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Plan and background

I would like to discuss

1. What is a quantum groupoid in the algebraic setup?

2. Integration on algebraic quantum groupoids

3. Pontrjagin duality for algebraic quantum groupoids

4. The passage to operator-algebraic quantum groupoids

following

▸ T.T. Integration on and duality of algebraic quantum groupoids.
(arxiv:1403.5282, submitted)

and generalising the theory of multiplier Hopf algebras [Van Daele] and

▸ the finite-dimensional case
[Böhm-Nill-Szlachányi; Nikshych-Vainerman; . . . ]

▸ partial integration and duality in the fiber-wise finite case
[Böhm-Szlachányi]

▸ the case of weak multiplier Hopf algebras (w.i.p) [Van Daele-Wang]
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What is a quantum groupoid? First idea and main examples

Idea A quantum groupoid consists of a total algebra A, a base algebra B,

target and source maps B,Bop → A and a comultiplication ∆∶A→ A ∗
B
A

subject to conditions that depend on the setting

Example 1 The function algebra of a finite groupoid X
s⇇
t
G

m← G s×tG

▸ A = C(G) and B = C(X)
▸ s∗, t∗∶C(X) ↪ C(G)
▸ ∆ = m∗∶C(G) → C(G s×tG) given by δγ ↦ ∑γ′γ′′=γ δγ′ ⊗ δγ′′

Example 2 The convolution algebra of a finite groupoid as above
▸ A = C(G) and B = C(X)
▸ B = Bop ↪ A given by extending functions by 0 outside X

▸ ∆∶C(G) → C(G (s,t)×(s,t)G) the diagonal map δγ ↦ δγ ⊗ δγ
Example 3 Deformations of 1 and 2 for Poisson-Lie groupoids G
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Further examples of quantum groupoids

Example 4 Assume that G1 and G2 are compact quantum groups.
Then monoidal equivalences Rep(G1) ∼ Rep(G2) correspond with
linking quantum groupoids [De Commer], where

▸ B = C2 and A = ⊕i ,j=1,2C(Gij) with Gii = Gi

▸ ∆ has components ∆ijk ∶C(Gij) ↦ C(Gik) ⊗C(Gkj);
in particular, Gi ⟳ Gij ⟲ Gj

Example 5 Extending Woronowicz-Tannaka-Krein duality, assume

▸ C is a semi-simple rigid C∗-tensor category
▸ ZHilbZ is the category of Z-bigraded Hilbert spaces

Then fiber functors F ∶ C → ZHilbZ correspond with partial compact
quantum groups [De Commer+T.], where the dual is given by

▸ B = Cc(Z), A = ⊕Nat(Fln,Fkm) and ∆(τ) ≈ (τX⊗Y )X ,Y ∈C
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Towards the definition of algebraic quantum groupoids

Definition A bialgebroid consists of

▸ a unital algebra A and commuting unital subalgebras B,C ⊆ A
▸ anti-isomorphisms S ∶B → C and S ∶C → B (possibly S2 ≠ id)
▸ a left comultiplication and a right comultiplication

∆B ∶A→ BA⊗ S(B)A and ∆C ∶A→ AS(C) ⊗AC
satisfying

▸ ∆B(a)(b ⊗ 1) = ∆B(a)(1⊗ S(b)) for all a,b and multiplicativity
▸ ∆B(cb) = (c ⊗ b) for all b, c and coassociativity
▸ corresponding conditions for ∆C

▸ joint coassociativity relating ∆B and ∆C

▸ a left counit Bε∶A→ B and a right counit εC ∶A→ C

Remark The inclusions B
id⇉
S
A correspond to a functor AMod→ BModB

and ∆B and Bε correspond to compatible monoidal structures on AMod
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A general definition of algebraic quantum groupoids

Definition A multiplier bialgebroid consists of

▸ an algebra A and commuting subalgebras B,C ⊆M(A)
(possibly non-unital but with suitable regularity properties)

▸ anti-isomorphisms S ∶B → C and S ∶C → B

▸ a left comultiplication and a right comultiplication ∆B and ∆C

taking values in a left and a right multiplier algebra such that

1. ∆B(a)(1⊗ a′) and ∆B(a)(a′ ⊗ 1) lie in BA⊗ S(B)A
2. (a ⊗ 1)∆C(a′) and (1⊗ a)∆C(a′) lie in AS(C) ⊗AC

3. ∆B ,∆C are co-associative, multiplicative, jointly co-associative

Theorem+Definition [T.-Van Daele] TFAE:

▸ There exist a left and a right counit and an antipode

▸ the four maps sending a ⊗ a′ ∈ A⊗A to each of the products in
1. and 2. induce bijections A⊗

B
A→ BA⊗ S(B)A, . . ., . . ., . . .

