuous and having limit 0 at infinity. We
denote by ‖ · ‖∞ the supremum norm, and by M+

s (d × d) the space of all
symmetric and non-negative definite matrices of dimension d× d. Finally, D
denotes the derivative (or gradient) operator.

Theorem 1. (Courrège’s 1965/66) Let (Pt) be a transition semigroup on
Bb(R

d). Assume that:

(i) (Pt) satisfies the Feller property, that is Pt : C0(R
d) 7→ C0(R

d).
(ii) (Pt) is strongly continuous( C0 for short) on

(
C0(R

d), ‖ · ‖∞
)
, that is

for any ψ ∈ C0(R
d),

lim
t↓0
‖Ptψ − ψ‖∞ = 0.1

(iii) For any ψ ∈ C∞
0 (Rd) and for any x ∈ R

d, the function

[0,+∞) ∋ t 7→ Ptψ(x) ∈ R,

is differentiable.

Then there are measurable mappings a : R
d 7→ R

d, Q : R
d 7→M+

s (d× d), and
a family ν(x, ·), x ∈ R

d, of non-negative but not necessery finite measures on(
R
d \ {0},B(Rd \ {0})

)
satisfying

∫

Rd

|y|2 ∧ 1ν(x, dy) <∞, ∀x ∈ R
d,

such that for any ψ ∈ C∞
0 (Rd) and x ∈ R

d,

Aψ(x) := lim
t↓0

Ptψ(x)− ψ(x)

t
= 〈a(x), Dψ(x)〉 + 1

2
TrQ(x)D2ψ(x)

+

∫

Rd

(
ψ(x+ y)− ψ(x)− χ[0,1](|y|)〈y,Dψ(x)〉

)
ν(x, dy).

The Courrège theorem gives the form of the generator of a transi-
tion semigroup satisfying mild and natural conditions. A natural question
is whether for given a, Q and ν(x, ·), x ∈ R

d, there is a transition semigroup
with prescribed generator? To answer this question assume that the family
of measures ν(x, ·), x ∈ R

d, is a transport of a single measure µ by a family
of mappings F (x, y), i.e. there is a one measure µ on R

m \ {0} such that
ν(x, ·) = F (x, ·) ◦ µ, x ∈ R

d, where F : R
d × R

m 7→ R
d. Assume also that∫

Rm |y|2 ∧ 1µ(dy) <∞. Then

Aψ(x) = 〈a(x), Dψ(x)〉 + 1

2
TrQ(x)D2ψ(x)

+

∫

Rm

(
ψ(x+ F (x, y)) − ψ(x)− χ[0,1](|F (x, y)|)〈F (x, y), Dψ(x)〉

)
µ(dy).

1It turns out that uniform convergence follows from the pointwise convergence, see the
book of Rogers and Williams [25], p. 241, Lemma 6.7.
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Hence

Aψ(x) = 〈ã(x), Dψ(x)〉 + 1

2
TrQ(x)D2ψ(x)

+

∫

Rm

(
ψ(x+ F (x, y)) − ψ(x)− χ[0,1](|y|)〈F (x, y), Dψ(x)〉

)
µ(dy),

where

ã(x) = a(x)−
∫

Rm

(
χ[0,1](|F (x, y)|) − χ[0,1](|y|)

)
F (x, y)µ(dy),

Let π(dt, dy) be the Poisson random measure with intensity measure dtµ(dy),
and let

π̃(dt, dy) = χ{|y|>1}π(dt, dy) + χ{|y|≤1} (π(dt, dy)− µ(dy)dt) ,

be the compensated measure. Under suitable assumptions on ã, Q and F , for
any x ∈ R

d, the following stochastic ordinary equation

dX(t) = ã(X(t)dt+
√
Q(X(t))dW (t) +

∫

Rm

F (X(t−), y)π̃(dt, dy),

X(0) = x,

has a unique solution. It turns out that (Pt) is the corresponding Markov
semigroup. This construction should be attributed to K. Itô.

2.2. Representation theorem from the book of Stroock

It is an open problem how to extend either Courrège’s theorem or Itô’s con-
struction to infinite dimensional spaces. It seems that for this purpose, the
following result valid still in finite dimensional spaces could be a starting
point. The result comes from the book by Stroock [29]. It gives the form
of an arbitrary linear operator satisfying the minimum principle. Here we
denote by C∞

c (Rd) the space of all infinitely differentiable functions on R
d

having compact support.

Theorem 2. A linear operator A : C∞
c (Rd)⊕ R 7→ R satisfies the hypothesis:

(i) minimum principle; Aψ ≥ 0 if ψ has a global minimum at 0,
(ii) tightness; for any ψ ∈ C∞

c (Rd) ⊕ R, Aψε → 0 as ε ↓ 0, where ψε(x) =
ψ(xε), x ∈ R

d,

if and only if there are a ∈ R
d, Q ∈M+

s (d× d) and a measure ν on R
d \ {0}

satisfying
∫

Rd |y|2 ∧ 1ν(dy) <∞ such that

Aψ = 〈a,Dψ(0)〉+ 1

2
TrQD2ψ(0)

+

∫

Rd

(
ψ(y)− ψ(0)− χ{[0,1]}(|y|)〈y,Dψ(0)〉

)
ν(dy).

Obviously, in the infinite dimensional case a substitute of the tightness
property (ii) should be found.
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2.3. Representation theorem in the infinite dimensional case

Let E and U be linear topological spaces. Later we will need to assume
that E is additionally Polish. The following result, borrowed from the book
by Peszat and Zabczyk [22], deals with the simplest stochastic evolution
equation driven by a compound Poisson process. It provides the existence of
the unique solution and the form of the generator.

Theorem 3. Assume that:

(i) L is a compound Poisson process on U with intensity of jump measure
ν,

(ii) G(x), x ∈ E, is a family of continuous linear mappings from U to E. We
assume that G is strongly measurable in the sense that for any v ∈ U ,
the mapping E ∋ x 7→ G(x)v ∈ E is measurable.

Then for any x ∈ E the following stochastic equation

dX(t) = G(X(t−))dL(t), X(0) = x, (1)

has a unique solution Xx. Moreover, (Xx, x ∈ E) is a Markov family on E,
and for any ψ ∈ Bb(E), uniformly in x ∈ E,

lim
t↓0

Ptψ(x)− ψ(x)

t
=

∫

E

[ψ(x + y)− ψ(x)] ν(x, dy), (2)

where ν(x, ·) is the transport of ν by the mapping G(x); ν(x, dy) = G(x)(·) ◦
ν(dy).

