Quantum correlations on quantum spaces

Arkadiusz Bochniak joint work with P. Kasprzak and P. M. Sołtan arXiv:2105.07820v2[math.OA]

Institute of Theoretical Physics, Jagiellonian University

24.11.2021

A quantum space is an object ${\mathbb X}$ of the category dual to the category of ${\rm C}^*\mbox{-algebras}.$

Notation

The $\mathrm{C}^*\text{-algebra}$ corresponding to the quantum space $\mathbb X$ is denoted by $\mathrm{C}(\mathbb X)$ (resp. $\mathrm{C}_0(\mathbb X))$ for the unital (resp. nonunital) case.

Definition

A quantum space \mathbb{X} is called

- compact if the corresponding C*-algebra is unital,
- *finite* if the corresponding C*-algebra is finite-dimensional.

Let *P* and *O* be finite sets. A quantum correlation (or quantum strategy) on *P* and *O* is a collection of non-negative numbers $\{p(a, b|x, y) | a, b \in O, x, y \in P\}$ such that for each (x, y) the maps

$$a \mapsto \sum_{b} p(a, b|x, y), \qquad b \mapsto \sum_{a} p(a, b|x, y)$$

are probability distributions on P.

Remark

The above notion is closely related to the theory of non-local games.

Quantum commuting correlations (qc-correlations) are those of the form

$$p(a, b|x, y) = \langle \xi | E_{x,a} F_{y,b} \xi \rangle, \qquad x, y \in P, a, b \in O,$$

where ξ is a unit vector in a Hilbert space H and

$$\{E_{x,a} | x \in P, a \in O\}$$
 and $\{F_{y,b} | y \in P, b \in O\}$

are families of projections in B(H) such that

• for all $(x, y, a, b) \in P \times P \times O \times O$ we have $E_{x,a}F_{y,b} = F_{y,b}E_{x,a}$,

• for all
$$x \in P$$
 we have $\sum_{a} E_{x,a} = \mathbb{1}_{H}$

• for all
$$y \in P$$
 we have $\sum_{b} F_{y,b} = \mathbb{1}_{H}$

Study quantum correlations with the classical finite sets P and O replaced by their quantum analogues \mathbb{P} and \mathbb{O} .

Inspired by previous works:

- [Brannan-Ganesan-Harris '20]
- [Todorov-Turowska '20]

Quantum-to-classical graph homomorphism game

[Brannan-Ganesan-Harris '20]

The crucial object

The universal C*-algebra $\mathcal{P}_{n,c}$ (with $n, c \in \mathbb{N}$) generated by entries of orthogonal projections $P_1, \ldots, P_c \in \operatorname{Mat}_n(\mathcal{P}_{n,c})$ s.t. $P_1 + \ldots + P_c = \mathbb{1}$.

Alternative point of view

• P_1, \ldots, P_c define a *-homomorphism:

$$\Phi: C\left(\{1,\ldots,c\}\right) \ni f \longmapsto \sum_{a=1}^{c} f(a) P_{a} \in \operatorname{Mat}_{n}(\mathbb{C}) \otimes \mathcal{P}_{n,c}.$$

Φ is universal: given a *-homomorphism

$$\Psi: C(\{1,\ldots,c\}) \to \operatorname{Mat}_n(\mathbb{C}) \otimes \operatorname{B}(\operatorname{H})$$

there exist unique *-homomorphism $\Lambda : \mathcal{P}_{n,c} \to B(H)$ such that $\Psi = (id \otimes \Lambda)\Phi$.

Quantum spaces of maps

Definition

Let \mathbb{P}, \mathbb{O} and \mathbb{X} be quantum spaces. A *quantum family of maps* from \mathbb{P} to \mathbb{O} indexed by \mathbb{X} is a morphism $\Phi \in Mor(C_0(\mathbb{O}), C_0(\mathbb{P}) \otimes C_0(\mathbb{X}))$.

Definition

Let \mathbb{P} and \mathbb{O} be quantum spaces. We say that

$$\begin{split} & \Phi_{\mathbb{P},\mathbb{O}} \in \mathrm{Mor}\left(\mathrm{C}_0(\mathbb{O}),\mathrm{C}_0(\mathbb{P})\otimes\mathrm{C}_0(\mathbb{M}_{\mathbb{P},\mathbb{O}})\right) \text{ is the quantum family of all maps from } \mathbb{P} \text{ to } \\ & \mathbb{O} \text{ if for any quantum space } \mathbb{X} \text{ and any quantum family} \\ & \Psi \in \mathrm{Mor}\left(\mathrm{C}_0(\mathbb{X}),\mathrm{C}_0(\mathbb{P})\otimes\mathrm{C}_0(\mathbb{X})\right) \text{ there exists a unique } \Lambda \in \mathrm{Mor}\left(\mathrm{C}_0(\mathbb{M}_{\mathbb{P},\mathbb{O}}),\mathrm{C}_0(\mathbb{X})\right) \end{split}$$

such that the following diagram is commutative

Quantum spaces of maps

Observation

If $(\mathbb{M}_{\mathbb{P},\mathbb{O}}, \Phi_{\mathbb{P},\mathbb{O}})$ exists then it is unique (up to isomorphism).

