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1. Introduction

The main goal of this note is to give an overview of several methods to compute certain
invariants of hypersurfaces in projective manifolds.

The case of Hodge numbers of a smooth hypersurface in a complex projective space was
studied in the classical paper of Griffiths ([26]). The first formulae for Hodge numbers
of resolutions of singular varieties of dimension three were given by Clemens (the case of
nodal double solids – see [6]) and Werner (nodal hypersurfaces in P4 studied in [48]). Those
seminal results admit various generalizations. We focus our interest on two kinds of problems
closely related to the above-mentioned facts. First, we want to study hypersurfaces in
(or double coverings of) more general projective manifolds. Unfortunately, in most cases
under consideration one needs some Bott–type vanishing assumptions in order to obtain
applicable formulae. The other natural question we want to consider, is the behaviour
of Hodge structure of a resolution if we allow certain higher singularities (i.e. other than
ordinary double points) on the studied varieties. Then we are interested in invariants of a
fixed resolution of singularities. Moreover, we consider only resolutions that are given by a
sequence of blow–ups with smooth centers.

The main tool we use in the paper are differential forms with logarithmic poles along a
divisor, i.e. differential forms ω such that ω and dω have at most simple poles. In the case
of a simple normal crossing divisor those forms are well behaved. They form a locally free
sheaf that appears in exact sequences given by the Poincare residue and the restriction map.
For the convenience of the reader we collect basic information on logarithmic differential
forms in Section 2. Section 3 is devoted to the study of behavior of differential forms under
a blow–up with a smooth center. The next section contains an overview of basic properties
of Hodge numbers.

The first case where behaviour of Hodge numbers of a resolution becomes very subtle
are threefolds. For three-dimensional varieties (resp. their resolutions) one has two Hodge
numbers that are difficult to study/compute. The numbers in question can be related using
the Euler characteristic. In Section 5. we discuss a method to study the difference between
the Euler characteristic of a smooth model and the degree of the Fulton–Johnson class, i.e.
the Milnor number.

Section 6 contains a discussion of infinitesimal deformations of double coverings of algebraic
manifolds. The original motivation was that for a Calabi–Yau threefold one of the Hodge
numbers (i.e. h1,2 of the manifold in question) equals the dimension of the Kuranishi space.
In Section 7 we discuss the defect formulae by Clemens and Werner, and study Hodge
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numbers of nodal hypersurfaces and nodal double coverings. Last two sections contain an
overview of the most general results on Hodge numbers of resolutions of hypersurfaces with
A-D-E singularities.

2. Logarithmic differential forms and logarithmic vector fields

Let Y be a reduced divisor on a smooth algebraic manifold X, and let Ωj
X(Y ) stand for

the sheaf of differential j–forms on X with at most simple poles along Y .

Definition 2.1. [14] A differential j–form with logarithmic poles along Y on an open subset
V ⊂ X is a meromorphic j–form ω on V regular on V \ Y and such that both ω and dω
have at most simple poles along Y .

Differential j–forms with logarithmic poles along Y form a sheaf denoted by Ωj
X(log Y ).

For any open subset V ⊂ X we have

Γ(V,Ωj
X(log Y )) = {ω ∈ Ωj

X(Y ) : dω ∈ Ωj+1
X (Y )}.

A normal crossing divisor Y in X, is a reduced divisor which is locally defined by an
equation of the form f = f1 · · · · · fp, where f1, . . . , fn are local coordinates for X, p ≤ n.

If Y is a normal crossing divisor then Ωj
X(log Y ) is a locally free sheaf. In this case a form

ω ∈ Ωj
X(log Y ) can be written locally in the following way

ω =
∑

1≤k1<···<kj≤n

fk1...kjδk1 ∧ · · · ∧ δkj ,

where δi =

{
dfi
fi
, if i ≤ j

dfi, if i > j
. In particular, we have

Ωj
X(log Y ) =

∧j
Ω1
X(log Y ).

If Y is a smooth divisor, then we have the following exact sequences ([21, Prop. 2.3])

(2.1)

0 −→ Ω1
X −→ Ω1

X(log Y ) −→ OY −→ 0,

0 −→ Ωj
X −→ Ωj

X(log Y ) −→ Ωj−1
Y −→ 0,

0 −→ Ωj
X(log Y )(−Y ) −→ Ωj

X −→ Ωj
Y −→ 0.