If these conditions hold, we call A a regular multiplier Hopf algebroid
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Why consider integration on algebraic quantum groupoids?

Definition A left integral on a (multiplier) Hopf algebra A is a
functional φ∶A→ C satisfying (id⊗φ)(∆(a)) = φ(a) for all a ∈ A.
Likewise, one defines right integrals.

Significance Integrals on (multiplier) Hopf algebras are the key to

1. extending Pontrjagin duality [Van Daele]
▸ dimA < ∞: (A⊗A)′ = A′ ⊗A′, so A′ becomes a Hopf algebra
▸ dimA = ∞: Â = {φ(−a) ∶ a ∈ A} ⊆ A′ is a multiplier Hopf algebra

2. developing the structure theory of CQGs [Woronowicz]
▸ averaging inner products and morphisms, find that every rep-
resentation is equivalent to a unitary and splits into irreducibles

3. passing to completions in the form of operator algebras
[Kustermans-Van Daele]

▸ the GNS-construction πφ∶A→ B(Hφ) yields the C∗-algebra
πφ(A) and the von Neumann algebra πφ(A)′′ of a LCQG
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What do we need for integration — heuristics

Ansatz For integration on a regular multiplier Hopf algebroid with
total algebra A and base algebras B,C ⊆M(A), we need

▸ a map CφC ∶A→ C that is left-invariant: for all a, a′ ∈ A, c ∈ C ,
1. CφC(ac) = CφC(a)c and (id⊗

C
CφC)((a ⊗ 1)∆C(a′)) = aCφC(a′)

2. CφC(ca) = cCφC(a) and (id⊗
B

CφC)(∆B(a)(a′ ⊗ 1)) = CφC(a)a′
▸ a map BψB ∶A→ B that is right-invariant

▸ functionals µB , µC on B,C that are relatively invariant:

φ∶A CφCÐÐ→ C
µCÐ→ C and ψ∶A BψBÐÐ→ B

µBÐ→ C
are related by invertible multipliers δ, δ′ s.t. ψ = φ(δ−) = φ(−δ′)

Example 1 For the function algebra of an étale groupoid X
s⇇
t
G , let

▸ CφC ,BψB ∶Cc(G) → Cc(X) be summation along the fibers of t or s

▸ µB = µC on Cc(X) be integration w.r.t. a quasi-invariant measure



9/18

Introduction Quantum groupoids Integration Duality Operator algebras

Further examples of quantum groupoids

Example 2 For the convolution algebra of an étale groupoid G , let
▸ CφC = BψB ∶Cc(G) → Cc(X) be the restriction of functions to X ⊆ G
▸ µB = µC on Cc(X) be integration w.r.t. a quasi-invariant measure

Example 4 Assume that G1 and G2 are compact quantum groups
with a monoidal equivalence Rep(G1) ∼ Rep(G2) and associated
linking quantum groupoid B = C2 and A = ⊕i ,j=1,2C(Gij)

▸ have Haar states hi = hii on C(Gi) = C(Gii)
and unique states hij on C(Gij) invariant for Gi ⟳ Gij ⟲ Gj

▸ CφC(a) = ∑j hij(aij) and BψB(a) = ∑i hij(aij)
Example 5 Given a fiber functor F ∶ C →Z HilbZ with associated
partial CQG B = Cc(Z) and A = ⊕Nat(Fln,Fkm)′,

▸ CφC and BψB come from evaluating a τ ∈ Nat(Fln,Fkm) at 1C
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What do we need for integration — formal definition

Definition Consider a regular multiplier Hopf algebroid as above.
▸ A base weight consists of functionals µB , µC on B,C subject to

1. faithfulness, i.e., if µB(bB) = 0 or µB(Bb) = 0, then b ≠ 0
2. µB ○ S = µC = µB ○ S−1 and 3. µB ○ Bε = µC ○ εC

▸ Call a functional ω∶A→ C adapted (to µB , µC ) if one can write
ω = µB ○ Bω = µB ○ ωB = µC ○ Cω = µC ○ ωC

with Bω ∈ Hom(BA,BB), ωB ∈ Hom(AB ,BB), . . .
▸ A left integral is an adapted functional φ s.t. Cφ = φC =∶ CφC is
left-invariant. We call φ full if Bφ and φB are surjective.
Similarly, we define (full) right integrals.

Key observation For adapted functionals υ,ω, we can define υ⊙ id,
id⊙ω and υ ⊙ω on all kinds of balanced tensor products A⊙A, e.g.,
υ ⊗

B
ω∶A⊗

B
A→ C, a ⊗ b ↦ µB(υB(a)Bω(b))= υ(aBω(b)) = ω(υB(a)b)
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The main results on integrals

Theorem [T.] Let A be a regular multiplier Hopf algebroid with
base weight (µB , µC) and full left integral φ.

