Let G be a non-empty set. The map $G \times G \ni (a, b) \mapsto ab \in G$ is called an associative composition law if and only if

$$\forall a, b, c \in G: a(bc) = (ab)c.$$
Let G be a non-empty set. The map $G \times G \ni (a, b) \mapsto ab \in G$ is called an \textbf{associative composition law} if and only if

$$\forall a, b, c \in G: a(bc) = (ab)c.$$

Algebraic structures with such a composition law are listed below from the most to the least general. Each step adds an assumption, so that each of these structures is a special case of the preceding structures.
Let G be a non-empty set. The map $G \times G \ni (a, b) \mapsto ab \in G$ is called an **associative composition law** if and only if

$$\forall a, b, c \in G: a(bc) = (ab)c.$$

Algebraic structures with such a composition law are listed below from the most to the least general. Each step adds an assumption, so that each of these structures is a special case of the preceding structures.

1. **Semigroups**: no assumptions. **Example**: the set of all finite words written with two letters ($ab, ba, abba,\ldots$).
Let G be a non-empty set. The map $G \times G \ni (a, b) \mapsto ab \in G$ is called an associative composition law if and only if

$$\forall a, b, c \in G: a(bc) = (ab)c.$$

Algebraic structures with such a composition law are listed below from the most to the least general. Each step adds an assumption, so that each of these structures is a special case of the preceding structures.

1. **Semigroups**: no assumptions. **Example**: the set of all finite words written with two letters ($ab, ba, abba, \ldots$).

2. **Monoids**: $\exists e \in G \forall g \in G: eg = g = ge$. **Examples**: $(\text{Map}(X, X), \circ, \text{id}), (\mathbb{N}, +, 0)$.

One binary associative composition law

Let G be a non-empty set. The map $G \times G \ni (a, b) \mapsto ab \in G$ is called an associative composition law if and only if

\[\forall a, b, c \in G: a(bc) = (ab)c. \]

Algebraic structures with such a composition law are listed below from the most to the least general. Each step adds an assumption, so that each of these structures is a special case of the preceding structures.

1. **Semigroups**: no assumptions. Example: the set of all finite words written with two letters $(ab, ba, abba, \ldots)$.

2. **Monoids**: $\exists e \in G \ \forall g \in G: eg = g = ge$.
 Examples: $(\text{Map}(X, X), \circ, \text{id})$, $(\mathbb{N}, +, 0)$.

3. **Groups**: $\forall g \in G \ \exists g^{-1} \in G: g^{-1}g = e = gg^{-1}$.
 Examples: $(\text{Bij}(X, X), \circ, \text{id})$, (S_n, \circ, id).
Let G be a non-empty set. The map $G \times G \ni (a, b) \mapsto ab \in G$ is called an **associative composition law** if and only if

$$\forall a, b, c \in G: a(bc) = (ab)c.$$

Algebraic structures with such a composition law are listed below from the most to the least general. Each step adds an assumption, so that each of these structures is a special case of the preceding structures.

1. **Semigroups**: no assumptions. **Example**: the set of all finite words written with two letters ($ab, ba, abba,...$).

2. **Monoids**: $\exists e \in G \forall g \in G: eg = g = ge.$
 Examples: $(\text{Map}(X, X), \circ, \text{id}), (\mathbb{N}, +, 0)$.

3. **Groups**: $\forall g \in G \exists g^{-1} \in G: g^{-1}g = e = gg^{-1}.$
 Examples: $(\text{Bij}(X, X), \circ, \text{id}), (S_n, \circ, \text{id})$.

4. **Abelian groups**: $\forall g, h \in G: gh = hg.$
 Examples: $(\mathbb{Z}, +, 0), (\mathbb{Z}/n\mathbb{Z}, +, 0)$.
Two distributive composition laws

Let R be a non-empty set with two binary associative composition laws satisfying the distributivity condition:

$$\forall r, s, t \in R: (r + s)t = rt + st, \ r(s + t) = rs + rt$$.
Two distributive composition laws

Let R be a non-empty set with two binary associative composition laws satisfying the distributivity condition:

\[
\forall r, s, t \in R: (r + s)t = rt + st, \ r(s + t) = rs + rt
\]

Algebraic structures with two such composition laws are listed below the same way as before.
Let R be a non-empty set with two binary associative composition laws satisfying the distributivity condition:

$$\forall r, s, t \in R: (r + s)t = rt + st, r(s + t) = rs + rt.$$

Algebraic structures with two such composition laws are listed below the same way as before.

