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Calabi-Yau manifolds

Definition

Calabi-Yau manifold is a complex, smooth, projective (kahler) d-fold X satisfying
Q@ Kx =0k,
Q@ H'Ox =0for0<i<d.

Equivalently:
@ there are no global holomorphic i—forms on X,

@ there exists a nowhere vanishing holomorphic d—form on X.
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Crepant resolution

Let X be a singular complex algebraic variety (with canonical line bundle) and (X, )
a resolution of X with the map m: X — X.
We say that that X is a crepant resolution of X if

w*(Kx) = K.

Theorem (Klein)

2
Let G be any finite subgroup of SLo(C). Then surface C /G admits a crepant
resolution.

2
Surfaces © /G are called Kleinian singularities or Du Val surface singularities. There is
a 1-1 correspondence between non-trivial finite subgroups G C SLy(C) and Dynkin
diagrams of type Ax(k > 1), Dx(k > 4), Eg, E7 and Es.
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Crepant resolution

2
The correspondence between Kleinian singularities C /G' Dynkin diagrams and other
areas of mathematics is known as the McKay correspondence.

Theorem (Roan)

3
Let G be a finite subgroup of SL3(C). Then C /G admits a crepant resolution.

4
For a subgroup {—1,+1} C SL4(C), variety C /{_1 41 does not admit any
crepant resolution!
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Cynk-Hulek's Kummer type construction

Let Zg be the cyclic group of order d.
Theorem (Cynk-Hulek)

Let E; be an elliptic curve with an order d automorphism ¢4: Eq4 v+ Eg, for
d=2,3,4. For anyn € N, et

G = {(ml,mg,...,mn)EZZL:ml—i—mg—l—...—f—mn:O}:Zg_l

acts on E by ¢7'" on the i-th factor. There exists a crepant resolution

/\_/

Em
d/Gd,n - d/Gd,n.

/n_\/
Consequently, X4, := ~d /Gd is an n-dimensional Calabi-Yau manifold.
n

@ S. Cynk, K. Hulek, Higher-dimensional modular Calabi-Yau manifolds, Canad. Math. Bull.
50 (2007), 486-503.
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Cynk-Hulek's Kummer type construction for d = 6

Let X, X5 be two Calabi-Yau manifolds with automorphisms 7n;: X; — X; (for
i =1,2) of order 6 such that

771( (WX1) = €6WX1 and 77>2k (WX2) = ngXw

where wy, denotes a chosen generator of H™?(X;), for i = 1,2.
Assume that:

@ the fixed point locus Fix(n;) of 1y is a disjoint union of smooth divisors, in
particular 71 has linearisation of the form ({s,1,1,...,1) near any point of
Fix(m),

@ Fix(n2) is a disjoint union of submanifolds of codimension at most 3. In particular
12 has linearisation of the form

o (¢2,1,1,...,1) near a component of codimension one of Fix(3),
o (¢3¢, 1,1,...,1) or (¢2,¢3,1,1,...,1) near a component of codimension two of
FiX(’I]Q),
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Cynk-Hulek's Kummer type construction for d = 6

© Fix(n?) \ Fix(n) is a disjoint union of smooth divisors in particular n? has
linearisation ((3,1,1,...,1) along any component of Fix(n?) \ Fix(n1),

@ Fix(n}) \ Fix(,m) is a disjoint union of smooth divisors in particular 13 has
linearisation (—1,1,1,...,1) along any component of Fix(n?) \ Fix(n;),

@ Fix(n3) \ Fix(n2) is a disjoint union of smooth submanifolds of codimension at
most 2, so 15 has linearisation of the form (¢2,1,1,...,1) or ((3,(3,1,1,...,1)
along any component of Fix(n3) \ Fix(n2),

@ Fix(n3) \ Fix(n2) is a disjoint union of smooth divisors, so 73 has linearisation of
the form (—1,1,1,...,1) along any component of Fix(n3) \ Fix(ns),

@ the automorphism 75 has a local linearisation of the form (¢2,¢3,¢s,1,1,...,1)
along any codimensional 3 component of Fix(732).