Skech of the proof. The proof of the existence and uniqueness is simple.
Namely, let τ1, τ2, . . . be the consecutive jump times of L. Then X(t) = x
for t ∈ [0, τ1), X(t) = x + G(x)L(τ1) for t ∈ [τ1, τ2), and generally X(t) =
X(τn−1)+G(X(τn−1))(L(τn)−L(τn−1) for t ∈ [τn, τn+1). To see the form of
the generator take ψ ∈ Bb(E) and x ∈ E. Take τ0 = 0. Then

Eψ(Xx(t)) =

∞∑

n=0

P (t ∈ [τn, τn+1)) Eψ(X(τn))

=

∞∑

n=0

e−αt
(tα)n

n!
Eψ(X(τn)),

where α = ν(U) <∞. Therefore, since ψ is bounded,

lim
t↓0

Ptψ(x) − ψ(x)

t
= lim

t↓0

Eψ(Xx(t))− ψ(x)

t

= lim
t↓0

1

t

[
∞∑

n=0

e−αt
(tα)n

n!
Eψ(X(τn))− ψ(x)

]

= lim
t↓0

1

t

(
e−αt − 1

)
ψ(x) + αEψ (x+G(x)L(τ1))

=

∫

U

[ψ(x+G(x)y)− ψ(x)] ν(dy). �
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The question is whether given a family of measures ν(x, dy) on (E,B(E))
there is a Markov family (defined by an equation driven by a compound Pois-
son process) whose generator is as on the right hand side of (2). The answer
is affirmative at least if E is a Polish space, and ν(x, dy) is a transition prob-
ability kernel ; that is ν(x, dy) is a probability measure on (E,B(E)) and for
any Γ ∈ B(E), the function E ∋ x 7→ ν(x,Γ) ∈ [0, 1] is measurable. To see
this, let U be the space of all finite point measures on [0, 1] with topology of
bounded variation, and let m be the transport of the Lebesgue measure ℓ1
on [0, 1] by the mapping f : [0, 1] ∋ x 7→ δx ∈ U . Clearly m is a measure on
U . The following result was shown in [22].

Theorem 4. Assume that ν(x, dy) is a probability kernel. Let L be a compound
Poisson process on the space U with the intensity measure m. Then there is
a strongly measurable family G(x), x ∈ E, of bounded mappings from U to
E, such that the generator of the transition semigroup of the family given by
(1) is given by (2).

Proof. It is know that any time homogeneous Markov chain (Xn) on a Polish
space E can be represented in the form Xn+1 = F (Xn, ξn+1), where (ξn)
are independent identically distributed random variables on [0, 1] and F is a
measurable mapping from E × [0, 1] to E. Let (Xn) be the Markov family
with the transition probability ν(x, dy). Then ν(x, ·) = F (x, ·)◦ℓ1. Obviously
F does not need to be linear in y! To overcame this difficulty it is enough to
take

G(x)v =

∫ 1

0

F (x, y)v(dy), v ∈ U.

�

A much simpler representation can be obtain by taking a Poisson ran-
dom measure π with intensity measure dtℓ1(dy). Then

dX(t) =

∫ 1

0

F (X(t−), y)π(dt, dy), X(0) = x.

2.4. Other results

By the Courrège theorem any time homogeneous Markov family on R
d, which

is Gaussian, Feller and such that the functions t 7→ Ptψ(x), x ∈ R
d and

ψ ∈ C∞
0 (Rd), are differentiable on R

d is given by the equation

dX = a(X)dt+
√
QdW, X(0) = x ∈ R

d,

where W is a Wiener process in R
d, Q ∈ M+

s (d × d) and a : R
d 7→ R

d.
In fact one can deduce from the Gaussianity, that there are: a linear map
A :
√
Q(Rd) 7→ √Q(Rd), a vector b ∈ √Q(Rd), and a (possibly) nonlinear

mapping F :
√
Q(Rd)⊥ 7→ √Q(Rd)⊥ such that

a(x) = (AΠx + b) + F (Π⊥x),

where Π: R
d 7→ √Q(Rd) is a linear orthogonal projection.

What has beed done in infinite dimensions? We have thew paper of Itô
[12], who proved that any stationary time homogeneous Gaussian Markov
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family is defined by an infinite-dimensional Ornstein–Uhlenbeck equation.
Then in [10] is shown that any time homogeneous Gaussian Markov family
Xx is a solution to Ornstein–Uhlenbeck equation provided that for any t > 0
and x ∈ E, the support of the law L(Xx(t)) is equal to E.

3. Lev́y process and its transition semigroup

Let (H, 〈·, ·〉H) be a Hilbert space.

Definition 1. A stochastic process L with values in H is Lévy if:

(i) L(0) = 0,
(ii) L has stationary independent increments,
(iii) L is stochastically continuous.

Let L be a Lévy process and let µt be the law of L(t). Then:

(i’) µ0 = δ0,
(ii’) µt+s = µt ∗ µs, t, s ≥ 0,
(iii’) µt({x : |x|H ≥ r}) = P(|L(t)|H ≥ r)→ 0 as t ↓ 0 for any r > 0.

Clearly (iii′) can be stated equivalently that µt converges weakly to δ0 as
t ↓ 0.

Definition 2. The family of probability measures satisfying (i′) to (iii′) is
called convolution semigroup of measures or infinitely divisible family. Some-
times µ1 is called infinitely divisible measure.

Any Lévy process is Markov with transition probability Pt(x,Γ) =
µt(Γ− x). The corresponding semigroup is given by

Ptψ(x) =

∫

H

ψ(x+ y)µt(dy).

Theorem 5. Every Lévy process has a càdlàg modification. This modification
is a Lévy process.

The theorem follows from the following general result of Kinney [13].
Here B(x, r) denotes the closed ball of radius r with centre at x and Bc(x, r)
denotes its complement.

Theorem 6. (Kinney 1953) Assume that X is a Markov process with transi-
tion probabilities Pt(x, dy), x ∈ H, t ≥ 0. If

lim
t↓0

sup
x∈H

Pt(x,B
c(x, r)) = 0, ∀ r > 0,

then X has a càdlàg modification in H.