Definition

 $\mathbb{M}_{\mathbb{P},\mathbb{O}}$ is called the *quantum space of all maps* from \mathbb{P} to \mathbb{O} .

Theorem [Skalski-Soltan '16]

Let \mathbb{P} be a finite quantum space and \mathbb{O} a compact quantum space. Then the quantum space $\mathbb{M}_{\mathbb{P},\mathbb{O}}$ of all maps from \mathbb{P} to \mathbb{O} exists and is compact. Moreover the C*-algebra $C(\mathbb{M}_{\mathbb{P},\mathbb{O}})$ is generated by the set

$$\left\{ (\omega \otimes \mathrm{id}) \mathbf{\Phi}_{\mathbb{P}, \mathbb{O}}(\mathbf{a}) | \mathbf{a} \in \mathrm{C}(\mathbb{O}), \, \omega \in \mathrm{C}(\mathbb{P})^* \right\}.$$

Remark

The C*-algebra $\mathcal{P}_{n,c}$ of [Brannan-Ganesan-Harris '20] is precisely $C(\mathbb{M}_{\mathbb{P},\mathbb{O}})$ with $C(\mathbb{P}) = \operatorname{Mat}_n(\mathbb{C})$ and $C(\mathbb{O}) = \mathbb{C}^c$.

A $\mathrm{C}^*\text{-}\mathsf{algebra}$ is residually finite dimensional (RDF) if it possesses a separating family

of finite-dimensional representations

Theorem [Choi '80]

 $\mathrm{C}^*(\mathbb{F}_2)$ is RDF.

Theorem [Brannan-Ganesan-Harris '20]

 $\mathcal{P}_{n,c}$ is RDF.

Disjoint sums of quantum spaces

Definition

Let $\mathbb{P}_1, \mathbb{P}_2$ be compact quantum spaces. The quantum space $\mathbb{P}_1 \sqcup \mathbb{P}_2$ is defined by $C(\mathbb{P}_1 \sqcup \mathbb{P}_2) = C(\mathbb{P}_1) \oplus C(\mathbb{P}_2)$.

Proposition

Let $\mathbb{P}_1, \mathbb{P}_2$ be finite quantum spaces and \mathbb{O} be a compact quantum space. Then the C*-algebra $C(\mathbb{M}_{\mathbb{P}_1 \sqcup \mathbb{P}_2, \mathbb{O}})$ is isomorphic to the universal free product $C(\mathbb{M}_{\mathbb{P}_1, \mathbb{O}}) * C(\mathbb{M}_{\mathbb{P}_2, \mathbb{O}}).$

Lemma

Let C be a unital C*-algebra, $\gamma : Mat_n(\mathbb{C}) \to C$ be a unital *-homomorphism and

$$\mathsf{D} = \{ c \in \mathsf{C} \, | \, c\gamma(x) = \gamma(x)c \text{ for all } x \in \operatorname{Mat}_n(\mathbb{C}) \}$$
 .

Then D is a unital C*-algebra and C is isomorphic to $Mat_n(\mathbb{C}) \otimes D$.

Disjoint sums of quantum spaces

Proposition

- Let $C(\mathbb{P}) = Mat_n(\mathbb{C})$ and let \mathbb{O} be a compact quantum space. Then $C(\mathbb{M}_{\mathbb{P},\mathbb{O}})$ is the relative commutant of $C(\mathbb{P})$ in $C(\mathbb{P}) * C(\mathbb{O})$, and $\Phi_{\mathbb{P},\mathbb{O}}$ is the composition of the inclusion $C(\mathbb{O}) \to C(\mathbb{P}) * C(\mathbb{O})$ with the isomorphism from the previous Lemma.
- \blacksquare Let $\mathbb O$ be a compact quantum space and $\mathbb P$ a finite quantum space with

$$\mathrm{C}(\mathbb{P}) = \bigoplus_{i=1}^{m} \mathrm{Mat}_{n_{i}}(\mathbb{C}).$$

Then $C(\mathbb{M}_{\mathbb{P},\mathbb{O}}) \cong D_1 * \ldots * D_m$, where D_i is the relative commutant of $\operatorname{Mat}_{n_i}(\mathbb{C})$ in $\operatorname{Mat}_{n_i}(\mathbb{C}) * C(\mathbb{O})$.

Theorem

Let \mathbb{O} be a compact quantum space such that $C(\mathbb{O})$ is RDF, and let \mathbb{P} be a finite quantum space. Then $C(\mathbb{M}_{\mathbb{P},\mathbb{O}})$ is RDF.

Proof.

- C(M_{P,0}) is a free product of algebras being subalgebras of free products of the form Mat_n(C) * C(O),
- RDF passes to free products [Exel-Loring '92] and to subalgebras.

Corollary

For any finite quantum spaces \mathbb{P}, \mathbb{O} the C*-algebra $C(\mathbb{M}_{\mathbb{P}, \mathbb{O}})$ possesses a faithful trace.