1. **Rings**: $(R, +, 0)$ is an Abelian group and $(R, \cdot, 1)$ is a monoid.

 Examples: $(\text{End}_\mathbb{Z}(G); \circ, \text{id}; \text{poinwise} +, 0 \text{ function})$, where $(G, +, 0)$ is an Abelian group, matrix ring $M_n(\mathbb{Z})$.

2. **Commutative rings**: $\forall r, s \in R: rs = sr$.

 Examples: $(\mathbb{Z}/n\mathbb{Z}; \cdot, 1; +, 0)$, polynomial ring $(\mathbb{Z}/n\mathbb{Z})[N]$.

3. **Integral domains**: $rs = 0 \Rightarrow (r = 0 \text{ or } s = 0)$.

 Examples: $(\mathbb{Z}; \cdot, 1; +, 0)$, polynomial ring $\mathbb{Z}[N]$.

4. **Fields**: $(R \setminus \{0\}, \cdot, 1)$ is a group.

 Examples: $(\mathbb{Z}/p\mathbb{Z}; \cdot, 1; +, 0)$, where p is a prime number.

5. **Fields of characteristic 0**: contain \mathbb{Q} as a subfield.

 Examples: \mathbb{Q}, \mathbb{R}, \mathbb{C}.

Two distributive composition laws
Two distributive composition laws

Let R be a non-empty set with two binary associative composition laws satisfying the distributivity condition:

$$\forall r, s, t \in R: (r + s)t = rt + st, \ r(s + t) = rs + rt$$

Algebraic structures with two such composition laws are listed below the same way as before.

1. **Rings:** $(R, +, 0)$ is an Abelian group and $(R, \cdot, 1)$ is a monoid.
 Examples: $(\text{End}_\mathbb{Z}(G); \circ, \text{id}; \text{poinwise } +, 0 \text{ function})$, where $(G, +, 0)$ is an Abelian group, matrix ring $M_n(\mathbb{Z})$.

2. **Commutative rings:** $\forall r, s \in R: rs = sr$.
 Examples: $(\mathbb{Z}/n\mathbb{Z}; \cdot, 1; +, 0)$, polynomial ring $(\mathbb{Z}/n\mathbb{Z})[\mathbb{N}]$.

Two distributive composition laws

Let R be a non-empty set with two binary associative composition laws satisfying the distributivity condition:

$$ \forall r, s, t \in R: (r + s)t = rt + st, \ r(s + t) = rs + rt $$

Algebraic structures with two such composition laws are listed below the same way as before.

1. **Rings**: $(R, +, 0)$ is an Abelian group and $(R, \cdot, 1)$ is a monoid.
 Examples: $(\text{End}_\mathbb{Z}(G); \circ, \text{id}; \text{poinwise} +, 0 \text{ function})$, where $(G, +, 0)$ is an Abelian group, matrix ring $M_n(\mathbb{Z})$.

2. **Commutative rings**: $\forall r, s \in R: rs = sr$.
 Examples: $(\mathbb{Z}/n\mathbb{Z}; \cdot, 1; +, 0)$, polynomial ring $(\mathbb{Z}/n\mathbb{Z})[\mathbb{N}]$.

3. **Integral domains**: $rs = 0 \Rightarrow (r = 0 \text{ or } s = 0)$.
 Examples: $(\mathbb{Z}; \cdot, 1; +, 0)$, polynomial ring $\mathbb{Z}[\mathbb{N}]$.

Two distributive composition laws

Let R be a non-empty set with two binary associative composition laws satisfying the distributivity condition:

$$\forall r, s, t \in R: (r + s)t = rt + st, \ r(s + t) = rs + rt.$$

Algebraic structures with two such composition laws are listed below the same way as before.

1. **Rings:** $(R, +, 0)$ is an Abelian group and $(R, \cdot, 1)$ is a monoid.
 Examples: $(\text{End}_\mathbb{Z}(G); \circ, \text{id}; \text{poinwise } +, 0 \text{ function})$, where $(G, +, 0)$ is an Abelian group, matrix ring $M_n(\mathbb{Z})$.

2. **Commutative rings:** $\forall r, s \in R: rs = sr$.
 Examples: $(\mathbb{Z}/n\mathbb{Z}; \cdot, 1; +, 0)$, polynomial ring $(\mathbb{Z}/n\mathbb{Z})[N]$.

