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Quantum spaces

Definition

A quantum space is an object X of the category dual to the category of C∗-algebras.

Notation

The C∗-algebra corresponding to the quantum space X is denoted by C(X) (resp.

C0(X)) for the unital (resp. nonunital) case.

Definition

A quantum space X is called

compact if the corresponding C∗-algebra is unital,

finite if the corresponding C∗-algebra is finite-dimensional.



Quantum correlations

Definition

Let P and O be finite sets. A quantum correlation (or quantum strategy) on P and O

is a collection of non-negative numbers {p(a, b|x , y) | a, b ∈ O, x , y ∈ P} such that for

each (x , y) the maps

a 7−→
∑
b

p(a, b|x , y), b 7−→
∑
a

p(a, b|x , y)

are probability distributions on P.

Remark

The above notion is closely related to the theory of non-local games.



Quantum correlations

Definition

Quantum commuting correlations (qc-correlations) are those of the form

p(a, b|x , y) = ⟨ξ|Ex,aFy,bξ⟩, x , y ∈ P, a, b ∈ O,

where ξ is a unit vector in a Hilbert space H and

{Ex,a| x ∈ P, a ∈ O} and {Fy,b| y ∈ P, b ∈ O}

are families of projections in B(H) such that

for all (x , y , a, b) ∈ P × P × O × O we have Ex,aFy,b = Fy,bEx,a,

for all x ∈ P we have
∑
a
Ex,a = 1H,

for all y ∈ P we have
∑
b
Fy,b = 1H.



Our goal

Study quantum correlations with the classical finite sets P and O replaced by their

quantum analogues P and O.

Inspired by previous works:

• [Brannan-Ganesan-Harris ’20]

• [Todorov-Turowska ’20]



Quantum-to-classical graph homomorphism game

[Brannan-Ganesan-Harris ’20]

The crucial object

The universal C∗-algebra Pn,c (with n, c ∈ N) generated by entries of orthogonal

projections P1, . . . ,Pc ∈ Matn(Pn,c ) s.t. P1 + . . .+ Pc = 1.

Alternative point of view

P1, . . . ,Pc define a ∗-homomorphism:

Φ : C ({1, . . . , c}) ∋ f 7−→
c∑

a=1

f (a)Pa ∈ Matn(C)⊗ Pn,c .

Φ is universal: given a ∗-homomorphism

Ψ : C ({1, . . . , c}) → Matn(C)⊗ B(H)

there exist unique ∗-homomorphism Λ : Pn,c → B(H) such that Ψ = (id ⊗ Λ)Φ.



Quantum spaces of maps

Definition

Let P,O and X be quantum spaces. A quantum family of maps from P to O indexed

by X is a morphism Φ ∈ Mor(C0(O),C0(P)⊗ C0(X)).

Definition

Let P and O be quantum spaces. We say that

ΦP,O ∈ Mor
(
C0(O),C0(P)⊗ C0(MP,O)

)
is the quantum family of all maps from P to

O if for any quantum space X and any quantum family

Ψ ∈ Mor (C0(X),C0(P)⊗ C0(X)) there exists a unique Λ ∈ Mor
(
C0(MP,O),C0(X)

)
such that the following diagram is commutative

C0(O)
ΦP,O
// C0(P)⊗ C0(MP,O)

id⊗Λ

��

C0(O)
Ψ // C0(P)⊗ C0(X)



Quantum spaces of maps

Observation

If (MP,O,ΦP,O) exists then it is unique (up to isomorphism).

Definition

MP,O is called the quantum space of all maps from P to O.

Theorem [Skalski-Sołtan ’16]

Let P be a finite quantum space and O a compact quantum space. Then the quantum

space MP,O of all maps from P to O exists and is compact. Moreover the C∗-algebra

C(MP,O) is generated by the set

{
(ω ⊗ id)ΦP,O(a)| a ∈ C(O), ω ∈ C(P)∗

}
.