Functorial properties of $\mathbb{M}_{\mathbb{P},\mathbb{O}}$

Notation

- $\blacksquare\ \mathfrak{QS}_{\mathrm{fin}}$ the full subcategory of the category of quantum spaces consisting of the finite quantum spaces
- $\blacksquare\ \mathfrak{QS}_{\rm cpt}$ the full subcategory of the category of quantum spaces consisting of the compact quantum spaces

Functorial properties of $\mathbb{M}_{\mathbb{P},\mathbb{O}}$

Proposition

The following mapping is a bi-functor:

$$\mathfrak{Q}\mathfrak{S}_{\mathrm{fin}}\times\mathfrak{Q}\mathfrak{S}_{\mathrm{cpt}}\ni(\mathbb{P},\mathbb{O})\longmapsto\mathbb{M}_{\mathbb{P},\mathbb{O}}\in\mathfrak{Q}\mathfrak{S}_{\mathrm{cpt}}.$$

Given $\mathbb{P}_1, \mathbb{P}_2 \in \mathfrak{QS}_{\mathrm{fin}}, \mathbb{O}_1, \mathbb{O}_2 \in \mathfrak{QS}_{\mathrm{cpt}}$, and $\rho : \mathrm{C}(\mathbb{P}_2) \to \mathrm{C}(\mathbb{P}_1), \pi : \mathrm{C}(\mathbb{O}_1) \to \mathrm{C}(\mathbb{O}_2)$, the associated map $\mathbb{M}_{\rho,\pi} : \mathrm{C}(\mathbb{M}_{\mathbb{P}_1,\mathbb{O}_1}) \to \mathrm{C}(\mathbb{M}_{\mathbb{P}_2,\mathbb{O}_2})$ is the unique Λ making the following diagram commutative:

 $\mathbb{M}_{\bullet,\bullet}$ is contravariant wrt the first variable and covariant wrt the second one.

Functorial properties of $\mathbb{M}_{\mathbb{P},\mathbb{O}}$

Theorem

Let $\mathbb{P}, \mathbb{P}_1, \mathbb{P}_2 \in \mathfrak{QS}_{fin}, \mathbb{O}, \mathbb{O}_1, \mathbb{O}_2 \in \mathfrak{QS}_{cpt}, \rho : C(\mathbb{P}_2) \to C(\mathbb{P}_1)$ and

- $\pi: \mathrm{C}(\mathbb{O}_1) \to \mathrm{C}(\mathbb{O}_2).$ Then:
 - π surjective $\Rightarrow \mathbb{M}_{\mathrm{id},\pi}$ surjective,
 - π injective $\Rightarrow \mathbb{M}_{\mathrm{id},\pi}$ injective,
 - ρ injective $\Rightarrow \mathbb{M}_{\rho, \mathrm{id}}$ surjective,
 - ρ surjective $\Rightarrow \mathbb{M}_{\rho, \mathrm{id}}$ injective.

The opposite algebra

Proposition

For a finite quantum space \mathbb{P} and a compact quantum space \mathbb{O} the pair

 $(\mathbb{M}_{\mathbb{P}^{\mathrm{op}},\mathbb{O}^{\mathrm{op}}}, \pmb{\Phi}_{\mathbb{P}^{\mathrm{op}},\mathbb{O}^{\mathrm{op}}}) \text{ is naturally isomorphic to } (\mathbb{M}_{\mathbb{P},\mathbb{O}}^{\mathrm{op}}, \pmb{\Phi}_{\mathbb{P},\mathbb{O}}).$

Corollary

Let \mathbb{P} be a finite quantum space and \mathbb{O} be a compact quantum space s.t. $C(\mathbb{O})^{\mathrm{op}} \cong C(\mathbb{O})$. Then $C(\mathbb{M}_{\mathbb{P},\mathbb{O}})^{\mathrm{op}} \cong C(\mathbb{M}_{\mathbb{P},\mathbb{O}})$.

Corollary

The assumption in the above Corollary is satisfied in particular for $\mathbb O$ finite.

Let A and B be C*-algebras and a map $\varphi : A \to B$. For any *n* we have also maps $\varphi_n : \operatorname{Mat}_n(A) \to \operatorname{Mat}_n(B)$ given by $\varphi_n((a_{i,j})) = (\varphi(a_{i,j}))$. We say that

- φ is completely positive (c.p) if φ_n is positive for any n,
- φ is completely bounded if φ_n is bounded for any n,
- similarly: completely isometric, completely contractive, ...

Fact

A u.c.p. map $\psi : A \to B$ defines a non-degenerate c.p. map $id \otimes \psi : \mathcal{K} \otimes A \to \mathcal{K} \otimes B$, where $\mathcal{K} = \mathcal{K}(\ell_2)$, which extends uniquely to a u.c.p. map $M(\mathcal{K} \otimes A) \to M(\mathcal{K} \otimes B)$.