The map Ωj
X(log Y ) −→ Ωj−1

Y in the exact sequence (2.1) is the Poincare residue

Ωj
X(log Y ) 3 ω ∧ df

f
7→ ω|Y ∈ Ωj−1

Y ,

where f = 0 is a local equation of Y in X.
In particular, for dimX = 4, we get the following exact sequence (see [40, p. 444])

(2.2) 0 −→ Ω3
X −→ Ω3

X(log Y ) −→ Ω2
Y −→ 0 ,

and the following resolution of the sheaf Ω3
X(log Y ) (see [40, p. 445])

(2.3) 0 −→ Ω3
X(log Y ) −→ Ω3

X(Y ) −→ KX(2Y )/KX(Y ) −→ 0 .

A more detailed exposition of other properties of logarithmic forms can be found in [21].
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The dual sheaf to the sheaf of differential one–forms Ω1
X(log Y ) is the sheaf ΘX(log Y ) of

logarithmic vector fields along Y , that is defined by the following exact sequence (cf. [18,
(2.1)])

(2.4) 0 −→ ΘX(log Y ) −→ ΘX −→ NY |X −→ 0.

The sheaf ΘX(log Y ) is the kernel of the natural restriction map ΘX −→ NY |X . Conse-
quently, it is the subsheaf of the tangent bundle ΘX consisting of the vector fields that carry
the ideal sheaf of Y into itself.

3. Blow–up

In this section we study a fixed resolution of a singular variety by a sequence of blow–ups
with smooth centers. Let C ⊂ X be a smooth subvariety of codimension k = (n + 1 − d).
and let σ : X̃ −→ X the blow–up of X along C with the exceptional divisor E. We put
N := NC|Y (resp. N ∨) to denote the normal bundle of C in Y (resp. its dual). Moreover,
SlN stands for the l–th symmetric power of N .

Our strategy in most proofs in next sections will be to consider separately the impact of
each blow–up on the Hodge numbers of the studied varieties. In further sections we will
sketch certain proofs and omit some computations. Below we collect basic technical facts
that are necessary to work out the details (see [1, Thm. I.9.1] and [27, Exc. III.8.4])

Proposition 3.1. We have

σ∗OX̃ ∼= OX ,
Riσ∗OX̃ = 0 for i > 0,
OX̃(E)⊗OE ∼= OE(−1).
σ∗(OE(l)) ∼= SlN ∨, for l ≥ 0,
σ∗(OE(l)) = 0, for l < 0,
Riσ∗(OE(l)) = 0, for i 6= 0, k − 1,
Rk−1σ∗(OE(l)) = 0, for l > −k,
Rk−1σ∗(OE(l)) ∼= S−l−kN ⊗

∧kN , for l ≤ −k.
Moreover the following “relative Euler sequence”

0 −→ Ωp
E/C −→ σ∗(

p∧
N ∨)⊗OE(−p) −→ Ωp−1

E/C −→ 0

is exact.

Proposition 3.2. For a non–negative integer m we have

(1) σ∗OX̃(mE) ∼= OX ,

(2) Rk−1σ∗OX̃(mE) ∼=
m−k⊕
j=0

Sj(N )⊗
∧kN ,

(3) Riσ∗OX̃(mE) = 0, for i 6= 0, k − 1.

4. Hodge numbers

The Hodge number hp,q(Y ) (0 ≤ p, q ≤ dimY ) of a compact complex manifold is defined
as the dimension of the Dolbeault cohomology

hp,q(Y ) = dimCH
p,q(Y ), Hp,q(Y ) = Hq(Ωp

Y ).
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Hodge numbers are usually collected in the Hodge diamond

h0,0

h0,1 h1,0

h0,2 h1,1 h2,0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h0,n h1,n−1 . . . hn−1,1 hn,0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hn,n−2 hn−1,n−1 hn−2,n

hn,n−1 hn−1,n

hn,n

Moreover, Hodge numbers of a projective manifold Y satisfy the following symmetries

hp,q = hq,p, Hodge duality

hp,q = hn−p,n−q, Serre duality

Furthermore, by the Hodge decomposition one has the following equality

k∑
i=0

hi,k−i = bk,

where bk(Y ) := dimCH
k(Y,C) is the k–th Betti number.

If Y is a smooth ample divisor in a projective manifold X, then by Lefschetz’s hyperplane
section theorem we have isomorphisms

Hp,q(Y ) ∼= Hp,q(X), for p+ q ≤ dimY − 1.

Consequently, the Hodge diamond of an n–dimensional complete intersection Y in a projec-
tive space Pn looks as follows

1

0 0

0 1 0
. . . . . . . . . . . . . . . . . . . . . . . .

h0,n h1,n−1 . . . hn−1,1 hn,0

. . . . . . . . . . . . . . . . . . . . . . . .