3. **Integral domains:** $rs = 0 \Rightarrow (r = 0 \text{ or } s = 0)$.
 Examples: $(\mathbb{Z}; \cdot, 1; +, 0)$, polynomial ring $\mathbb{Z}[N]$.

4. **Fields:** $(R \setminus \{0\}, \cdot, 1)$ is a group.
 Examples: $(\mathbb{Z}/p\mathbb{Z}; \cdot, 1; +, 0)$, where p is a prime number.
Two distributive composition laws

Let \(R \) be a non-empty set with two binary associative composition laws satisfying the distributivity condition:

\[
\forall r, s, t \in R: (r + s) t = rt + st, \ r(s + t) = rs + rt.
\]

Algebraic structures with two such composition laws are listed below the same way as before.

1. **Rings**: \((R, +, 0)\) is an Abelian group and \((R, \cdot, 1)\) is a monoid.

 Examples: \((\text{End}_\mathbb{Z}(G); \circ, \text{id}; \text{poinwise } +, 0 \text{ function})\), where \((G, +, 0)\) is an Abelian group, matrix ring \(M_n(\mathbb{Z})\).

2. **Commutative rings**: \(\forall r, s \in R: rs = sr\).

 Examples: \((\mathbb{Z}/n\mathbb{Z}; \cdot, 1; +, 0)\), polynomial ring \((\mathbb{Z}/n\mathbb{Z})[N]\).

3. **Integral domains**: \(rs = 0 \Rightarrow (r = 0 \text{ or } s = 0)\).

 Examples: \((\mathbb{Z}; \cdot, 1; +, 0)\), polynomial ring \(\mathbb{Z}[N]\).

4. **Fields**: \((R \setminus \{0\}, \cdot, 1)\) is a group.

 Examples: \((\mathbb{Z}/p\mathbb{Z}; \cdot, 1; +, 0)\), where \(p\) is a prime number.

5. **Fields of characteristic 0**: contain \(\mathbb{Q}\) as a subfield.

 Examples: \(\mathbb{Q}, \mathbb{R}, \mathbb{C}\).
Let M be an Abelian group and R a ring equipped with an associative composition law:

$$R \times M \ni (r, m) \mapsto rm \in M.$$
Let M be an Abelian group and R a ring equipped with an associative composition law:

\[
R \times M \ni (r, m) \mapsto rm \in M.
\]

Such algebraic structures are listed below the same way as before.
Let M be an Abelian group and R a ring equipped with an associative composition law:

$$R \times M \ni (r, m) \mapsto rm \in M.$$

Such algebraic structures are listed below the same way as before.

1. **Modules**: $\forall m, n \in M, r, s \in R$:
 $$(r + s)m = rm + sm, \ r(m + n) = rm + rn, \ 1m = m.$$
 Examples: $\mathrm{End}_\mathbb{Z}(G) \times G \ni (f, g) \mapsto f(g) \in G$

 and \mathbb{Z}^n over the matrix ring $M_n(\mathbb{Z})$.
Let M be an Abelian group and R a ring equipped with an associative composition law:

\[R \times M \ni (r, m) \rightarrow rm \in M. \]

Such algebraic structures are listed below the same way as before.

1. **Modules:** $\forall m, n \in M, r, s \in R$: $(r + s)m = rm + sm$, $r(m + n) = rm + rn$, $1m = m$.

 Examples: $\text{End}_{\mathbb{Z}}(G) \times G \ni (f, g) \mapsto f(g) \in G$

 and \mathbb{Z}^n over the matrix ring $M_n(\mathbb{Z})$.

2. **Free modules:** there exists a basis of M. **Example:** $\bigoplus_{\mathbb{N}} R$.

Let M be an Abelian group and R a ring equipped with an associative composition law:

\[R \times M \ni (r, m) \mapsto rm \in M. \]

Such algebraic structures are listed below the same way as before.

1. **Modules:** \(\forall m, n \in M, r, s \in R: \)
 \[(r + s)m = rm + sm, \ r(m + n) = rm + rn, \ 1m = m. \]
 Examples: \(\text{End}_{\mathbb{Z}}(G) \times G \ni (f, g) \mapsto f(g) \in G \)
 and \(\mathbb{Z}^n \) over the matrix ring \(M_n(\mathbb{Z}) \).