Remark

The C∗-algebra Pn,c of [Brannan-Ganesan-Harris ’20] is precisely C(MP,O) with

C(P) = Matn(C) and C(O) = Cc .



Residual finite dimensionality

Definition

A C∗-algebra is residually finite dimensional (RDF) if it possesses a separating family

of finite-dimensional representations

Theorem [Choi ’80]

C∗(F2) is RDF.

Theorem [Brannan-Ganesan-Harris ’20]

Pn,c is RDF.



Disjoint sums of quantum spaces

Definition

Let P1,P2 be compact quantum spaces. The quantum space P1 ⊔ P2 is defined by

C(P1 ⊔ P2) = C(P1)⊕ C(P2).

Proposition

Let P1,P2 be finite quantum spaces and O be a compact quantum space. Then the

C∗-algebra C(MP1⊔P2,O) is isomorphic to the universal free product

C(MP1,O) ∗ C(MP2,O).

Lemma

Let C be a unital C∗-algebra, γ : Matn(C) → C be a unital ∗-homomorphism and

D = {c ∈ C | cγ(x) = γ(x)c for all x ∈ Matn(C)} .

Then D is a unital C∗-algebra and C is isomorphic to Matn(C)⊗ D.



Disjoint sums of quantum spaces

Proposition

Let C(P) = Matn(C) and let O be a compact quantum space. Then C(MP,O) is

the relative commutant of C(P) in C(P) ∗ C(O), and ΦP,O is the composition of

the inclusion C(O) → C(P) ∗ C(O) with the isomorphism from the previous

Lemma.

Let O be a compact quantum space and P a finite quantum space with

C(P) =
m⊕
i=1

Matni (C).

Then C(MP,O) ∼= D1 ∗ . . . ∗ Dm, where Di is the relative commutant of

Matni (C) in Matni (C) ∗ C(O).



Residual finite dimensionality

Theorem

Let O be a compact quantum space such that C(O) is RDF, and let P be a finite

quantum space. Then C(MP,O) is RDF.

Proof.

C(MP,O) is a free product of algebras being subalgebras of free products of the

form Matn(C) ∗ C(O),

RDF passes to free products [Exel-Loring ’92] and to subalgebras.

Corollary

For any finite quantum spaces P,O the C∗-algebra C(MP,O) possesses a faithful trace.



Functorial properties of MP,O

Notation

QSfin - the full subcategory of the category of quantum spaces consisting of the

finite quantum spaces

QScpt - the full subcategory of the category of quantum spaces consisting of

the compact quantum spaces



Functorial properties of MP,O

Proposition

The following mapping is a bi-functor:

QSfin ×QScpt ∋ (P,O) 7−→ MP,O ∈ QScpt.

Given P1,P2 ∈ QSfin,O1,O2 ∈ QScpt, and ρ : C(P2) → C(P1), π : C(O1) → C(O2),

the associated map Mρ,π : C(MP1,O1 ) → C(MP2,O2 ) is the unique Λ making the

following diagram commutative:

C(O1)
ΦP1,O1 // C(P1)⊗ C(MP1,O1 )

id⊗Λ

��

C(O1)
(ρ⊗id)◦ΦP2,P2◦π // C(P1)⊗ C(MP2,O2 )

M•,• is contravariant wrt the first variable and covariant wrt the second one.



Functorial properties of MP,O

Theorem

Let P,P1,P2 ∈ QSfin, O,O1,O2 ∈ QScpt, ρ : C(P2) → C(P1) and

π : C(O1) → C(O2). Then:

π - surjective ⇒ Mid,π - surjective,

π - injective ⇒ Mid,π - injective,

ρ - injective ⇒ Mρ,id - surjective,

ρ - surjective ⇒ Mρ,id - injective.



The opposite algebra

Proposition

For a finite quantum space P and a compact quantum space O the pair

(MPop,Oop ,ΦPop,Oop ) is naturally isomorphic to (Mop
P,O,ΦP,O).