Theorem[Choi '74]

Let $\varphi : A \to B$ be a u.c.p. map between unital C*-algebras. Then

$$\begin{aligned} \mathcal{C}_{\varphi} &:= \{ a \in \mathsf{A} : \ \varphi(a)^* \varphi(a) = \varphi(a^*a) \text{ and } \varphi(a)\varphi(a)^* = \varphi(aa^*) \} \\ &= \{ a \in \mathsf{A} : \ \varphi(ab) = \varphi(a)\varphi(b) \text{ and } \varphi(ba) = \varphi(b)\varphi(a) \text{ for all } b \in \mathsf{A} \} \end{aligned}$$

is a $\mathrm{C}^*\text{-subalgebra}$ of A and $\varphi|_{\mathcal{C}_{\mathscr{G}}}$ is a *-homomorphism.

Lemma

Let $\varphi : A \to B$ be a u.c.p. map between unital C^* -algebras, and let $a \in M(\mathcal{K} \otimes A)$ belongs to $\mathcal{C}_{id \otimes \varphi}$. Then $(\omega \otimes id)(a) \in \mathcal{C}_{\varphi}$ for any $\omega \in \mathcal{K}^*$.

The crucial consequence of Kasparov's dilation theorem

Lemma

For a finite quantum space \mathbb{P} , a compact quantum space \mathbb{O} with $C(\mathbb{O})$ separable, a separable unital C*-algebra B and a u.c.p. map $\psi : C(\mathbb{O}) \to C(\mathbb{P}) \otimes B$ there exists $\Psi \in Mor(C(\mathbb{O}), C(\mathbb{P}) \otimes \mathcal{K} \otimes B)$ such that

$$\psi(x) = (\mathrm{id} \otimes \omega_{1,1} \otimes \mathrm{id})(\Psi(x)) \equiv \Psi_{1,1}(x), \qquad x \in \mathrm{C}(\mathbb{O}),$$

where $\omega_{1,1}(a) = \langle e_1 | a e_1 \rangle$ with e_1 being the first vector of the standard basis of ℓ_2 .

Definition [Brannan-Ganesan-Harris '20]

 $\mathcal{Q}_{n,c}$ = the universal operator system generated by the matrix elements

$$\{q_{a,ij}: \ 1 \leq i,j \leq n\}_{a=1}^c \text{ s.t. } Q_a = [q_{a,ij}] \geq 0 \text{ and satisfy } Q_1 + \ldots + Q_c = \mathbb{1}.$$

Universal property

The universality of $Q_{n,c}$ can be expressed in a similar way as we did it for $\mathcal{P}_{n,c}$.

Concrete realization

 $\mathcal{Q}_{n,c} = \operatorname{span} \{ p_{a,ij} : 1 \le a \le c, \ 1 \le i,j \le n \}.$

The universal operator system

Definition

$$\mathbb{S}_{\mathbb{P},\mathbb{O}} := \overline{\operatorname{span}} \left\{ (\omega \otimes \operatorname{id}) \mathbf{\Phi}_{\mathbb{P},\mathbb{O}}(x) \, | \, x \in \operatorname{C}(\mathbb{O}), \, \omega \in \operatorname{C}(\mathbb{P})^* \right\}.$$

Lemma

 $\mathbb{S}_{\mathbb{P},\mathbb{O}}$ is an operator system (equipped with a u.c.p. map $\varphi_{\mathbb{P},\mathbb{O}} : \mathrm{C}(\mathbb{O}) \to \mathrm{C}(\mathbb{P}) \otimes \mathbb{S}_{\mathbb{P},\mathbb{O}}$).

Theorem: *universality*

For any operator system S and any u.c.p. map $\psi : C(\mathbb{O}) \to C(\mathbb{P}) \otimes S$ there exists a unique u.c.p map $\lambda : \mathbb{S}_{\mathbb{P},\mathbb{O}} \to S$ such that the following diagram commutes:

$$\begin{array}{c} \mathcal{C}(\mathbb{O}) & \xrightarrow{\varphi_{\mathbb{P},\mathbb{O}}} \mathcal{C}(\mathbb{P}) \otimes \mathbb{S}_{\mathbb{P},\mathbb{O}} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \mathcal{C}(\mathbb{O}) & \xrightarrow{\psi} \mathcal{C}(\mathbb{P}) \otimes \mathsf{S} \end{array}$$

Sketch of the proof

- $\blacksquare \ \mathsf{B} := \mathrm{C}^* \left\langle (\phi \otimes \mathrm{id})(\psi(x)) \, | \, x \in \mathrm{C}(\mathbb{O}), \, \phi \in \mathrm{C}(\mathbb{P})^* \right\rangle$
- B unital, separable

•
$$\psi : \mathrm{C}(\mathbb{O}) \to \mathrm{C}(\mathbb{P}) \otimes \mathsf{B}$$
 - u.c.p.