Dominik Burek Higher dimensional Calabi-Yau varieties of Kummer type



Cynk-Hulek's Kummer type construction for d = 6

Proposition

Under the above assumptions the quotient X1 X X2/ admits a crepant

/\/
resolution of singularities X1 x X2/771 X 12" Furthermore id X7 induces an

m X 12

X1 % X2/ that satisfies all assumption we put

automorphism of order 6 on
on 72.

n X 12
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The automorphism 7 := 1y x ny has a local linearisation around any fixed point of one
of the following types:

@ ((6,¢2,1,1,...,1) which corresponds to singularity of type (1 5),

@ (¢6,06,¢4,1,1,...,1) which corresponds to singularity of type (1 1,4),

© (¢6,¢2,¢3,1,1,...,1) which corresponds to singularity of type (1 2,3),

Q (C6,¢s,C3,¢3,1,1,...,1) which corresponds to singularity of type (1 1,2,2).
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@ If n has a local linearisation given by ((s,(2,1,1,...,1) near Fix(n), then in local
coordinates, the map from X; x X5 to the resolution is given in affine charts by

7:E5 ) y7x4 b y27$3 ) y37$2 ) y4’m y5’ .
The action of id x5 has a linearisation (1,¢2,1,...,1), so it lifts to the
resolution as (1, ¢8), (Cs,C5), (¢5,C8), (¢, ¢8)s (¢, C6) and (C§, 1), respectively.
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Proof

@ If  has a local linearisation given by (Cg, (s, (4, 1,1,...,1) near Fix(n), then we
can use a toric resolution of £(1,1,4) singularity.

@ A. Crew, M. Reid, How to calculate A-Hilb C3, Geometry of toric varieties, 129-154,
Séminaires et Congrés 6, SMF, Paris, 2002.
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Proof

@ If  has a local linearisation given by (Cg, (s, (4, 1,1,...,1) near Fix(n), then we
can use a toric resolution of £(1,1,4) singularity.

@ A. Crew, M. Reid, How to calculate A-Hilb C3, Geometry of toric varieties, 129-154,
Séminaires et Congrés 6, SMF, Paris, 2002.
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Thus the map from X; x X5 to the resolution is given in affine charts as

Therefore the action of id xn; lifts to the resolution as (1, (g, ¢8), (¢, C6, C2),

(Cé:CGal)a (C(g))lal)a (CgaLl)v (487171)
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Proof

© If  has a local linearisation given by ((s,¢2,¢3,1,1,...,1) near Fix(n), then we
use again toric resolution of %(1, 2,3) singularity. There are five different
decompositions of junior simplex which give a toric resolution.
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Proof

A Lo
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Proof

AL
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Proof

The map from X7 x X5 to the resolution is given in affine charts as:
(GZ y) at 0y ot 5y vz 5 Y
T —=, "5 |, —H 2,5 | — 2, |, —55% 55 | >
a3’ 22 z x2 Y Tz 12 22
2 2
z x z T
737y377y or 77y377 .
Yy < xry Yy

The action of id xny has a local linearisation (1,(62, Cg, 1,...,1), hence it lifts to the

resolution as (LC{??C{%)? (Cga 1agg)7 (§é7 17C6)a (Cga 1a 1)7 (17 17((?)7 (CG? 17Cé)>
respectively.
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@ If 1) has a local linearisation given by ((g, (s, ¢2,¢2,1,1,...,1) near Fix(ns).
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@ If 1) has a local linearisation given by ((g, (s, ¢2,¢2,1,1,...,1) near Fix(ns).
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@ If 1) has a local linearisation given by ((g, (s, ¢2,¢2,1,1,...,1) near Fix(ns).
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The map is given by
t 2 t 2 t

(x61y721>1 xivyvzgvf ) £ g tgvz 9 (xay67z7)7
x’ 2?2 22 2T z t'x t Y Y2’ y?
2 2

x

772/7”337 or £7y7737t3 :

Yy oz y t't

The action of id x17y has a local linearisation (1,(6,C62,C62, 1,1,...,1), hence it lifts to

the resolution as (17 6 Cgv Cg)v (Cgv G, 1, 1)7 (Cga 65 1, 1)7 (Cga 1,1, 1)1 (Cga L1, 1)|

(¢8,1,1,1).