Corollary

Let P be a finite quantum space and O be a compact quantum space s.t.

C(O)op ∼= C(O). Then C(MP,O)
op ∼= C(MP,O).

Corollary

The assumption in the above Corollary is satisfied in particular for O finite.



Completeness - reminder

Definition

Let A and B be C∗-algebras and a map φ : A → B. For any n we have also maps

φn : Matn(A) → Matn(B) given by φn((ai,j )) = (φ(ai,j )). We say that

φ is completely positive (c.p) if φn is positive for any n,

φ is completely bounded if φn is bounded for any n,

similarly: completely isometric, completely contractive, . . .

Fact

A u.c.p. map ψ : A → B defines a non-degenerate c.p. map id ⊗ ψ : K⊗ A → K⊗ B,

where K = K(ℓ2), which extends uniquely to a u.c.p. map M(K⊗ A) → M(K⊗ B).



Multiplicative domains

Theorem[Choi ’74]

Let φ : A → B be a u.c.p. map between unital C∗-algebras. Then

Cφ := {a ∈ A : φ(a)∗φ(a) = φ(a∗a) and φ(a)φ(a)∗ = φ(aa∗)}

= {a ∈ A : φ(ab) = φ(a)φ(b) and φ(ba) = φ(b)φ(a) for all b ∈ A}

is a C∗-subalgebra of A and φ|Cφ is a ∗-homomorphism.

Lemma

Let φ : A → B be a u.c.p. map between unital C∗-algebras, and let a ∈ M(K⊗ A)

belongs to Cid⊗φ. Then (ω ⊗ id)(a) ∈ Cφ for any ω ∈ K∗.



The crucial consequence of Kasparov’s dilation theorem

Lemma

For a finite quantum space P, a compact quantum space O with C(O) separable, a

separable unital C∗-algebra B and a u.c.p. map ψ : C(O) → C(P)⊗ B there exists

Ψ ∈ Mor (C(O),C(P)⊗K⊗ B) such that

ψ(x) = (id ⊗ ω1,1 ⊗ id)(Ψ(x)) ≡ Ψ1,1(x), x ∈ C(O),

where ω1,1(a) = ⟨e1|ae1⟩ with e1 being the first vector of the standard basis of ℓ2.



The universal operator system

Definition [Brannan-Ganesan-Harris ’20]

Qn,c = the universal operator system generated by the matrix elements

{qa,ij : 1 ≤ i , j ≤ n}ca=1 s.t. Qa = [qa,ij ] ≥ 0 and satisfy Q1 + . . .+ Qc = 1.

Universal property

The universality of Qn,c can be expressed in a similar way as we did it for Pn,c .

Concrete realization

Qn,c = span{pa,ij : 1 ≤ a ≤ c, 1 ≤ i , j ≤ n}.



The universal operator system

Definition

SP,O := span
{
(ω ⊗ id)ΦP,O(x) | x ∈ C(O), ω ∈ C(P)∗

}
.

Lemma

SP,O is an operator system (equipped with a u.c.p. map φP,O : C(O) → C(P)⊗ SP,O).

Theorem: universality

For any operator system S and any u.c.p. map ψ : C(O) → C(P)⊗ S there exists a

unique u.c.p map λ : SP,O → S such that the following diagram commutes:

C(O)
φP,O

// C(P)⊗ SP,O

id⊗λ

��

C(O)
ψ

// C(P)⊗ S



The universal operator system

Sketch of the proof

B := C∗ ⟨(ϕ⊗ id)(ψ(x)) | x ∈ C(O), ϕ ∈ C(P)∗⟩

B - unital, separable

ψ : C(O) → C(P)⊗ B - u.c.p.