Let us now apply the Kinney theorem to the Lévy process. Let r > 0.
By (iii′) we have

lim
t↓0

sup
x∈H

Pt(x,B
c(x, r)) = lim

t↓0
sup
x∈H

µt(B
c(x, r) − x) = lim

t↓0
µt(B

c(0, r)) = 0.
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Note that the Kinney theorem cannot be applied to the family given by the
generalised Ornstein–Uhlenbeck equation

dX = AXdt+ dL, X(0) = x,

even in finite dimensional case. For

lim
t↓0

sup
x∈H

Pt(x,B
c(x, r)) = lim

t↓0
sup
x∈H

P

(∣∣∣∣e
Atx− x+

∫ t

0

eA(t−s)dL(s)

∣∣∣∣ ≥ r
)
.

Clearly the right hand side of the identity above equals +∞ unless A = 0.

3.1. Semigroups

Let (µt) be a convolution semigroup of measures on H . Let Cb(H) and
UCb(H) be the spaces of bounded continuous and bounded uniformly contin-
uous functions on H equipped with the supremum norm ‖·‖∞. The following
result was shown in [30].

Theorem 7. (Tessitore and Zabczyk 2001) Transition semigroup (Pt) is C0

on Cb(H) if and only if (µt) corresponds to a compound Poisson process or
µt ≡ δ0.

Proof. If part is simple. Namely if (µt) corresponds to a compound Poisson
process L, then denoting by τn its consecutive jump times we have

Ptψ(x) =

∞∑

n=0

P (t ∈ [τn, τn+1)) Eψ(L(τn))

= e−αt
∞∑

n=0

(αt)n

n!
Eψ(L(τn)).

Consequently

lim sup
t↓0

‖Ptψ − ψ‖∞ ≤ lim sup
t↓0

e−αt
∞∑

n=1

(αt)n

n!
‖ψ‖∞ = 0.

Assume now that neither µt ≡ δ0 nor (µt) corresponds to a compound Poiss-
son process. Let ε ∈ (0, 1). Then there is a sequence tn ↓ 0 such that

µtn

(
|x|H ≤

1

2

)
= P

(
|L(tn)|H ≤

1

2

)
≥ 1− ε

and (at this moment we use the assumption that L is not a compound Poisson
nor L ≡ 0) such that for each n we can find an 0 < rn <

1
2 such that

µtn (|x|H ≤ rn) = P (|L(tn)|H ≤ rn) ≤ ε.
Let (xn) be a sequence of elements of H such that |xn − xm|H ≥ 1 if n 6= m.
Let ψn ∈ Cb(H) be such that 0 ≤ ψn(x) ≤ 1 for all x, ψn(xn) = 1 and
ψn(x) = 0 if |x− xn|H ≥ rn. Let ψ =

∑
ψn. Then ψ ∈ Cb(H), 0 ≤ ψ(x) ≤ 1

for all x, and ψ(xn) = 1 or all n. We have

‖Ptnψ − ψ‖∞ ≥ |Ptnψ(xn)− ψ(xn)| = |1− Ptnψ(xn)|.
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Since

Ptnψ(xn) =Ptnψn(xn) +
∑

m 6=n

Ptnψm(xn)

≤ µtn (|x|H ≤ rn) + µtn

(
|x|H >

1

2

)
≤ 2ε,

we have ‖Ptnψ − ψ‖∞ ≥ 1− 2ε. �

Definition 3. A semigroup (Pt) of continuous linear operators on UCb(H) is
translation invariant if for all a ∈ H, t ≥ 0, and ψ ∈ UCb(H), Ptτaψ =
τaPtψ, where τa is the translation on a vector a; τaψ(x) = ψ(x+ a).

For a simple proof of the following result we refer the reader to [22].

Theorem 8. (i) The transition semigroup of a Lévy process is C0 on UCb(H).
(ii) A Markov transition semigroup on UCb(H) is translation invariant if and
only it is the transition semigroup of a Lévy process on H.

4. Lévy–Khinchin decomposition

The so-called Lévy–Khinchin decomposition and Lévy–Khinchin formula play
fundamental roles in the theory of Lévy processes. Let L be a Lévy process
taking values in a Hilbert space H . Taking if necessary a modification we
may assume that L is càdlàg, see Theorem 5. Define ∆L(s) := L(s)−L(s−),

µ(A) := E

∑

s≤1

χA(∆L(s)), A ∈ B(H \ {0}).

Next, given A ∈ B(H) such that dist(A, {0}) > 0 write

LA(t) :=
∑

s≤t

χA(∆L(s))∆L(s), t ≥ 0.

Note that due to the fact that L has càdlàg trajectories in H , χA(∆L(s)) 6= 0
only for a finite number of s ≤ t. For a proof of the following result we refer
the reader to e.g. [9].

Theorem 9. (Lévy–Khinchin) (i) µ is a measure satisfying
∫

H

|y|2H ∧ 1µ(dy) <∞.

(ii) For any A ∈ B(H) such that dist(A, {0}) > 0, LA is a compound Poisson
process with jump intensity measure µA being equal to µ restricted to A.
(iii) For an arbitrary sequence (rn) degreasing to 0,

L(t) = at+W (t) +

∞∑

n=1

(
LAn

(t)− t
∫

An

yµ(dy)

)
+ LA0(t), (3)

where the series converges P-a.s. uniformly in t on any bounded interval [0, T ],
a ∈ H, W is a Wiener process in H, A0 = {|x|H ≥ r0}, and An = {rn ≤
|x|H < rn−1}. All components are independent, and W does not depend on
the choice of (rn).
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Sketch of the proof. First assume that L is a Lévy process in H with con-
tinuous trajectories. Can we show that L(t) = at+W (t), where a ∈ H and
W is a Wiener process? To do this observe that L is square integrable. This
follows from the following result, whose relatively easy proof can be found in
the book of Protter [24] (see also the book of Peszat and Zabczyk [22]).

Theorem 10. (Kruglov 1972) Assume that L is a càdlàg Lévy process in a
Banach space E with jumps bounded by a fixed constant C > 0; that is there
is a C > 0 such that |∆L(t)|E ≤ C for all t > 0. Then there is a constant
β > 0 such that

Eeβ|L(t)|E <∞, ∀ t ≥ 0. (4)

Remark 1. De Acosta, see [7], showed that under the hypothesis of Kruglov’s
theorem, (4) holds for any β ≥ 0.

Going back to the proof of the Lévy–Khinchin theorem, we see that
any continuous Lévy process L is in particular square integrable. Then, since
L has stationary and independent increments, the function f : [0,∞) 7→ H
given by f(t) = EL(t), t ≥ 0, satisfies f(t + s) = f(t) + f(s). Since, by

the Fubini theorem, f is measurable, f(t) = f(1)t, t ≥ 0. Therefore L̂(t) :=
L(t) − tEL(1), t ≥ 0, is a square integrable martingale in H . Let Q be the

covariance operator of L̂(1):

〈Qψ, φ〉H = E〈L̂(1), ψ〉H〈L̂(1), φ〉H , ψ, φ ∈ H.