- $\psi = \Psi_{1,1}$ for some $\Psi \in Mor(C(\mathbb{O}), C(\mathbb{P}) \otimes \mathcal{K} \otimes B)$
- $\Psi = (\mathrm{id} \otimes \Lambda) \Phi_{\mathbb{P}, \mathbb{O}}$ for some $\Lambda \in \mathrm{Mor} \left(\mathrm{C}(\mathbb{M}_{\mathbb{P}, \mathbb{O}}), \mathcal{K} \otimes \mathsf{B} \right)$
- $\widetilde{\lambda} := (\omega_{1,1} \otimes \mathrm{id}) \Lambda$ u.c.p.: $\mathrm{C}(\mathbb{M}_{\mathbb{P},\mathbb{O}}) \to \mathsf{B}$

• For
$$\lambda := \lambda|_{\mathbb{S}_{\mathbb{P},\mathbb{O}}}$$
 we have $\psi = (\mathrm{id} \otimes \lambda) \mathbf{\Phi}_{\mathbb{P},\mathbb{O}}$

slicing...

The embedding $\mathbb{S}_{\mathbb{P},\mathbb{O}} \subset \mathrm{C}(\mathbb{M}_{\mathbb{P},\mathbb{O}})$

Definition [Hamana]

The C*-envelope for a operator system S is the C*-algebra $\mathrm{C}^*_{\mathrm{env}}(\mathsf{S})$ which is generated by S, and S is essential in this C*-algebra, i.e. complete order embeddings $\mathrm{C}^*_{\mathrm{env}}(\mathsf{S}) \to \mathsf{T}$ are detected by restriction S.

Theorem [Brannan-Ganesan-Harris '20]

 $\mathcal{P}_{n,c} = \mathrm{C}^*_{\mathrm{env}}(\mathcal{Q}_{n,c}).$

Hyperrigidity

Definition [Arveson]

The embedding $S \subset A$ of an operator system S in a C^* -algebra A is *hyperrigid* if for every *-homomorphism $\pi : A \to B(H)$ and a u.c.p. map $\eta : A \to B(H)$ (with H a Hilbert space) satisfying $\pi|_S = \eta|_S$, we have $\pi = \eta$.

Hyperrigidity

Theorem

If
$$S \subset A$$
 is hyperrigid and $\mathrm{C}^*\langle S \rangle = A$, then $\mathrm{C}^*_{\mathrm{env}}(S) = A$.

Remark

The theorem remains true without the assumption that $C^*\langle S \rangle = A$ [Harris - Kim ' 19].

Theorem

Let A, B be unital C*-algebras, C be a C*-algebra, $\Phi \in Mor(A, C \otimes B)$, and

$$\mathsf{S} := \overline{\operatorname{span}} \left\{ (\omega \otimes \operatorname{id})(\Phi(x)) \, | \, x \in \mathsf{C}^*, \, x \in \mathsf{A} \right\}.$$

If $C^*(S) = B$, then $S \subset B$ is hyperigid (and, as a result, $C^*_{env}(S) = B$).

Corollary

 $\mathbb{S}_{\mathbb{P},\mathbb{O}} \subset C(\mathbb{M}_{\mathbb{P},\mathbb{O}})$ is hyperrigid and $C^*_{env}(\mathbb{S}_{\mathbb{P},\mathbb{O}}) = C(\mathbb{M}_{\mathbb{P},\mathbb{O}})$, for every finite quantum space \mathbb{P} and every compact quantum space \mathbb{O} .

Strong extension property

Definition

The embedding $S \subset A$ of an operator system S in a C*-algebra A has *strong extension* property if for every C*-algebra B and a u.c.p. map $\psi : S \to B$ there exists a u.c.p. map $\eta : A \to B$ s.t. $\eta|_S = \psi$.

Theorem

For a finite quantum space $\mathbb P$ and a compact quantum space $\mathbb O$ such that $C(\mathbb O)$ is separable, the embedding $\mathbb S_{\mathbb P,\mathbb O}\subset C(\mathbb M_{\mathbb P,\mathbb O})$ has the strong extension property.

Fact

For any operator system S there is a canonical u.c.p. map $\mathbb{S}_{\mathbb{P},\mathbb{O}} \otimes_c S \to C(\mathbb{M}_{\mathbb{P},\mathbb{O}}) \otimes_c S$.

Fact

 $\operatorname{C}(\mathbb{M}_{\mathbb{P},\mathbb{O}})\otimes_{c}\mathsf{S}=\operatorname{C}(\mathbb{M}_{\mathbb{P},\mathbb{O}})\otimes_{\max}\mathsf{S}$

Corollary

There exists a canonical u.c.p. map $\mathbb{S}_{\mathbb{P},\mathbb{O}} \otimes_c S \to \mathrm{C}(\mathbb{M}_{\mathbb{P},\mathbb{O}}) \otimes_{\max} S$.

Lemma

For a finite quantum space \mathbb{P} , a compact quantum space \mathbb{O} such that $C(\mathbb{O})$ is separable, and an operator system S, the above map is a complete order embedding.

The universal operator system

Corollary

For a finite quantum space \mathbb{P} , a compact quantum space \mathbb{O} such that $C(\mathbb{O})$ is separable, the canonical map $\mathbb{S}_{\mathbb{P},\mathbb{O}} \otimes_c \mathbb{S}_{\mathbb{P},\mathbb{O}} \to C(\mathbb{M}_{\mathbb{P},\mathbb{O}}) \otimes_{\max} C(\mathbb{M}_{\mathbb{P},\mathbb{O}})$ is a complete order embedding.