ψ = Ψ1,1 for some Ψ ∈ Mor (C(O),C(P)⊗K⊗ B)

Ψ = (id ⊗ Λ)ΦP,O for some Λ ∈ Mor
(
C(MP,O),K⊗ B

)
λ̃ := (ω1,1 ⊗ id)Λ - u.c.p.: C(MP,O) → B

For λ := λ̃|SP,O we have ψ = (id ⊗ λ)ΦP,O

slicing...



The embedding SP,O ⊂ C(MP,O)

Definition [Hamana]

The C∗-envelope for a operator system S is the C∗-algebra C∗
env(S) which is

generated by S, and S is essential in this C∗-algebra, i.e. complete order embeddings

C∗
env(S) → T are detected by restriction S.

Theorem [Brannan-Ganesan-Harris ’20]

Pn,c = C∗
env(Qn,c ).



Hyperrigidity

Definition [Arveson]

The embedding S ⊂ A of an operator system S in a C∗-algebra A is hyperrigid if for

every ∗-homomorphism π : A → B(H) and a u.c.p. map η : A → B(H) (with H a

Hilbert space) satisfying π|S = η|S, we have π = η.



Hyperrigidity

Theorem

If S ⊂ A is hyperrigid and C∗⟨S⟩ = A, then C∗
env(S) = A.

Remark

The theorem remains true without the assumption that C∗⟨S⟩ = A [Harris - Kim ’ 19].

Theorem

Let A,B be unital C∗-algebras, C be a C∗-algebra, Φ ∈ Mor(A,C ⊗ B), and

S := span {(ω ⊗ id)(Φ(x)) | x ∈ C∗, x ∈ A} .

If C∗⟨S⟩ = B, then S ⊂ B is hyperigid (and, as a result, C∗
env(S) = B).

Corollary

SP,O ⊂ C(MP,O) is hyperrigid and C∗
env(SP,O) = C(MP,O), for every finite quantum

space P and every compact quantum space O.



Strong extension property

Definition

The embedding S ⊂ A of an operator system S in a C∗-algebra A has strong extension

property if for every C∗-algebra B and a u.c.p. map ψ : S → B there exists a u.c.p.

map η : A → B s.t. η|S = ψ.

Theorem

For a finite quantum space P and a compact quantum space O such that C(O) is

separable, the embedding SP,O ⊂ C(MP,O) has the strong extension property.



The universal operator system - basic properties

Fact

For any operator system S there is a canonical u.c.p. map SP,O ⊗c S → C(MP,O)⊗c S.

Fact

C(MP,O)⊗c S = C(MP,O)⊗max S

Corollary

There exists a canonical u.c.p. map SP,O ⊗c S → C(MP,O)⊗max S.

Lemma

For a finite quantum space P, a compact quantum space O such that C(O) is

separable, and an operator system S, the above map is a complete order embedding.



The universal operator system

Corollary

For a finite quantum space P, a compact quantum space O such that C(O) is

separable, the canonical map SP,O ⊗c SP,O → C(MP,O)⊗max C(MP,O) is a complete

order embedding.



The lifting property

Definition

A C∗-algebra A is said to have the lifting property if given any C∗-algebra B with an

ideal J ⊂ B, any c.c.p. map φ : A → B/J admits a c.c.p. lift φ̃ : A → B.

Remark

In the unital case: c.c.p. ⇝ u.c.p.

Theorem [Brannan-Ganesan-Harris ’20]

Pn,c has the lifting property.

Theorem [Choi-Effros ’76]

Any separable nuclear C∗-algebra has the lifting property.



C(MP,O) is almost never nuclear ...

If |Char(C(O))| ≥ 2 and dimC(P) ∈ {3, 5, 6, . . .}, then C(MP,O) surjects onto

C(M3,2) ∼= C∗(Z2 ∗ Z3).

If |Char(C(O))| ≥ 3 and dimC(P) > 1, then C(MP,O) surjects onto

C(M2,3) ∼= C∗(Z∗3
2 ).

If C(O) has Matn(C) with n ≥ 2 as a quotient and dimC(P) > 1, then C(MP,O)

surjects onto C(M2,O) ∼= Matn(C) ∗ Matn(C).