Then for all ψ, φ ∈ H ,

〈L̂(t), ψ〉H〈L̂(t), φ〉H − t〈Qψ, φ〉H , t ≥ 0,

is a martingale. Therefore, by the Lévy characterisation L̂ is a Wiener process
with covariance Q.

In the second part of the proof we would like to subtract from L its
jumps. Note that if A ∈ B(H) is such that dist(A, {0}) > 0, then

∆(L − LA)(t) 6∈ A, ∀ t ≥ 0.

In particular L − LA0 does not have jumps of the size bigger than r0. One
can show that LA is a Lévy process. It is piecewise constant as it has isolated
jumps. Therefore LA is a compound Poisson process. The intensity of LA is

µA(Γ) = E

∑

s≤1

χΓ(∆LA(s)) = E

∑

s≤1

χΓ∩A(∆L(s)), Γ ∈ B(H).

Therefore µA is the restriction of µ to A. Moreover, it can be shown that
L− LA and LA are independent. Therefore we may expect that

L− LA0 −
∞∑

n=1

LAn



SPDEs with Lévy noise 11

is a continuous Lévy process. We need however to prove the convergence of
the series. It terns out, that the sum

∞∑

n=1

(
LAn

(t)− t
∫

An

yµ(dy)

)
, t ≥ 0,

converges in H , P-a.s. uniformly in t from any bounded interval! Indeed, let

Mn(t) = LAn
(t)− t

∫

An

yµ(dy).

Then, Mn is a square integrable martingale (also a Lévy process), and

E |Mn(t)|2H =

∫

A

|y|2Hµ(dy).

The proof of this is not difficult as each LA is a compound Poisson process.
The convergence follows from the Doob maximal inequality for submartin-
gales

rP

(
sup

0≤t≤T

K∑

n=N

|Mn(t)|2H ≥ r
)
≤ E

K∑

n=N

|Mn(T )|2H =

∫

S

K
n=N An

|y|2Hµ(dy).

From this we obtain the convergence in probability uniform in t ∈ [0, T ]. The
convergence P-a.s. follows from the following result:

Theorem 11. (Itô–Nisio 1968) If Xn, n ∈ N, are independent random vec-
tors in a not necessarily separable Banach space E, then the convergence of∑∞
n=1Xn in probability and P-a.s. are equivalent.

In fact we apply the Itô–Nisio theorem toX(n) = (Mn(t); t ∈ [0, T ]) and
E = D([0, T ];H), D([0, T ];H) is the space of all càdlàg H-valued mappings.
The space E is equipped with the supremum norm. E is then complete but
not separable!

4.1. Poisson random measure

Define

π([0, t]×A) :=
∑

0≤s≤t

χA(∆L(s)).

Then π is a Poisson random measure with intensity measure dtµ(dz), and

LA(t) =
∑

0≤s≤t

χA(∆L(s))∆L(s) =

∫ t

0

∫

A

zπ(ds, dz).

Therefore we arrive at the following representation formula:

L(t) = at+W (t) +

∫ t

0

∫

H

zπ̃(ds, dz),

where

π̃(ds, dz) := π(ds, dz)|[0,∞)×A0
+ (π(ds, dz)− dsµ(dx)) |[0,∞)×(H\A0).
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4.2. Generator of a Lévy process

Using either Itô formula ore direct calculation as in [22] on obtains the fol-
lowing result.

Theorem 12. Assume that A is the generator of the transition semigroup on
UCb(H) of a Lévy process L with the Lévy–Khinchin decomposition (3). Then
UC2

b (H) ⊂ DomA, and

Aψ(x) = 〈a,Dψ(x)〉H +
1

2
QD2ψ(x)

+

∫

H

(
ψ(x+ y)− ψ(x)− χ{|y|H≤1}(y)〈Dψ(x), y〉H

)
µ(dy).

Remark 2. In 1973 Nemirovskii and Semenov showed (see [21]) that UC2
b (H)

is dense in UCb(H) if and only ifH is finite dimensional. Therefore, in infinite
dimensional case the theorem above gives the description of the generator on
a non dense subset of its domain!

5. Stochastic integration

5.1. With respect to a square integrable Lévy martingale

In this and next sections U , H , and V are real separable Hilbert spaces. We
denote by L(U,H) the space of all bounded linear operators form U into H ,
and by L(HS)(U,H) its subspace of Hilbert–Schmidt operators. Recall that
α ∈ L(U,H) belongs to L(HS)(U,H) if

‖α‖2L(HS)(U,H) :=

∞∑

k=1

|αek|2H <∞

for any, or equivalently for some orthonormal basis (ek) of U .
Assume that L is a square integrable Lévy process (large jumps re-

moved) taking values U . Then

M(t) = L(t)− tEL(1), t ≥ 0,

is a square integrable martingale. Let Q be the covariance operator of L(1).
Let

ψ =
∑

k

αkχ(tk,tk+1]

be a simple function; αk are L(U,H)-valued random variables, αk(u) is Ftk
measurable for any u ∈ U . We define

∫ t

0

ψ(s)dM(s) :=
∑

k

αk (M(t ∧ tk+1)−M(t ∧ tk)) .

Then after simple calculation we have

E

∣∣∣∣
∫ t

0

ψ(s)dM(s)

∣∣∣∣
2

H

=

∫ t

0

E‖ψ(s)Q1/2‖2L(HS)(U,H)ds.
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Let H = Q1/2(U) be the image of Q1/2. On H we consider the scalar product
inherited from U by Q1/2. We call H the Reproducing Kernel Hilbert Space
of L. We extend the integral to the completion of the class of simple function
with respect to the family of semi-norms

‖|ψ|‖T :=

√∫ T

0

E‖ψ(s)Q1/2‖2L(HS)(U,H)ds, T > 0.

Thus the space of integrands is the space of all predictable square integrable
random processes

ψ : Ω× [0,∞) 7→ L(HS)(H, H).

satisfying ‖|ψ|‖T <∞ for any T > 0.

The isometry formula holds

E

∣∣∣∣
∫ t

0

ψ(s)dM(s)

∣∣∣∣
2

H

=

∫ t

0

E‖ψ‖2L(HS)(H,H)ds.