A C*-algebra A is said to have the *lifting property* if given any C*-algebra B with an ideal $J \subset B$, any c.c.p. map $\varphi : A \to B/J$ admits a c.c.p. lift $\tilde{\varphi} : A \to B$.

Remark

In the unital case: c.c.p. ~> u.c.p.

Theorem [Brannan-Ganesan-Harris '20]

 $\mathcal{P}_{n,c}$ has the lifting property.

Theorem [Choi-Effros '76]

Any separable nuclear $\mathrm{C}^*\text{-}\mathsf{algebra}$ has the lifting property.

If $|Char(C(\mathbb{O}))| \ge 2$ and dim $C(\mathbb{P}) \in \{3, 5, 6, \ldots\}$, then $C(\mathbb{M}_{\mathbb{P},\mathbb{O}})$ surjects onto $C(\mathbb{M}_{3,2}) \cong C^*(\mathbb{Z}_2 * \mathbb{Z}_3)$.

If $|Char(C(\mathbb{O}))| \geq 3$ and dim $C(\mathbb{P}) > 1$, then $C(\mathbb{M}_{\mathbb{P},\mathbb{O}})$ surjects onto $C(\mathbb{M}_{2,3}) \cong C^*(\mathbb{Z}_2^{*3}).$

If $C(\mathbb{O})$ has $Mat_n(\mathbb{C})$ with $n \geq 2$ as a quotient and dim $C(\mathbb{P}) > 1$, then $C(\mathbb{M}_{\mathbb{P},\mathbb{O}})$ surjects onto $C(\mathbb{M}_{2,\mathbb{O}}) \cong Mat_n(\mathbb{C}) * Mat_n(\mathbb{C})$.

The lifting property

Theorem

For a finite quantum space $\mathbb P$, a compact quantum space $\mathbb O$ s.t. $C(\mathbb O)$ has the lifting property, the C^* -algebra $C(\mathbb M_{\mathbb P,\mathbb O})$ has the lifting property.

Theorem

For a finite quantum space \mathbb{P} , a compact quantum space \mathbb{O} s.t. $C(\mathbb{O})$ has the lifting property, the operator system $\mathbb{S}_{\mathbb{P},\mathbb{O}}$ has the lifting property.

Quantum correlations

From now on both \mathbb{P} and \mathbb{O} are finite quantum spaces.

Definition

A u.c.p. map $C(\mathbb{O})\to B(H)$ is called a quantum positive operator-valued measure (q-POVM) on $\mathbb{O}.$

Definition

A u.c.p. map $C(\mathbb{O}) \to C(\mathbb{P}) \otimes B(H)$ is called a *quantum family* of POVMs on \mathbb{O} indexed by \mathbb{P} .

Remark

One can replace ${\rm B}({\rm H})$ by a fixed unital ${\rm C}^*\mbox{-algebra}$ A.

Remark

A quantum family of POVMs on $\mathbb O$ is a ${\rm C}(\mathbb P)\otimes {\rm B}({\rm H})\text{-valued}$ quantum POVM on $\mathbb O.$

Quantum correlations

Definition

A quantum correlation with quantum set of questions \mathbb{P} and quantum set of answers \mathbb{O} (a (\mathbb{P}, \mathbb{O}) -correlation) is a u.c.p. map $\mathcal{T} : C(\mathbb{O}) \otimes C(\mathbb{O}) \to C(\mathbb{P}) \otimes C(\mathbb{P})$.

Definition

A (\mathbb{P}, \mathbb{O}) -correlation T is called *non-signalling* if

 $\mathcal{T}\left(\mathrm{C}(\mathbb{O})\otimes\mathbb{1}_{\mathrm{C}(\mathbb{O})}\right)\subset\mathrm{C}(\mathbb{P})\otimes\mathbb{1}_{\mathrm{C}(\mathbb{P})},\quad \mathcal{T}\left(\mathbb{1}_{\mathrm{C}(\mathbb{O})}\otimes\mathrm{C}(\mathbb{O})\right)\subset\mathbb{1}_{\mathrm{C}(\mathbb{P})}\otimes\mathrm{C}(\mathbb{P}).$

Proposition

Let H be a Hilbert space, ω a state on B(H) and $\varphi_1, \varphi_2 : C(\mathbb{O}) \to C(\mathbb{P}) \otimes B(H)$ quantum families of POVMs on \mathbb{O} indexed by \mathbb{P} s.t.

$$\varphi_1(x)_{13}\varphi_2(y)_{23} = \varphi_2(y)_{23}\varphi_1(x)_{13}, \quad x, y \in C(\mathbb{O}).$$

Then there exists a unique linear map $T : C(\mathbb{O}) \otimes C(\mathbb{O}) \to C(\mathbb{P}) \otimes C(\mathbb{P})$ s.th:

$$T(x \otimes y) = (\mathrm{id} \otimes \mathrm{id} \otimes \omega) (\varphi_1(x)_{13} \varphi_2(y)_{23}), \quad x, y \in \mathrm{C}(\mathbb{O})$$

and T is a non-signalling (\mathbb{P}, \mathbb{O}) -correlation.