Finally near the points of Fix(n?) \ Fix(n) and Fix(n?) \ Fix(n) we first consider the

X1 X X2 Xl X X2 P
/772 (resp. /77 )

I I I . Y

quotient 3 ), we construct crepant resolutions of

/\/ /\/

<X1 x X, /n2> <X1 X Xo /773)

/773 resp. /?72. Il
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Cynk-Hulek's Kummer type construction for d = 6

Let X1, Xo, ..., X, be Calabi-Yau manifolds with automorphisms ¢; of order 6 such
that

o ¢f(wx,) = (ewx, Where wy, is a canonical form on X,

@ ¢ satisfies the assumptions we put on 7y in proposition,

o ¢? satisfies, for i = 2,...,n, the assumptions we put on 7 in proposition.

Proposition

The quotient of the product X; x Xo x ... x X,, by the action of G¢, has a crepant
resolution of singularities which is a Calabi-Yau manifold and such that the action of Zg
on X7 X X9 X ...x X, lifts to a purely non-symplectic action of Zg on this resolution.

Theorem

| \

There exists a crepant resolution

- ~— -~
EY E}
0 /GG,n v /G6,n'

v
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Borce-Voisin construction

Theorem

Let S; be a K3 surface admitting a purely non-symplectic automorphism aig of order
d=2,3,4,6. Let Eg be an elliptic curve admitting an automorphism a g, of order d.

Then Sd % Ed/ n—1, is a singular variety which admits a crepant resolution of
ag, X OzEd
,\/ ,_\/
singularities Sa % Ed/ d—1. In particular Sa % Ed/ d—1 is a Calabi-Yau

anXaEd OzSanEd
threefold.

@ C. Voisin, Miroirs et involutions sur les surfaces K3, Astérisque, (218):273-323, 1993.
Journées de Géométrie Algébrique d'Orsay (Orsay, 1992).

[@ C. Borcea, K3 surfaces with involution and mirror pairs of Calabi-Yau manifolds, Mirror
symmetry, |, 717-743, AMS/IP Stud. Adv. Math. 1, Amer. Math. Soc. Providence, RI,
1997.

@ A. Cattaneo, A. Garbagnati, Calabi-Yau 3-folds of Borcea-Voisin type and elliptic
fibrations, Tohoku Math. J. 68 (2016), no. 4, 515-558.
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Generalization of Borce-Voisin construction

Take d € {2,3,4,6} and let S; be a K3-surface with non-symplectic automorphism ~,4
of order d. Moreover, let E; be elliptic curves admitting automorphisms oy of order d.
The following group

Gap = {(mi,me,...,my) € Zy: ml—i—mz—l—...—f—mn:O}:ZZ_l

)" on the first factor and «;" on the i-th factor, where

acts on Sy X Egil by (V4

2 <1 < n. Moreover G, preserves canonical bundle of Sy x Eg_l.

. . . . Sy X vl
There exists crepant resolution Yy, of the quotient variety a /

particular Yy ,, is (n + 1)-dimensional Calabi-Yau variety.
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Orbifold’s formula

Defintin

For a variety X/G define the Chen-Ruan cohomology by

C(9)
w(G0) = @ (@ o)

[9]€Conj(G) \U€eA(g)

where Conj(G) is the set of conjugacy classes of G (we choose a representative g of
each conjugacy class), C(g) is the centralizer of g, A(g) denotes the set of irreducible
connected components of the set fixed by g € G and age(g) is the age of the matrix of
linearized action of g near a point of U.

The dimension of H3J, (X /) will be denoted by hi}, (X /) and it is called the

orb orb

orbifold Hodge number.

@ W. Chen, Y. Ruan, A new cohomology theory of orbifold, Comm. Math. Phys. 248(1),
1-31, 2004.
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Orbifold’s formula

Definition

Consider M € GL,(C) of finite order. Then M has eigenvalues

e2mian g2miaz - o2miam \where ay,as,...,am € [0,1) N Q are uniquely defined up to
order. The value of the sum a; + as + ...+ a,, is called the age of M and is denoted
by age(M ).
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Orbifold’s formula

Definition

Consider M € GL,(C) of finite order. Then M has eigenvalues

e2mian g2miaz - o2miam \where ay,as,...,am € [0,1) N Q are uniquely defined up to
order. The value of the sum a; + as + ...+ a,, is called the age of M and is denoted

by age(M ).