5.2. Existence and uniqueness to SPDE

Assume that a Hilbert space H is continuously imbedded into a Hilbert space
V . Consider SPDE

du = (Au+ F (u)) dt+B(u)dM, u(0) = u0 ∈ H, (5)

where (A,D(A)) generates a C0-semigroup S on H , F : H 7→ V , and for any
x ∈ H , B(x) is a linear operator (not necessarily bounded) from H to H . We
have the following simple existence result.

Theorem 13. Assume that for any t > 0, the semigroup S(t) has a (unique)
extension to a bounded linear map from V into H, and that

|S(t)(F (x) − F (y))|H ≤ b(t)|x− y|H ,
‖S(t) (B(x)−B(y)) ‖L(HS)(H,H) ≤ a(t)|x− y|H

and

|S(t)F (x)|H ≤ b(t) (1 + |x|H) ,

‖S(t)B(x)‖L(HS)(H,H) ≤ a(t) (1 + |x|H) ,

where ∫ T

0

(
b(t) + a2(t)

)
dt <∞, ∀T > 0.

Then there is a unique adapted process u such

sup
0≤t≤T

E |u(t)|2H <∞, ∀T > 0,

and for all t ≥ 0,

u(t) = S(t)u0 +

∫ t

0

S(t−s)F (u(s))ds+

∫ t

0

S(t−s)F (u(s))dM(s), P-a.s.
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Sketch of the proof. Let us fix a finite time horizon T > 0. Let XT be the
space of all square-integrable adapted processes X : Ω× [0, T ] 7→ H such

[0, T ] ∋ t→ E |X(t)|2H ∈ R

is continuous. On XT consider the family of equivalent norms

‖X‖β := sup
0≤t≤T

e−βt
√

E|X(t)|2H , β > 0.

Then XT equipped with ‖ · ‖β is a Banach space. Consider the mapping

Ψ(X)(t) = S(t)u0 +

∫ t

0

S(t− s)F (X(s))ds+

∫ t

0

S(t− s)B(X(s))dM(s).

Then Ψ: XT 7→ XT . Moreover, for β large enough Ψ is a contraction. Thus
the desired conclusion follows from the Banach fixed point theorem. �

5.3. Typical example

As an example consider stochastic heat equation

du = (∆u+ f(u)) dt+ b(u)dM, u(0) = u0,

considered on a bounded region O ⊂ R
d with 0-Dirichlet boundary con-

ditions. Assume that the RKHS H of M is a subset of H = L2(O), and
f, b : R 7→ R. Then we are in the framework of equation (5), with A being
the Laplace operator on H = L2(O) with the Dirichlet boundary conditions,
and F and B of the Nemytskii type operators

F (ψ)(x) = f(ψ(x)), B(ψ)[φ](x) = b(ψ(x))φ(x),

for ψ ∈ L2(O), φ ∈ H, x ∈ O.

Note the if f : R 7→ R is Lipschitz then the corresponding F : L2(O) 7→
L2(O) is Lipchitz as well. As far as B is concerned, then B(u) is a bounded
linear operator from L2(O) to L2(O) if and only if b(u) ∈ L∞(O). Therefore
B is an L(L2(O), L2(O))-valued if and only if b is bounded. Assume now that
b is bounded. Note that

B : L2(O) 7→ L(L2(O), L2(O))

is continuous if and only if b is constant. For

‖B(u)−B(v)‖2L(L2(O),L2(O)) = sup
|ψ|L2(O)≤1

∫

O

(b(u(x))− b(v(x)))2 ψ2(x)dx

= ‖b(u)− b(v)‖2∞.
Let a1 6= a2 ∈ R and let Oε be a subset of O of Lebesgue measure ε. Take
uε(x) = a1χOε

(x) and vε(x) = a2χOε
(x) for x ∈ O. Then ‖b(uε)− b(vε)‖∞ =

|b(a1)− b(a2)|. On the other hand

|uε − vε|L2(O) = |a1 − a2|
√
ε.

Note that B(u) is Hilbert–Schmidt if and only if b ≡ 0.
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Let G be the Green kernel. Then

‖S(t) (B(u)−B(v)) ‖L(L2(O),L2(O))

= sup
|ψ‖L2(O)≤1

∫

O

ψ(x)S(t) (B(u)−B(v)) (x)dx

= |S(t) (B(u)−B(v))|L∞(O)

= sup
x∈O

∫

O

G(t, x, y)|b(u(y))− b(v(y))|dy

≤ |b(u)− b(v)|L2(O) sup
x∈O

(∫

O

G2(t, x, y)dy

)1/2

.

Recall that d is the dimension of the domain O. Taking into account the
Arronson estimates for the Green kernel, see Arronson [2], Eidelman [8],
Solonnikov [27] and [28],

G(t, x, y) ≤ C1t
−d/2 exp

{
−C2

|x− y|2
t

}

we arrive at the estimate

sup
x∈O

(∫

O

G2(t, x, y)dy

)1/2

≤ C3t
−d/4.

On the other hand

‖S(t) (B(u)−B(v)) ‖2L(HS)(L2(O),L2(O))

=

∫

O

∫

O

G2(t, x, y)|b(u(y))− b(v(y))|2dydx

≤ |b(u)− b(v)|2L2(O) sup
y∈O

∫

O

G2(t, x, y)dx ≤ C3t
−d/2 |b(u)− b(v)|2L2(O) .

Therefore, if d = 1, then the existence of the solution follows from Theorem
13.

For d = 1 on can also use the following arguments, let (ek) be the
orthonormal basis of L2(O) of eigenvectors of ∆ and let (−λk) be the corre-
sponding sequence of eigenvalues. Then

‖S(t) (B(u)−B(v)) ‖2L(HS)(L2(O),L2(O))

=
∑

k,j

〈S(t) ((b(u)− b(v))ek) , ej〉2L2(O) =
∑

k,j

〈(b(u)− b(v))ek, S(t)ej〉2L2(O)

=
∑

k,j

e−2λjt〈(b(u)− b(v))ek, ej〉2L2(O) =
∑

j

e−2λjt |(b(u)− b(v))ej |2L2(O)

≤
∑

j

e−2λjt |b(u)− b(v)|2L2(O) .

Since λj is of order j2, there is a constant C such that
∑

j e−2λj t ≤ Ct−1/2.
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6. Predictability

It is know that if we integrate with respect to a Wiener process, then it
is enough to assume that the integrand is measurable, adapted and locally
square integrable with respect to time with probability 1. The following ex-
amples shows also that in general the integrand should be predictable or the
stochastic integration differs from the Lebesgue–Stieltjes integral in the case
of the integration with respect to a process with bounded variation.