Theorem

For a (\mathbb{P}, \mathbb{O}) -correlation $\mathcal{T} : C(\mathbb{O}) \otimes C(\mathbb{O}) \to C(\mathbb{P}) \otimes C(\mathbb{P})$ TFAE:

(a) there exists a Hilbert space H, a pair of u.c.p. maps
 φ₁, φ₂ : C(𝔅) → C(𝔅) ⊗ B(H) satisfying

 $\varphi_1(x)_{13}\varphi_2(y)_{23} = \varphi_2(y)_{23}\varphi_1(x)_{13},$

and a norm-one vector $\xi \in H$ s.t.

 $T(x \otimes y) = (\mathrm{id} \otimes \mathrm{id} \otimes \omega_{\xi}) (\varphi_1(x)_{13} \varphi_2(y)_{23}).$

Theorem

- For a (\mathbb{P}, \mathbb{O}) -correlation $\mathcal{T} : C(\mathbb{O}) \otimes C(\mathbb{O}) \to C(\mathbb{P}) \otimes C(\mathbb{P})$ TFAE:
 - (b) there exists a Hilbert space H, a pair of unital *-homomorphisms $\Phi_1, \Phi_2 : \mathrm{C}(\mathbb{O}) \to \mathrm{C}(\mathbb{P}) \otimes \mathrm{B}(\mathrm{H}) \text{ satisfying}$

$$\Phi_1(x)_{13}\Phi_2(y)_{23} = \Phi_2(y)_{23}\Phi_1(x)_{13}$$

and a norm-one vector $\xi \in H$ s.t.

 $T(x \otimes y) = (\mathrm{id} \otimes \mathrm{id} \otimes \omega_{\xi}) (\Phi_1(x)_{13} \Phi_2(y)_{23}).$

Theorem

For a (\mathbb{P}, \mathbb{O}) -correlation $T : C(\mathbb{O}) \otimes C(\mathbb{O}) \to C(\mathbb{P}) \otimes C(\mathbb{P})$ TFAE:

(c) there exists a state σ on $C(\mathbb{M}_{\mathbb{P},\mathbb{O}}) \otimes_{\max} C(\mathbb{M}_{\mathbb{P},\mathbb{O}})$ s.t.

$$T(x \otimes y) = (\mathrm{id} \otimes \mathrm{id} \otimes \sigma) \left(\Phi_{\mathbb{P}, \mathbb{O}}(x)_{13} \Phi_{\mathbb{P}, \mathbb{O}}(y)_{24} \right).$$

(d) there exists a state σ on $\mathbb{S}_{\mathbb{P},\mathbb{O}} \otimes_c \mathbb{S}_{\mathbb{P},\mathbb{O}}$ s.t.

 $T(x \otimes y) = (\mathrm{id} \otimes \mathrm{id} \otimes \sigma) (\varphi_{\mathbb{P},\mathbb{O}}(x)_{13} \varphi_{\mathbb{P},\mathbb{O}}(y)_{24}).$

Sychronicity

Decomposition of finite quantum spaces

$$\mathrm{C}(\mathbb{P}) = \bigoplus_{l=1}^{N_{\mathbb{P}}} \mathrm{Mat}_{m_l}(\mathbb{C}), \quad \mathrm{C}(\mathbb{O}) = \bigoplus_{k=1}^{N_{\mathbb{O}}} \mathrm{Mat}_{n_k}(\mathbb{C}).$$

Let $\{{}^{l}f_{st} : l = 1, ..., N_{\mathbb{P}}, s, t = 1, ..., m_{l}\}$, $\{{}^{k}e_{ij} : k = 1, ..., N_{\mathbb{O}}, i, j = 1, ..., n_{k}\}$ be the corresponding systems of matrix units, and $\{{}^{l}f_{s}\}$, $\{{}^{k}e_{i}\}$ the corresponding standard bases of $\mathbb{C}^{m_{l}}$ and $\mathbb{C}^{n_{k}}$, resp.

Coefficients of quantum correlation

$$T\left({}^{k}e_{ij}\otimes{}^{k'}e_{i'j'}\right)=\sum_{s,t,s',t',l,l'}{}^{kk'}_{ll'}X^{(st),(s't')}_{(ij),(i'j')}\left({}^{l}f_{st}\otimes{}^{l'}f_{s't'}\right).$$

Synchronicity

Definition

A (\mathbb{P}, \mathbb{O}) -correlation $\mathcal{T} : \mathrm{C}(\mathbb{O}) \otimes \mathrm{C}(\mathbb{O}) \to \mathrm{C}(\mathbb{P}) \otimes \mathrm{C}(\mathbb{P})$ is called *synchronous* if

$$\sum_{i,t,i,j,k,l} \frac{1}{n_k m_l} \prod_{l}^{kk} X_{(ij),(ij)}^{(st),(st)} = N_{\mathbb{P}}.$$

But why ...?