1. If BA,AB ,CA,AC are projective, then φ is faithful.

Assume that BA,AB ,CA,AC are flat and that φ is faithful.

2. There exists an automorphism σφ s.t. (A, σφ) is a twisted trace.
Moreover, σφ(c) = S2(c) for c ∈ C , and σφ(M(B)) =M(B).

3. Every left integral has the form φ(b−) with b ∈M(B).
4. Every right integral has the form φ(δ−) with δ ∈M(A).
5. There exist invertible modular elements δ, δ† ∈M(A) such that
φ ○ S−1 = φ(δ−) and φ ○ S = φ(−δ†). These elements satisfy

∆C(δ) = δ ⊗ δ, ∆B(δ) = δ† ⊗ δ, ∆B(δ†) = δ† ⊗ δ†, ∆C(δ†) = δ ⊗ δ†

S(δ†) = δ−1, ε(δa) = ε(a) = ε(aδ†), and (in the ∗-case) δ† = δ∗.
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An example coming from quantum group actions

Example Assume that

▸ H is a regular (multiplier) Hopf algebra with integrals φH ,ψH ,

▸ B is an algebra with a right action of H, written x ◁ h

▸ µB is a faithful H-invariant trace on B

Then C =Bop carries a left H-action and an H-invariant trace µC s.t.
h▷ xop = (x ◁ S−1

H (h))op and µC(xop) = µB(x)
We obtain a regular multiplier Hopf algebroid with integrals, where

▸ A = C ⋊H ⋉B is the space C ⊗H ⊗B with the multiplication(y ⊗ h ⊗ x)(y ′ ⊗ h′ ⊗ x ′) = y(h(1)▷ y ′) ⊗ h(2)h′(1) ⊗ (x ◁ h′(2))x ′
▸ the left and right comultiplication ∆B and ∆C are given by

∆B(y ⊗ h ⊗ x)(a ⊗ b) = yh(1)a ⊗ h(2)xb(a ⊗ b)∆C(y ⊗ h ⊗ x) = ayh(1) ⊗ bh(2)x
▸ φ(y ⊗ h⊗ x) = µC(y)φH(h)µB(x), ψ(y ⊗ h⊗ x) = µC(y)ψH(h)µB(x)
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The dual algebra of a measured multiplier Hopf algebroid

Definition We call a regular multiplier Hopf algebroid measured if it
is equipped with a base weight and full and faithful left and a right
integrals and if the modules BA,AB ,CA,AC are flat.

Lemma Consider the space Â ∶= {φ(a−) ∶ a ∈ A} ⊆ A′.
1. Â = {φ(−a) ∶ a ∈ A} = {ψ(a−) ∶ a ∈ A} = {ψ(−a) ∶ a ∈ A}.
2. Let υ,ω ∈ Â. Then the compositions

υ ∗B ω ∶= (υ ⊗ ω) ○∆B and υ ∗C ω ∶= (υ ⊗ ω) ○∆C

(a) are well-defined, (b) belong to Â and (c) coincide.
3. Â is a non-degenerate, idempotent algebra w.r.t. (υ,ω) ↦ υ ∗ω.

Proof of assertion 2.(c):

▸ coassociativity ⇒ (υ ∗B θ) ∗C ω = υ ∗B (θ ∗C ω) for all µ-adapted θ
▸ counit property ⇒ υ ∗B ε = υ and ε ∗C ω = ω
▸ relations 1.+2. ⇒ υ ∗B ω = υ ∗B (ε ∗C ω) = (υ ∗B ε) ∗C ω = υ ∗C ω
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The duality of measured regular multiplier Hopf algebroids

Theorem [T.] Let (A, µ, φ,ψ) form a MRMHAd. Then there exists
a dual MRMHAd (Â, µ̂, φ̂, ψ̂), where Â was defined above and

▸ B̂ = C and Ĉ = B are embedded in M(Â) such that
cω = ω(−c), ωc = ω(−S−1(c)), bω = ω(S−1(b)−), ωb = ω(b−)

for all c ∈ C , b ∈ B, ω ∈ Â
▸ the left and the right comultiplication ∆̂B̂ and ∆̂Ĉ of Â satisfy(∆̂B̂(υ)(1⊗ ω)∣a ⊗ a′) = (u ⊗ ω∣(a ⊗ 1)∆C(a′))((υ ⊗ 1)∆̂Ĉ(ω)∣a ⊗ a′) = (u ⊗ ω∣∆B(a)(1⊗ a′))
for all a, a′ ∈ A, υ,ω ∈ Â