Theorem (Yasuda)

Let G be a finite group acting on an algebraic smooth variety X . If there exists a
TN

crepant resolution X /¢ of variety X /> then the following equality holds

i (%1g) =1k (¥/e):

3 T. Yasuda, Twisted jets, motivic measure and orbifold cohomology, Compos. Math. 140
(2004), 396-422.
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Hodge numbers

Let X; be a variety with automorphism ¢; 4: X; — X; of order d for i = 1,2,...,n.
Consider the following group

Gapn = {(m1,ma,...,my,) € Zj: m1+m2+...+mn:0}:ZZ_1

which acts on X7 x X5 x ... x X;, by ¢ on the i-th factor. Suppose that there

T N
exists a crepant resolution Xj;,, of the quotient variety

Xy = X1 X Xgx...X Xn/Zg_l‘

Let

k
Fx, 1;(X,Y) := Poincaré polynomial (in two variables X,Y) of H** (Fix ((QSZ d) ) )
’ J

d

forie{1,2,...,n}and k,j € {0,1,...,d — 1}.
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Hodge numbers

Assume that Fix(qﬁf’d) is a divisor. As

mi+mo—+...+Mm
age(¢)y X ¢jf X ... X @) = .

we get the following

=1

d—1 n
wa @ =S 11 (z JxT. FX) Xy

7=0:=1
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Hodge numbers

J
1
i 0
0 Fx; 00 Fx, 01
1 Fx, 10 Fx, 11
2 Fx, 20 Fx, 21
d—1 Fx,d-10 Fx;a-11

Fx,a-1,

Fx, 0,4-1
Fx,1,d-1

Fx,24-1

Fx,d-1,d-1
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Hodge numbers

J
1
i 0
0 Fx, 00 Fx, 01
1 Fx, 10 Fx, 11
2 Fx, 20 Fx; 2.1
d—1 Fx,d-10 Fx;a-11

Fx, 0,5
Fx;1,

Fx, 2,

Fx;d-1,

I
UX;,j

Fx, 0,4-1
Fx,1,d-1

Fx,24-1

Fx,d-1,d-1
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Hodge numbers

T —
In order to compute hP4(Xy,,) we compute scalar product of vectors vy, ; and

Vg = (1, Xy gxve,.. W(XY)d—l)

for 1 < j <n. Then we multiply all values of vy, ; ovg for i € {1,2,...,n} and add
all products for j € {0,1,...,d — 1}.
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Example — X§.,,

Let Eg be an elliptic curve with the Weierstrass equation 4% = 23 + 1, and
automorphism ag(z,y) = ((3x, —y), where (s denotes a fixed 6-th root of unity
satisfying (2 = (3, then

A J 0 1 2 3 4 5
0 14+ XY X 0 0 0 Y
1 1 0 0 0 0 0
2 2 0 0 1 0 0
3 2 0 1 0 1 0
4 2 0 0 1 0 0
5 1 0 0 0 0 0

Table: Frg 1 ;(X,Y)
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Example — X ),
- ~~——
hPd <E€ /Ge, ) -

{ L+ XY) - {J(XY)0+ 1 VXY +2- {/(XY)2 +2- {(XY)3 +2- /(XY)t + 1. {/(xV) )+
(X )0 +0- VXY +0- {/(XY)2 +0- /(XY +0- {/(XV)i+0- {/(xX¥)5)"
(0 /(XY +0- VXY +0- {/(XY)2+1- {(XY)3+0- J(XY)i+0- °(XY)5)"
(0 /(XY +0- VXY +1- {/(XV)2+0- (XY )3 +1- (XY )i+ 6(XY)B)

+ o+ o+ o+

+
+
J’_
(0 (XYY +0- VXY +0- {/(XY)2+1- (XY +0- {/(XY)4+ (XY)5) +

+ (Y XY 0 VEY 40 {(XY)240- XYV +0- (XYY 0. (XY }XPY‘I
+

{X”+Y” 1+XY+F+2\/XY +2\/XY3+2\/XY4+€/(XY)>n

F2.(XY)% + ({‘/(XY)2 + \G/(XY)4>n }[Xqu].