■ For finite classical sets we have n_k = m_l = 1 for all k, l and there are no "interal indices" inside matrix blocks: ^{kk'}_{ll'}X^{(st),(s't')}_{ll'} → ^{kk'}_{ll'}X.

• We identify
$$\frac{kk'}{ll'}X = p(k, k'|l, l')$$
.

• But then
$$\sum_{k,k'} p(k,k'|l,l) = 1.$$

• Hence: $\sum_{k,l} p(k,k|l,l) = N_{\mathbb{P}} \Rightarrow \forall l \, p(k,k'|l,l) = 0$ whenever $k \neq k'$.

Synchronicity

Proposition: characterization of synchronicity

 $\ensuremath{\mathcal{T}}$ is synchronous iff

$$\left\langle \phi \mid T\left(\sum_{i,j,k} \frac{1}{n_k}^k e_{ij} \otimes {}^k e_{ij}\right) \phi \right\rangle = 1,$$

where

$$\phi = \frac{1}{\sqrt{N_{\mathbb{P}}}} \sum_{l} \frac{1}{\sqrt{m_{l}}} \sum_{s} \left({}^{l} f_{s} \otimes {}^{l} f_{s} \right) \in \left(\bigoplus_{l=1}^{N_{\mathbb{P}}} \mathbb{C}^{m_{l}} \right) \otimes \left(\bigoplus_{l=1}^{N_{\mathbb{P}}} \mathbb{C}^{m_{l}} \right)$$

Synchronous correlations from *realization*

Realizable correlation is given by a state $\sigma \in C(M_{\mathbb{P},\mathbb{O}}) \otimes_{\max} C(M_{\mathbb{P},\mathbb{O}})$:

$$T_{\sigma}(x \otimes y) = (\mathrm{id} \otimes \mathrm{id} \otimes \sigma) \left(\Phi_{\mathbb{P},\mathbb{O}}(x)_{13} \Phi_{\mathbb{P},\mathbb{O}}(y)_{24} \right).$$

• Write
$$\Phi_{\mathbb{P},\mathbb{O}}({}^{k}e_{ij}) = \sum_{s,t,l}{}^{l}f_{st} \otimes {}^{k}_{l}V^{st}_{ij}.$$

Lemma

Let τ be a trace on $C(\mathbb{M}_{\mathbb{P},\mathbb{O}})$. Then there exists a state σ_{τ} on $C(\mathbb{M}_{\mathbb{P},\mathbb{O}}) \otimes_{\max} C(\mathbb{M}_{\mathbb{P},\mathbb{O}})$ such that

$$\sigma_{\tau}\left({}_{l}^{k}V_{ij}^{st}\otimes{}_{l'}^{k'}V_{i'j'}^{s't'}\right)=\tau\left({}_{l}^{k}V_{ij}^{st}{}_{l'}^{k'}V_{i'j'}^{s't'}\right).$$

Theorem

 $T_{\sigma_{\tau}}$ is synchronous.

... arise from tracial states on C^* -algebras generated by operators associated to the maps in the realization $(\Phi_1, \Phi_2, \omega_{\xi})$ of the correlation. More precisely,

Theorem

Let \mathcal{T} be a synchronous (\mathbb{P}, \mathbb{O}) -correlation with realization $(\Phi_1, \Phi_2, \omega_{\xi})$. Let ${k \atop l} U_{ij}^{st}$ and ${k \atop l} W_{ii}^{st}$ be elements of B(H) defined by

$$\Phi_1({}^k e_{ij}) = \sum_{l,s,t} {}^l f_{st} \otimes {}^k_l U^{st}_{ij}, \quad \Phi_2({}^k e_{ij}) = \sum_{l,s,t} {}^l f_{st} \otimes {}^k_l W^{st}_{ij}$$

Then

(1)
$${}^{k}_{l}W^{st}_{ij}\xi = \begin{pmatrix} k U^{st}_{ij} \end{pmatrix} \xi,$$

(2) ω_{ξ} restricted to $C^* \left\langle \{{}^{k}_{l}W^{st}_{ij}\} \right\rangle$ is a trace,
(3) ω_{ξ} restricted to $C^* \left\langle \{{}^{k}_{l}U^{st}_{ij}\} \right\rangle$ is a trace.

Moreover, let $\Lambda_1 : C(\mathbb{M}_{\mathbb{P},\mathbb{O}}) \to B(H)$ be the unique unital *-homomorphism s.t. $\Phi_1 = (\mathrm{id} \otimes \Lambda_1) \Phi_{\mathbb{P},\mathbb{O}}$. Then $\tau = \omega_{\xi} \circ \Lambda_1$ is a trace on $C(\mathbb{M}_{\mathbb{P},\mathbb{O}})$ and $T = T_{\sigma_{\tau}}$.

Conclusions

- We studied quantum space of maps between quantum spaces.
- The C*-algebra of this quantum space has the lifting property and is RDF.
- We showed that the embedding S_{P,0} ⊂ C(M_{P,0}) is hyperrigid, and we studied consequences of this fact.
- We discussed quantum correlations and synchronicity within this framework.