2. **Free modules:** there exists a basis of \(M. \)
 Example: \(\bigoplus \mathbb{N} R. \)

3. **Vector spaces:** \(R \) is a field.
 Example: \(\bigoplus \mathbb{N} R. \)
Let M be an Abelian group and R a ring equipped with an associative composition law:

$$R \times M \ni (r, m) \mapsto rm \in M.$$

Such algebraic structures are listed below the same way as before.

1. **Modules:** \(\forall m, n \in M, r, s \in R: \)
 \[(r + s)m = rm + sm, \ r(m + n) = rm + rn, \ 1m = m. \]
 Examples: \(\text{End}_{\mathbb{Z}}(G) \times G \ni (f, g) \mapsto f(g) \in G \)
 and \(\mathbb{Z}^n \) over the matrix ring \(M_n(\mathbb{Z}) \).

2. **Free modules:** there exists a basis of \(M. \) **Example:** \(\bigoplus_\mathbb{N} R. \)

3. **Vector spaces:** \(R \) is a field. **Example:** \(\bigoplus_\mathbb{N} R. \)

4. **Finite-dimensional vector spaces:** there exists a finite basis of \(M. \) **Example:** \(R^n. \)
Let A be a module over a commutative ring k equipped with a k-bilinear associative multiplication

$$A \times A \ni (a, b) \mapsto ab \in A.$$

Then A is called an algebra over k.

It is called a unital algebra over k if and only if A is a ring with respect to its Abelian group structure and multiplication. In other words, a unital algebra is a module with a linear ring structure, or a ring with a compatible module structure. Every ring is a unital algebra over the ring \mathbb{Z} of all integers.
Let A be a module over a commutative ring k equipped with a k-bilinear associative multiplication

$$A \times A \ni (a, b) \mapsto ab \in A.$$

Then A is called an algebra over k.

It is called a unital algebra over k if and only if A is a ring with respect to its Abelian group structure and multiplication. In other words, a unital algebra is a module with a linear ring structure, or a ring with a compatible module structure. Every ring is a unital algebra over the ring \mathbb{Z} of all integers.
Let A be a unital algebra over a commutative ring k. The **spectrum** of $a \in A$ is the following subset of k:

$$\text{spec}_A(a) := \{ \lambda \in k \mid \not\exists (a - \lambda 1)^{-1} \in A \}.$$

In particular, when M is a module over k, we can take $A = \text{End}_k(M)$. Then $v \in M$ is called an eigenvector of $a \in \text{End}_k(M)$ corresponding to $\lambda \in k$ if and only if $av = \lambda v$.

Note that $v \neq 0 \Rightarrow \lambda \in \text{spec}_A(a)$. All elements of $\text{spec}_A(a)$ coming from a non-zero eigenvector of a are called eigenvalues.

If M is a finite-dimensional free module over a non-zero commutative ring k, then all elements of the spectrum of any endomorphism a are eigenvalues. They are roots of the characteristic polynomial $\det(a - \lambda 1)$.
Let A be a unital algebra over a commutative ring k. The spectrum of $a \in A$ is the following subset of k:

$$\text{spec}_A(a) := \{ \lambda \in k \mid \not\exists (a - \lambda 1)^{-1} \in A \}.$$

In particular, when M is a module over k, we can take $A = \text{End}_k(M)$. Then $v \in M$ is called an eigenvector of $a \in \text{End}_k(M)$ corresponding to $\lambda \in k$ if and only if

$$av = \lambda v.$$

Note that $v \neq 0 \Rightarrow \lambda \in \text{spec}_A(a)$. All elements of $\text{spec}_A(a)$ coming from a non-zero eigenvector of a are called eigenvalues.
Let A be a unital algebra over a commutative ring k. The spectrum of $a \in A$ is the following subset of k:

$$\text{spec}_A(a) := \{ \lambda \in k \mid \not\exists (a - \lambda 1)^{-1} \in A \}.$$

In particular, when M is a module over k, we can take $A = \text{End}_k(M)$. Then $v \in M$ is called an eigenvector of $a \in \text{End}_k(M)$ corresponding to $\lambda \in k$ if and only if $av = \lambda v$.

Note that $v \neq 0 \Rightarrow \lambda \in \text{spec}_A(a)$. All elements of $\text{spec}_A(a)$ coming from a non-zero eigenvector of a are called eigenvalues.

If M is a finite-dimensional free module over a non-zero commutative ring k, then all elements of the spectrum of any endomorphism a are eigenvalues. They are roots of the characteristic polynomial

$$\det(a - \lambda \text{id}).$$