Hodge numbers of X,

The Hodge number h?4(Xg,,) = {de,n(X, Y)} [XPY 9] of the manifold Xg,, is equal
to

(T =T (XY+4F+1)}[XPYQ] if d =2,
Xn4yn+ <1+ﬁ) }XPYq] if d = 3,

{X”+Y”+<1+XY+2\4/)W+3{‘/(XY)2+2§‘/(XY)3>n+(W) }[Xpyq] if d = 4,
(

{X" +Y" 4+ (14 XY + XY +28/(XY)2 + 28/(XY)3 + 2/(XY)* + \S/(XY)5)TL+

2. (XY)3 + ({‘/(XY)Q + f/(XY)‘l)n }[Xpw] ifd—6.

@ D. Burek, Higher-dimensional Calabi-Yau manifolds of Kummer type, Math. Nach. 4
(2020), 638-650.
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1
0 0
0 272 0
0 0 0 0
1 0 1132 0 1
0 0 0 0
0 272 0
0 0
1
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1
0 0
0 695 0
0 0 0 0
0 0 7645 0 0
1 0 0 0 0 1
0 0 7645 0 0
0 0 0 0
0 695 0
0 0
1
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Example - Y3,

@ S3 — K3 surfaces with a non-symplectic automorphism ~3: S5 — S3 of order 3,
e FE5 — elliptic curve with the Weierstrass equation y? = 23 + 1, and automorphism
ag is given by as(z,y) = ((3z,y),
r = dim H?(S3,C)”,
m = dim HQ(Sg, C)CS?
Fix (y3) = Fix (v3) = {f1, f, f3},
FiX(’){J,) =L1ULyU...UL,_UCU {Pl,PQ, .. .,Ph}, where
o the set {L1, Lo, ... Ly_1} U{C} consists of curves which are fixed by ~3 together

with the curve C' of maximal genus g(C), in fact L; are rational,
o {P,P,,...,P,} is the set of points which are fixed by 7s.

In this case n n n
" mq meo e m
age(¢)y X ¢l X ... X @) = y n

except the case of m; = 1 and an isolated fixed point when

mi+mo+...+m
age(dyg X dig X .- X o) = ! 2d “4+1
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Example - Y3,

J
i 0 1 2
0 (XY)2+r- XY +1 X2+ (m-1)-XY Y2+ (m-1)- XY
1 k+h-XY +g(C) (X +Y)+k- XY 0 0
2 k+h+gC) (X+Y)+k-XY 0 0

Table: Fg, j ;(X,Y) with correction

y J 0 1 2
0 1+ XY X Y
1 3 0 0
2 3 0 0

Table: FEg,k,j (X, Y)
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Example - Y3,

—_—
P (53 XE?'I/Zg_l) - {(((XY)2+T~XY+1) -yt
+(k:+h,-XY+g(C)-(X+Y)+k:~XY)-m+(k:+}z+g((])~(X+Y)+k-XY)-W)x

x ((1+XY)-W+3-W+3-W>H+

(0 ) 0 95T o0 ) <X.m+o.m+o.m>"ﬂ
(om0 0T 0 95T 0 ) (y.mw.mw.m)"q}mm:
:{((Xy)2+r-xy+1+(k+h-XY+g(C)-(X+Y>+k-XY).m+(k+h+g(c>-(X+Y)+

+hXY) (XY)2> : (1+XY+3W+3W)H+(X2+<m—1)-xy)-x"'*1+

+ (Y24 (m-1)-xv) -y } [XPY)
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1
0 0
0 hild 0
- S i
0 B2 0
0 0
1
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o€

1
0 0
0 pL1 0
0 h2! ht2 0 o hll =r 4 6h+ 21k + 20
22 _
1 B3l B2:2 pL3 1 o h*® =24 42k + 30h + 20r
o h*l =214(C)
0 B3:2 B2:3 0 o Al —m 1
0 R 0
0 0
1
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1
0 0
0 Bt 0
0 B2t Bl 0 o Wil =1 4 9h + 45k + 84
0 0 h2:2 0 0 o h?? =854 297k + 162h + 84r
1 pAU R 23 pid 1 e h?! =45¢4(C)
0 0 JEE 0 0 e h?? =252¢(C)
0 i3 p3a 0 o ¥l =m—1
0 pba 0
0 0
1
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Zeta functions

Let X; be a variety with automorphism ¢; ;: X; — X; of order d fori =1,2,...,n
Consider the following group