Example 1. Let Π be a Poisson process with intensity λ. Let τ be the moment
of the first jump of Π. Then χ[0,τ) is a measurable adapted process. We note
that χ[0,τ) is not predictable. Clearly a predictable process is χ[0,τ ]. Note that
χ[0,τ ] is a modification of χ[0,τ).

Let Π̂ be the compensated process. Then, if we treat the integral as

the Lebesgue–Stieltjes integral with respect to a process Π̂ with bounded
variation, then

X(t) :=

∫ t

0

χ[0,τ)(s)dΠ̂(s) = −λt ∧ τ +

∫ t

0

χ[0,τ)(s)dΠ(s) = −λt ∧ τ.

Note that X is not a martingale, nor a local martingale. It has decreasing
trajectories. On the other hand, the process

Y (t) :=

∫ t

0

χ[0,τ ](s)dΠ̂(s) = −λt ∧ τ +

∫ t

0

χ[0,τ ](s)dΠ(s) = −λt ∧ τ + χ{t≥τ}

is a martingale.

Obviously if X is càdlàg and adapted, then X(t−), t ≥ 0, is predictable.
Unfortunately, in important cases X does not have a càdlàg modification. It
can be mean square continuous, that is

lim
s↑t

E |X(t)−X(s)|2H = 0, ∀ t ≥ 0.

Then there is its predictable modification due to the following general result
(see Gikhmann and Skorokhod [9] or Peszat and Zabczyk [22], Prop. 3.21).

Theorem 14. Any measurable stochastically continuous adapted process has
a predictable modification.

The problem of predictability of integrands is treated in more details by
Albeverio, Mandrekar, and Rüdiger [1] and by Mandrekar and Rüdiger [15],
[16], and [17].

7. Poisson random measures

Let (E, E) be a measurable space. Let π be the Poisson random measure on
[0,∞)×E with the intensity measure dtµ(dz), and let π̂(dt, dξ) := π(dt, dξ)−
µ(dξ)dt be the compensated measure. We would like to integrate with respect
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to π a random field X(t, ξ), t ≥ 0, ξ ∈ E. Here X(t, ξ) can be real valued or
taking values in a Banach space V . Define the filtration

Ft := σ (π([0, s]×A) : 0 ≤ s ≤ t, A ∈ E) , t ≥ 0.

In the first step we integrate simple fields ; that is the fields of the form

X =

K∑

j=1

Xjχ(tj ,tj+1]χAj
,

whereK ∈ N, µ(Aj) <∞,Xj are bounded andXj is Ftj -measurable. Namely
we write

Iπt (X) :=

∫ t

0

∫

E

X(s, ξ)π(ds, dξ) =
K∑

j=1

Xjπ ((tj ∧ t, tj+1 ∧ t]×Aj) .

In the same way we define Ibπ
t (X). Observe, that in the sum on above, Xj

does not depend on the random variable π ((tj ∧ t, tj+1 ∧ t]×Aj) having the
Poisson distribution with intensity µ(Aj) (t ∧ tj+1 − t ∧ tj). Therefore

EIπt (X) =

K∑

j=1

EXjµ(Aj) (t ∧ tj+1 − t ∧ tj)

= E

∫ t

0

∫

E

X(s, ξ)dsµ(dξ).

Next since each Xj is bounded Iπt (X) has all moments finite. Obviously

E |Iπt (X)|V ≤ EIπt (|X |V ) .

Assume now that the integrand is real-valued.

Lemma 1. For any simple real-valued field X, the process Ibπ
t (X), t ≥ 0, is a

square integrable real valued martingale with the quadratic variation
[
Ibπ(X), Ibπ(X)

]

t
= Iπt (X2), t ≥ 0.

We have now the following result of Saint Loubert Bié. It plays a fun-
damental role in the Lp-theory of SPDEs with Lévy noise, see e.g. [22] and
the original paper by Saint Loubert Bié [26].

Lemma 2. Let p ∈ [1, 2]. Then there is a constant Cp such that for arbitrary
simple field X and T > 0,

E sup
0≤t≤T

∣∣∣Ibπ
t (X)

∣∣∣
p

≤ CpE
∫ T

0

∫

E

|X(t, ξ)|p dtµ(dξ).

Proof. By the Burkholder–Davis–Gundy inequality

E sup
0≤t≤T

∣∣∣Ibπ
t (X)

∣∣∣
p

≤ CpE
[
Ibπ(X), Ibπ(X)

]p/2
T

= CpE
(
IπT (X2)

)p/2
.

Now

IπT (X2) =

K∑

j=1

X2
j π ((tj ∧ t, tj+1 ∧ t]×Aj) .
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But π ((tj ∧ t, tj+1 ∧ t]×Aj) are non-negative integers! Therefore since p/2 ≤
1,




K∑

j=1

X2
j π ((tj ∧ t, tj+1 ∧ t]×Aj)




p/2

≤
K∑

j=1

|Xj |pπ ((tj ∧ t, tj+1 ∧ t]×Aj) .

Hence
(
IπT (X2)

)p/2 ≤ IπT (|X |p), and consequently

E
(
IπT (X2)

)p/2 ≤ EIπT (|X |p) = E

∫ t

0

∫

E

|X(s, ξ)|pdsµ(dξ).

�

Having defined the stochastic integral of a simple field we would like to
extend it to a more general class of random fields. Namely, given T <∞, we
denote by P[0,T ] the σ-field of predictable sets in [0, T ]× Ω. Define

Lpµ,T := Lp
(
[0, T ]× Ω× E,P[0,T ] ⊗ E , dtPµ

)
.

The space Lpµ,T is equipped with the norm

‖X‖Lp

µ,T
=

(∫ T

0

∫

E

E |X(s, ξ)|pdsµ(dξ)

)1/p

.

The simple fields are dense in Lpµ,T , yielding the following consequence of
Lemmas 1 and 2.

Theorem 15. 1. For p ∈ [1, 2] and t ∈ [0, T ] there is a unique extension of
the stochastic integral Ibπ

t to a bounded linear operator, denoted also by
Ibπ
t , from Lpµ,t into Lp(Ω,Ft,P).