The lifting property

Theorem

For a finite quantum space P, a compact quantum space O s.t. C(O) has the lifting

property, the C∗-algebra C(MP,O) has the lifting property.

Theorem

For a finite quantum space P, a compact quantum space O s.t. C(O) has the lifting

property, the operator system SP,O has the lifting property.



Quantum correlations

From now on both P and O are finite quantum spaces.

Definition

A u.c.p. map C(O) → B(H) is called a quantum positive operator-valued measure

(q-POVM) on O.

Definition

A u.c.p. map C(O) → C(P)⊗ B(H) is called a quantum family of POVMs on O
indexed by P.

Remark

One can replace B(H) by a fixed unital C∗-algebra A.

Remark

A quantum family of POVMs on O is a C(P)⊗ B(H)-valued quantum POVM on O.



Quantum correlations

Definition

A quantum correlation with quantum set of questions P and quantum set of answers

O (a (P,O)-correlation) is a u.c.p. map T : C(O)⊗ C(O) → C(P)⊗ C(P).

Definition

A (P,O)-correlation T is called non-signalling if

T
(
C(O)⊗ 1C(O)

)
⊂ C(P)⊗ 1C(P), T

(
1C(O) ⊗ C(O)

)
⊂ 1C(P) ⊗ C(P).



Realizable correlations

Proposition

Let H be a Hilbert space, ω a state on B(H) and φ1, φ2 : C(O) → C(P)⊗ B(H)

quantum families of POVMs on O indexed by P s.t.

φ1(x)13φ2(y)23 = φ2(y)23φ1(x)13, x , y ∈ C(O).

Then there exists a unique linear map T : C(O)⊗ C(O) → C(P)⊗ C(P) s.th:

T (x ⊗ y) = (id ⊗ id ⊗ ω) (φ1(x)13φ2(y)23) , x , y ∈ C(O)

and T is a non-signalling (P,O)-correlation.



Realizable correlations

Theorem

For a (P,O)-correlation T : C(O)⊗ C(O) → C(P)⊗ C(P) TFAE:

(a) there exists a Hilbert space H, a pair of u.c.p. maps

φ1, φ2 : C(O) → C(P)⊗ B(H) satisfying

φ1(x)13φ2(y)23 = φ2(y)23φ1(x)13,

and a norm-one vector ξ ∈ H s.t.

T (x ⊗ y) = (id ⊗ id ⊗ ωξ) (φ1(x)13φ2(y)23) .



Realizable correlations

Theorem

For a (P,O)-correlation T : C(O)⊗ C(O) → C(P)⊗ C(P) TFAE:

(b) there exists a Hilbert space H, a pair of unital ∗-homomorphisms

Φ1,Φ2 : C(O) → C(P)⊗ B(H) satisfying

Φ1(x)13Φ2(y)23 = Φ2(y)23Φ1(x)13,

and a norm-one vector ξ ∈ H s.t.

T (x ⊗ y) = (id ⊗ id ⊗ ωξ) (Φ1(x)13Φ2(y)23) .



Realizable correlations

Theorem

For a (P,O)-correlation T : C(O)⊗ C(O) → C(P)⊗ C(P) TFAE:

(c) there exists a state σ on C(MP,O)⊗max C(MP,O) s.t.

T (x ⊗ y) = (id ⊗ id ⊗ σ)
(
ΦP,O(x)13ΦP,O(y)24

)
.

(d) there exists a state σ on SP,O ⊗c SP,O s.t.

T (x ⊗ y) = (id ⊗ id ⊗ σ)
(
φP,O(x)13φP,O(y)24

)
.



Sychronicity

Decomposition of finite quantum spaces

C(P) =
NP⊕
l=1

Matml (C), C(O) =

NO⊕
k=1

Matnk (C).