Gap = {(m1,me,...,my) € Zy: ml—i—mz—l—...—f—mn:O}:Zg_l

which acts on X7 x Xy x ... x X, by qb ¢ on the i-th factor. Suppose that there

exists a crepant resolution Xd’n of the quotient variety

X1 X XoX...x X,
Xd,n = 41 X X9 X X /ZZ—I'
et 2dim X;
Zx,k,j(X,Y) H det (1 — Froby t | H™ (FIX(¢1 d)<j>)( )

=0
forie{1,2,...,n}and k,j € {0,1,...,d — 1}.
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Zeta functions

Assume that Fix(¢f’d) is a divisor. Again using

mi+mo+...+m
age(¢)y X @) X ... X ¢ip) = .

we get the following
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Zeta functions

J 0 1 ' d—1
i j
0 ZX;:,0,0 Zx;0,1 ZX;0,j ZX,;,0,d-1
1 ZX;,1,0 Zx;1, Zx;,1,5 ZX;1,d-1
2 ZX;,20 Zx;2,1 . ZX;2,j e ZX;2,d-1
d—-1 ZX,;d—1,0 X, d—1,1 Zx,d—1,j ZX;d—1,d—1
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Zeta functions

J 0 1 ' d—1
i J
0 ZX;,00 Zx,0,1 ZX;,0,5 ZX,,0,d-1
1 ZX;,1,0 Zx;1, ZX;1,5 ZX;1,d-1
2 ZX;,20 Zx;2,1 . ZX;,2,j e ZX;2,d-1
d—-1 ZX,;d—1,0 X, d—1,1 Zx;d—1,5 ZX;d—1,d—1
Il
UXZJ
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Zeta functions

T N—
In order to compute Z9(X;,) we evaluate vector vy, j on

Vg = <T, YT, \J*T, ..., \ qd—1T>

and multiply all its terms. Then we take tensor product for all i € {1,2,...,n} and
take product over j € {0,1,...,d — 1}. Finally we take (—1)"*! power of the result.
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Let Sg be an elliptic K3 surface whose Weierstrass equation is
y? =23 4 ANz —1)%5
with the following (g-action:
a: (z,y,t) — (Gx,y, 2).

Let Eg be an elliptic curve Eg with the Weierstrass equation y? = 22 + 1 together with
a non-symplectic automorphism of order 6.
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J
i 0 1 2 3 4 5
0 1 1 T 1 1 1 1—a,T
(1-T)(1—qT) e
1 ; 1 1 1 1 1
1-T
1 1
2 1 1 _— 1 1
(1-T)2 1-T
1 1 1
1 — 1 — 1
3 (1—1T)2 1-T 1-T
4 ! 1 1 ! 1 1
(1-T)2 1-T
5 1 1 1 1 1 1
1-T

Table: Zg,, ;(T)
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e ° [

0 1 1 1 1 1 1
(1-T)(1—qT)9(1 - ¢27) 1-8,T 1—cqqT 1-B8,T

1 : 1 1 1 1 1
(1=T)3(1 = qT)'8

2 ! 1 1 1 1 1
(1-T)5(1—qD)®

1 —

3 AT =g 1 1-6,T 1 1-3,T 1

4 ! 1 1 1 1 1
(1 =T)5(1 = qT)f

5 ! 1 1 1 1 1
(=T~ ¢T)?

Table: Zg, ,;(T) with correction
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p (Sean/ >:K 1 . 1 . 1 . 1 ‘
! Ls 1-T)(1—-¢-T) (I-yq-T) A1-Yq®-T)> 1- Vg -T)?

1 _ 1 )®< 1 _ 1 _
(1-V¢-1)2 1-Ve-T) -T)(1-gq- T)“’(l—q2 T) (1-yq-T)° (1—f q-T)®

1
(U= V- 1P = V- q- )% (1- mel,qum 1- WTIO ~ Vg 1)

i) () e frs)or-)

Klff:r 17\/7T> <1—cquﬂ K )® o T}

X[(l_@_ﬂ@( 1 )}1(1—aq/3qT)(1—5T)(1—5T)( ~whT)

1-BT (1=T)(1 - qT)'%(1 - ¢*T)'%(1 - ¢°T)
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0 103 0