2. There is a unique extension of the mapping L0 ∋ X 7→ Iπt (X) ∈
L1(Ω,Ft,P) to a bounded linear operator from L1

µ,t into L1(Ω,Ft,P).
The value of this operator at X is given by

∫ t

0

∫

E

X(s, ξ)π(ds, dξ),

or by Iπt (X).
3. For X ∈ L1

µ,T and 0 ≤ s ≤ t ≤ T ,

E

∣∣∣Ibπ
t (X)− Ibπ

s (X)
∣∣∣ ≤ c1

∫ t

s

∫

E

E |X(r, ξ)|drµ(dξ)

and

E |Iπt (X)− Iπs (X)| ≤
∫ t

s

∫

E

E |X(r, ξ)|drµ(dξ).

Hence the processes Ibπ(X) and Iπ(X) admit predictable modifications.
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4. If X ∈ L2
µ,T then

(
Ibπ
t (X), t ∈ [0, T ]

)
is a square integrable martingale.

Moreover, for X,Y ∈ L2
µ,T and t ∈ [0, T ], [Ibπ(X), Ibπ(Y )]t = Iπt (XY ).

As for the case of simple fields, we write
∫ t
0

∫
E X(s, ξ)π̂(ds, dξ) instead

of Ibπ
t (X).

7.1. Example of equations

Consider the following heat equation on a bounded region O ⊂ R
d;

du(t, x) = ∆u(t, x)dt+

∫

S

b(u(t, x), σ)π̂(dt, dx, dσ), u(0, x) = u0(x),

with homogeneous Dirichlet or Neumann boundary conditions. In the equa-
tion π is a Poisson random measure on [0,∞)×O×S, with intensity measure
dtdxν(dσ), σ is a measure on a measurable space (S,S). Equations of this
type were investigated in e.g. [19, 20, 26, 22]. The mild formulation of our
problem is

u(t, x) =

∫

O

G(t, x, y)u0(y)dy

+

∫ t

0

∫

O

∫

S

G(t− s, x, y)b(u(s, y), σ)π̂(ds, dy, dσ).

A much simple problem is when the random Poisson measure does not
depend on space variable x;

du(t, x) = ∆u(t, x)dt+

∫

S

b(u(t, x), σ)π̂(dt, dσ), u(0, x) = u0(x).

Its mild form is

u(t, x) =

∫

O

G(t, x, y)u0(y)dy

+

∫ t

0

∫

O

∫

S

G(t− s, x, y)b(u(s, y), σ)π̂(ds, dσ).

Then, roughly speaking

∫ t

0

∫

O

∫

S

G(t− s, ·, y)b(u(s, y), σ)π̂(ds, dσ) =

∫ t

0

S(t− s)dM(s),

where

M(s) =

∫ t

0

∫

S

b(u(s), σ)π̂(ds, dσ), t ≥ 0,

is a martingale. It turns out that in the first case the solution does not have a
càdlàg modification in L2(O) whereas in the second case it does, see Section
9.
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8. Impulsive white noise

Let O be an open not necessarily bounded domain in R
d (possibly O = R

d).
Let π be a Poisson random measure on [0,∞) × O × R with intensity of
jump measure dtdxν(dσ). Assume that

∫
R
σ2 ∧ 1ν(dσ) < ∞. Consider the

distributions-valued process

Z(t) =

∫ t

0

∫

{|σ|<R}

σπ̂(dsdxdσ) +

∫ t

0

∫

{|σ|≥R}

σπ(dsdxdσ).

Taking into account the representation

π(dsdxdσ) =
∑

δτk,xk,σk
,

we obtain the following a bit formal expression for Z;

Z(t) =




∑

|σk|<R,τk≤t

σkδτk,xk
− t
∫

|σ|<R

σdxν(dσ)



+
∑

|σk|≥R,Tk≤t

σkδτk,xk
.

Intuitively, at random points (τk, xk) at time and space Z gives random
impulses of random size σk.

Remark 3. One can show that

M(t) =

∫ t

0

∫

{|σ|<R}

σπ̂(dsdxdσ)

is a square integrable martingale in a sufficiently large space, and that its
RKHS equals

H = L2(O,B(O), aRdx), aR :=

∫

{|σ|<R}

σ2ν(dσ).

Thus, in particular, M takes values in any Hilbert space V such that the
embedding H →֒ V is Hilbert–Schmidt.

Remark 4. The jump measure µ of Z is the image of the measure dxν(dσ)
under the transformation O × R ∋ (x, σ) 7→ σδx ∈ D(O), where D(O) is the
space of distribution on O.

Therefore our definition is the following.

Definition 4. Impulsive cylindrical (or white ) noise with intensity of jumps
measure dxν(dσ) is the Lévy process on the space of distributions with
the Lévy measure µ being the image of dxν(dσ) under the transformation
(x, σ) 7→ σδx.

Remark 5. Impulsive cylindrical process L takes values in a Hilbert space
U provided that

∫
U
|u|2U ∧ 1µ(du) < ∞. Let U = H−α be the Sobolev

space of order −α with an α > d/2. Then, by Sobolev embedding, C :=
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supx∈O |δx|H−α <∞. Therefore
∫

H−α

|u|2H−α ∧ 1µ(du) =

∫

O

∫

R

σ2|δx|H−αdxν(dσ)

≤ C
∫

R

σ2 ∧ 1ν(dσ) <∞.

Consequently, L takes values in H−α. For more details on SPDEs driven by
impulsive cylindrical process we refer the reader to Mueller [19], Mytnik [20],
or [22].

9. Regularity of stochastic convolution

We start this section with results on the lack of a càdlàg modification for
SPDEs driven by a process whose jump measure is not supported on the
state space. Then we present different tools useful for study regularity of
stochastic convolutions.

9.1. Lack of càdlàg modification

As the following example shows in some cases the solution to linear stochastic
evolution equation does not have a càdlàg modification.

Example 2. Let U and H be Hilbert spaces such that

(i) H is densely embedded into U .
(ii) One has

∫ T

0

‖S(s)‖2L(HS)(H,H) ds <∞, ∀T > 0.

(iii) For any t > 0, S(t) has a continuous extension to an operator S(t) ∈
L(U,H).

(iv) For any u ∈ U \H , limt↓0 |S(t)u|H =∞.

Let Z be a square integrable mean zero random variable in U with RKHS
H , and let L be a compound Poisson process with Lévy measure ν which is
the distribution of Z. Then

X(t) =

∫ t

0

S(t− s)dL(s) =
∑

τn<t

S(t− τn)Zn,

where τn are the jump times of L and Zj are independent copies of Z. Then,
by (ii), supt≤T E |X(t)|2H <∞ but

lim
t↓τn

|X(t)|H = lim
t↓τn

|S(t− τn)Zn|H =∞,

since Zn take values in U \H .