Let {l fst : l = 1, . . . ,NP, s, t = 1, . . .ml}, {keij : k = 1, . . . ,NO, i , j = 1, . . . nk} be

the corresponding systems of matrix units, and {l fs}, {kei} the corresponding

standard bases of Cml and Cnk , resp.

Coefficients of quantum correlation

T
(
keij ⊗ k′ei′j′

)
=

∑
s,t,s′,t′,l,l′

kk′
ll′ X

(st),(s′t′)
(ij),(i′j′)

(
l fst ⊗ l′ fs′t′

)
.



Synchronicity

Definition

A (P,O)-correlation T : C(O)⊗ C(O) → C(P)⊗ C(P) is called synchronous if

∑
s,t,i,j,k,l

1
nkml

kk
ll X

(st),(st)
(ij),(ij)

= NP.

But why...?

For finite classical sets we have nk = ml = 1 for all k, l and there are no “interal

indices” inside matrix blocks: kk′
ll′ X

(st),(s′t′)
(ij),(i′j′) ⇝

kk′
ll′ X .

We identify kk′
ll′ X = p(k, k ′|l , l ′).

But then
∑
k,k′

p(k, k ′|l , l) = 1.

Hence:
∑
k,l

p(k, k|l , l) = NP ⇒ ∀l p(k, k ′|l , l) = 0 whenever k ̸= k ′.



Synchronicity

Proposition: characterization of synchronicity

T is synchronous iff

〈
ϕ | T

∑
i,j,k

1
nk

keij ⊗ keij

ϕ

〉
= 1,

where

ϕ =
1

√
NP

∑
l

1
√
ml

∑
s

(
l fs ⊗ l fs

)
∈

 NP⊕
l=1

Cml

⊗

 NP⊕
l=1

Cml

 .



Synchronous correlations from realization

Realizable correlation is given by a state σ ∈ C(MP,O)⊗max C(MP,O):

Tσ(x ⊗ y) = (id ⊗ id ⊗ σ)
(
ΦP,O(x)13ΦP,O(y)24

)
.

Write ΦP,O(
keij ) =

∑
s,t,l

l fst ⊗ k
l V

st
ij .

Lemma

Let τ be a trace on C(MP,O). Then there exists a state στ on

C(MP,O)⊗max C(MP,O) such that

στ
(
k
l V

st
ij ⊗ k′

l′ V
s′t′
i′j′

)
= τ

(
k
l V

st
ij

k′
l′ V

s′t′
i′j′

)
.

Theorem

Tστ is synchronous.



Synchronous realizable (P,O)-correlations ...

... arise from tracial states on C∗-algebras generated by operators associated to the

maps in the realization (Φ1,Φ2, ωξ) of the correlation. More precisely,

Theorem

Let T be a synchronous (P,O)-correlation with realization (Φ1,Φ2, ωξ). Let {kl U
st
ij }

and {kl W
st
ij } be elements of B(H) defined by

Φ1(
keij ) =

∑
l,s,t

l fst ⊗ k
l U

st
ij , Φ2(

keij ) =
∑
l,s,t

l fst ⊗ k
l W

st
ij .

Then

(1) k
l W

st
ij ξ =

(
k
l U

st
ij

)
ξ,

(2) ωξ restricted to C∗
〈
{kl W

st
ij }

〉
is a trace,

(3) ωξ restricted to C∗
〈
{kl U

st
ij }

〉
is a trace.

Moreover, let Λ1 : C(MP,O) → B(H) be the unique unital ∗-homomorphism s.t.

Φ1 = (id ⊗ Λ1)ΦP,O. Then τ = ωξ ◦ Λ1 is a trace on C(MP,O) and T = Tστ .



Conclusions

We studied quantum space of maps between quantum spaces.

The C∗-algebra of this quantum space has the lifting property and is RDF.

We showed that the embedding SP,O ⊂ C(MP,O) is hyperrigid, and we studied

consequences of this fact.

We discussed quantum correlations and synchronicity within this framework.