0 103 0
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/\2/ 1
7 Sﬁ X E6 —

‘ ( / 6) (1—T)(1—qT)** (1 - @ZET) (1— 028, T) (1 — ¢2T)"% (1 — 3T)* (1 — g2¢,T)? (1 — ¢*T)
) (1071050 () 1)

! 6] (1=1T) (1= D)™ (1= 1) (1 = ¢?¢,T) (1 = ¢, T) (1 = 1) (1= ¢*T)* (1 - ¢°T)
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5

1
0 0
0 340 0
0 0 0 0
1 0 1404 0 1
0 0 0 0
0 340 0
0 0
1
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1
0 0
0 868 0
0 0 0 0
0 0 9549 0 0
1 0 1 1 0 1
0 0 9549 0 0
0 0 0 0
0 868 0
0 0
1
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Zariski Calabi-Yau manifolds

Definition

An algebraic variety X of dimension n, over an algebraically closed field of
characteristic p is called a Zariski variety if there exists a purely inseparable dominant
rational map P* — X of degree p.

@ T. Katsura and M. Schutt, Zariski K3 surfaces, Rev. Mat. Iberoam. 43 (2019), 869-894.
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Zariski Calabi-Yau manifolds

Let Fs3; be the elliptic curve given by the equation yiz +y; = :z:?, forie{1,2,...,n}
with the (3 action 73: (z,y) — ({3z,y) and consider groups

Fy = <(’7’3,1,...,1,7’§), (1,73,1,...,1,79), ..., (1,...,1,73,r§)> ~ 70N~ G,

fori=1,2.

_ E371 X E372 X ... X E37n/F
1

is rational.

The quotient variety Z3,, :
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The monomial a2 - ... - zinyly22 . . ydn is invariant under Fy iff 3 | i, + i), for
1 <k <n, thus
2 .2 2 2
ClZsn) ~Cly1,y2, - - - Yn, T1X2 . . . T 1T), TITS . . . Ty Ty
T1L2 ... Ty _
Now let 2 := —-2"""""=1 3nd observe that C(Z3n) =C(y1,y2,---+Yn, 2), since
Tn

2 2 2 2 2 2/ 2
2132 Tp12y, = 2y +yn) and  xiT5...xh T = 27 (Yh + Yn)-

Moreover we have the following relation

W +y) W +v2) - (ot + yn—1) = 2°(Up + Yn)-
Taking a := In , we get the equation
Yn—1
W+ y) W5 +v2) - (Wi o+yn2)(yn1 +1) = 22a(ayn-1 + 1),

from which we can compute 3,1 and y, = ay,_1 as rational functions in y1, y2, ...,
Yn—2, %, . Hence the variety Z3 , is rational. O
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Zariski Calabi-Yau manifolds

Now, consider a prime number p =2 (mod 3) and the supersingular elliptic curve Es
over a field k, such that (3 € k and char k = p, defined by equation y? + y = 23, and
with the (3 action 73: (z,y) — ((32,y). The endomorphism ring of E3 may be

represented as
(1+ F)(2+73)

3 )

where F' is a Frobenius morphism of Ej3, with the relation F'r3 = 72 F (Katsura).

End(E3) =Z®ZLF ©Z1s & Z

@ T. Katsura, Generalized Kummer surfaces and their unirationality in characteristic p, J.
Fac. Sci. Univ. Tokyo Sect. IA Math., 34 (1987), 1-41.
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Zariski Calabi-Yau manifolds

The following diagram

By —

1><-~-><1><F[ O [1><--~><1><F

Fy

. . En En
leads to purely inseparable rational map ~3 /F1 — 3 /F2 of degree p. Therefore

/TL\,
The Calabi-Yau manifold £3 / F, = Xan is a Zariski manifold.
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Zariski Calabi-Yau manifolds

Taking a supersingular elliptic curve E; defined by the equation y? = 23 — = with order

4 automorphism 74(x,y) = (—z,iy) and supersingular elliptic curve Eg defined by the
equation 32 4+ y = 23, with order 6 automorphism 74(, %) = ({32, —y — 1) we have an
analogous theorem

The Calabi-Yau manifolds
/\/ /\/

n n
4 /szl = X4,n and E6 /ngl = X6,n

are Zariski manifolds.

In any odd characteristic p Z 1 (mod 12) there exists a unirational Calabi-Yau
manifold of arbitrary dimension.
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