Explicitly, take H = L2(0, 1), U = W−1,2
0 (0, 1), S the heat semigroup

generated by the Laplace operator with Dirichlet boundary conditions, and
Z = ηδξ, where ξ ∈ (0, 1), and η is a mean zero random variable.

The following have ben proven by Brzezniak and Zabczyk [3], and Peszat
and Zabczyk [22].
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Theorem 16. If the jump measure of the noise is not supported on E then
the stochastic convolution does not have càdlàg trajectories in E.

9.2. Factorisation

Stochastic integral with respect to the square integrable martingale as a
square integrable martingale has a càdlàg modification. This is not always
true for stochastic convolution processes

X(t) :=

∫ t

0

S(t− s)Ψ(s)dM(s), t ≥ 0,

where the integrand depends on t.
One way to show the continuity of its trajectories is to use the so-called

Da Prato–Kwapień–Zabczyk factorisation, see the original paper by Da Prato,
Kwapień, and Zabczyk [6], or [22],

X(t) = Γ(1)Iα(Xα)(t),

where

Xα(t) =
1

Γ(1− α)

∫ t

0

(t− s)−αS(t− s)ψ(s)dM(s), t ≥ 0,

and Iα is the fractional derivative operator given by

Iαψ(t) =
1

Γ(α)

∫ t

0

(t− s)α−1S(t− s)ψ(s)ds,

and Γ is the Euler Γ-function. It is easy to show that

Iα ∈ L(Lp(0, T ;H), C([0, T ];H))

provided that 1/q < α < 1.
For the Wiener integral it is usually not hard to show that Xα has

trajectories in Lq(0, T ;H) with some 1/q < α < 1. Therefore the continuity
of trajectories of X follows. However, for discontinuous Lévy process, Xα

does not have trajectories in Lq(0, T ;H) with any 1/q < α < 1. This can
been seen as a consequence of the Bichteler–Jacod estimate (see e.g. [18]).

9.3. Kotelenez regularity result

Kotelenez [14] proved the regularity of stochastic convolution
∫ t

0

S(t− s)dM(s), t ≥ 0,

driven by an arbitrary square integrable martingale in H for a generalized
contraction semigroup S. Recall that for any C0-semigroup S there are con-
stants β > 0 and ω ∈ R such that

‖S(t)‖L(H,H) ≤ βeωt, t ≥ 0. (6)

If (6) holds with β = 1, then S is a generalized contraction semigroup. If
moreover, ω ≤ 0, then S is a contraction semigroup.

We outline here the proof of Kotelenez result due to Hausenblas and
Seidler [11]. Their method is based on the Nagy dilation theorem.
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Theorem 17. (Nagy) If S is a C0-semigroup of contractions on H, then there

is a Hilbert space H̃ containing H and a unitary group R on H̃ such that
S = PR, where P ∈ L(H̃,H) is a projection.

Proof of the Kotelenez regularity result. If S is a generalized contraction semi-
group then for ω large enough e−ωtS(t), t ≥ 0, is a semigroup of contractions.
Then by the Nagy theorem

e−ωtS(t) = PR(t), t ≥ 0,

where P ∈ L(H̃,H) and R is a unitary C0-group. Hence
∫ t

0

S(t− s)dM(s) =

∫ t

0

eω(t−s)e−ω(t−s)S(t− s)dM(s)

=

∫ t

0

eω(t−s)PR(t− s)dM(s)

= eωtPR(t)

∫ t

0

R(−s)dM(s).

Since

Y (t) :=

∫ t

0

R(−s)dM(s), t ≥ 0,

is a square integrable martingale, Y has càdlàg trajectories in H̃ and conse-
quently X has càdlàg trajectories in H as R is strongly continuous.

9.4. Criterion for the absence of discontinuities of the second kind

The following criterion of the Chentsov type (see [4]), follows from a certain
more general result (see Gikhman and Skorokhod [9], Chapter 3). For its
proof we refer the reader to Gikhman and Skorokhod [9], or [23].

Let ξ = (ξ(t), t ∈ [0, T ]) be a separable process taking values in a metric
space (U, ρ). We extent ξ on R putting ξ(t) = ξ(0) for t < 0 and ξ(t) = ξ(T )
for t ≥ T .

Theorem 18. Assume that there are p, r,K > 0 such that for all t ∈ [0, T ]
and h > 0,

E [ρ (ξ(t), ξ(t− h)) ρ (ξ(t), ξ(t+ h))]
p ≤ Kh1+r. (7)

Then with probability 1, ξ has no discontinuities of the second kind. Moreover,
for any 1 ≤ q < 2p,

E sup
t,s∈[0,T ]

(ρ(ξ(t), ξ(s)))q ≤ (2G)qE (ρ(ξ(T ), ξ(0)))q +R, (8)

where 0 < r′ < r,

G =

∞∑

n=1

(T 2−n)r
′/(2p) <∞, (9)

and R := 1 + q
2p−q

K(2G)2pT 1+r−r′

1−2r′−r
.
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The criterion yields the following result (see [23]) on the existence of
a càdlàg in H solution to linear equation with the noise taking values in a
bigger space U ←֓ H . For more specific examples we refer the reader to [23].

Theorem 19. Let X be the solution to the following linear equation

dX = AXdt+ dZ,

where A is the generator of an exponentially stable analytic semigroup S on a
Hilbert space H and Z is a pure jump Lévy process taking values in a Hilbert
space U = H−ρ for a certain ρ < 1/2. Assume that the Lévy measure ν of Z
satisfies ν(H−ρ \H) = 0 and that

∫

H

(
|z|2−ρ + |z|4ε

)
ν(dz) <∞

for a certain ε > 0. Then X has a càdlàg modification in H and

E sup
0≤t≤T

|X(t)|qH <∞, ∀T <∞, ∀ q ∈ [1, 4).
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[16] V. Mandrekar and B. Rüdiger, Generalized Ornstein-Uhlenbeck processes on

separable Banach spaces, in Seminar on Stochastic Analysis, Random Fields
and Applications V, pp. 261–274, Progr. Probab., 59, Birkhuser, Basel 2008.
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(1998), 67–82.

[20] L. Mytnik, Stochastic partial differential equation driven by stable noise,
Probab. Theory Related Fields 123 (2002), 157–201.

[21] A.S. Nemirovskii, and S.M. Semenov, On polynomial approximation of functons

on Hilbert space, Mat. Sb. 21 (1973), 251–277.

[22] S. Peszat, and J. Zabczyk, Stochastic Partial Differential Equations with Lévy
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