▸ the dual counit ε̂, antipode Ŝ and integrals φ̂ and ψ̂ are given by
ε̂(φ(−a)) = φ(a), Ŝ(ω) = ω ○ S , φ̂(ψ(a−)) = ε(a) = ψ̂(φ(−a))

In the ∗-case, ω∗ = ω ○ ∗ ○ S and ψ̂(φ(−a)∗φ(−a)) = φ(a∗a).
Theorem [T.] Every m.r.m.H.a. is naturally isomorphic to its bidual.
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Outline of the construction of the dual comultiplications

By [T.-Van Daele], an RMHAd is determined by the algebras A,
B,C ⊆M(A), the anti-automorphisms B ⇆ C , and the bijections

T1∶A⊗
B
A→ A⊗

l
A, a ⊗ a′ ↦∆B(a)(1⊗ a′)

T2∶A⊗
C
A→ A⊗

r
A, a ⊗ a′ ↦ (a ⊗ 1)∆C(a′).

Starting from these maps, we obtain
▸ dual bijections (T1)∨ and (T2)∨, taking transposes

▸ various embeddings Â⊗ Â→ (A⊗A)∨, using the fact that elements of
Â are adapted functionals and forming balanced tensor products

▸ bijections T̂1, T̂2, which then define the structure of an RMHAd on Â

(A⊗
r
A)∨ (T2)∨ // (A⊗

C
A)∨ (A⊗

l
A)∨ (T1)∨ // (A⊗

B
A)∨

Â ⊗̂
B
Â

T̂1

//
?�

OO

Â ⊗̂
l
Â
?�

OO

Â ⊗̂
C
Â

T̂2

//
?�

OO

Â ⊗̂
r
Â
?�

OO
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To do: examples from braided-commutative YD-algebras

Theorem [Lu ’96; Brzeziński, Militaru ’01] Let B be a braided-
commutative Yetter-Drinfeld algebra over a Hopf algebra H. Then
the crossed product A = B ⋊H for the action is a Hopf algebroid.

Theorem [Neshveyev-Yamashita ’13] Let H be a compact quantum
group.Then there exists an equivalence between

▸ unital braided-commutative Y.D.-algebras over H and

▸ unitary tensor functors from Rep(H) to C∗-tensor categories.
In the case when

▸ H is a regular multiplier Hopf algebra with integrals

▸ B carries a faithful quasi-invariant entire twisted trace

we expect B ⋊H and Bop ⋊ Ĥco to form mutually dual MRMHAds.
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To do: passage to the setting of operator algebras

Let (A, µ, φ,ψ) be an MMH-∗-Ad.
Aim To construct completions on the level of von Neumann
algebras, to get a measured quantum groupoid [Enock, Lesieur, Vallin],
and of C∗-algebras, where a full theory does not exist yet.

We will need additional assumptions, e.g.,
▸ µB and µC have associated GNS-representations B,C → L(Hµ)▸ the modular automorphisms of φ and ψ commute
▸ (the modular element δ relating φ and ψ has a square root δ1/2)

The key steps will be to show that
1. φ and ψ admit a bounded GNS-representation A→ L(H)
2. ∆B extends to a comultiplication on A′′ ⊆ B(H) rel. to B ′′ ⊆ B(Hµ)
3. φ and ψ induce left- and right-invariant n.s.f. weights A′′ → B ′′,C ′′

This was done for measured proper dynamical quantum groups [T.]

and partial compact quantum groups [De Commer-T.]
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Steps for the passage to the setting of operator algebras

Theorem [T.] Let (A, µ, φ,ψ) be a MMH-∗-Ad, where µ,φ,ψ are
positive and µB , µC admit bounded GNS-representations. Then:
1. φ and ψ admit bounded GNS-representations πφ∶A→ B(Hφ) and
πψ ∶A→ B(Hψ)

2. ∆B extends to comultiplications on πφ(A)′′ ⊆ B(Hφ) and
πψ(A)′′ ⊆ B(Hψ) relative to B ′′ ⊆ B(Hµ) so that

▸ πφ(A)′′ and πψ(A)′′ become Hopf-von Neumann bimodules
▸ πφ(A) and πψ(A) become concrete Hopf C∗-bimodules

3. Λφ(A) ⊆ Hφ and Λψ(A) ⊆ Hψ are Hilbert algebras so that φ and ψ
extend to n.s.f. weights on πφ(A)′′ and πψ(A)′′

Idea of proof: use (C∗)pseudo-multiplicative unitaries [Vallin, T]:
▸ the map a ⊗ a′ ↦∆B(a′)(a ⊗ 1) induces a unitary on suitable
completions of the domain and range

▸ identify these completions with certain Connes’ fusions of Hφ over B ′′
▸ show that U∗ is a pseudo-multiplicative unitary