0 1 0

0 0

1
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Moreover, the Euler characteristic of Y can be computed using the Gauss–Bonnet formula.
For a degree-d hypersurface in Pn+1 one obtains

e(Y ) =
n∑
k=0

(−1)kdk+1

(
n+ 2

n− k

)
, where d = dimY.

We can also compute the geometric genus

pg = hn,0(Y ) =

(
d− 1

n+ 1

)
.

As a consequence, we get the Hodge diamond of any (smooth) hypersurface of dimension
less or equal 3

dimY = 1 dimY = 2 dimY = 3

h00 = h11 = 1 h00 = h22 = 1 h00 = h11 = h22 = h33 = 1

h01 = h10 =
(
d−1
2

)
h01 = h10 = h03 = h30 = 0 h01 = h10 = h02 = h20 = h04 = h40 =

= h05 = h50 = 0

h02 = h20 =
(
d−1
3

)
h03 = h30 =

(
d−1
4

)
h11 = h11 = 2d3−6d2+7d

3
h12 = h21 = 11d4−50d3+85d2−70d+24

24

The Hodge decomposition of higher dimensional hypersurfaces in projective spaces was
given by Griffiths ([26]).

Theorem 4.1. If Y = {F = 0} is a smooth degree d hypersurface in Pn+1, then

Hp,n−p
0 (Y ) ∼= (C[X0, . . . , Xn+1]/JF )d(p+1)−(n+2),

where Hp,q
0 denotes the primitive cohomology, JF is the jacobian ideal of Y generated by

partial derivatives of F .

Recall, that the primitive cohomology Hp,q
0 is the kernel of the map

Hp,q(Y ) −→ Hp+1,q+1(Y )

defined by multiplication with a class of a hyperplane. Consequently, in the above theorem

hp,q(Y ) = hp,q0 (Y ) unless n is even and p = q = n
2

hp,p(Y ) = hp,p0 (Y ) + 1 if n = 2p.

5. Euler characteristic of a smooth model of a singular hypersurface

Let Y be a hypersurface of dimension n in a smooth algebraic manifold X. If Y is smooth
then the topological Euler characteristic of Y can be computed using the adjunction formula
as

e(Y ) = deg
c(ΘX) ∩ [Y ]

c(NY |X)
=

∫
X

n∑
k=0

(−1)kck(X)[Y ]n−k,

where [Y ] is its cohomology class.
5



We are interested in the case when Y is singular. In this situation the topological Euler
characteristic of the hypersurface in question is not determined by its cohomology class [Y ].
The number

ẽ(Y ) = deg
c(ΘX) ∩ [Y ]

c(NY |X)
=

∫
X

n∑
k=0

(−1)kck(X)[Y ]n−k

is the degree of the Fulton–Johnson class cFJ (see [23, Examp. 4.2.6] or [24]), while the
Euler characteristic e(Y ) is the degree of the Schwartz-MacPherson class cSM (see [31]). The
difference (up to a sign convention) of these classes is called the Milnor class (see [39]). In
the case of an isolated singularity, the degree of the Milnor class agrees with the classical
Milnor number studied in [35]. It equals the codimension of the Jacobian ideal. In the case
of higher dimensional singularities, it agrees with the generalization of the Milnor number
studied by Parusinski in [37] (see also [38, 39]).

In [9] we gave a method for computing the difference between the degree of the Fulton–
Johnson class ẽ(Y ) and the Euler characteristic e(Ỹ ) of a non–singular model Ỹ of Y (in the
paper [9] we work in a more general setup of a complete intersection). We shall consider a
non–singular model satisfying the following property: there is a sequence of blow-ups with
smooth centers σ : X̃ −→ X such that Ỹ ⊂ X̃ is the strict transform of Y .

If Y is a smooth manifold its Euler characteristic can be computed as an alternating sum
of holomorphic Euler characteristics of sheaves of differential forms

e(Y ) =
∑
i

(−1)iχ(Ωi
Y ).

From the exact sequence

0 −→ OX(−Y ) −→ OX −→ OY −→ 0

and the additivity of the holomorphic Euler characteristic we get

χ(OY ) = χ(OX)− χ(OX(−Y )).

Similarly, from the exact sequences (2.1) tensored with powers of OX(−Y ) we get

χ(Ω1
Y ) = χ(Ω1

X)− χ(Ω1
X(log Y )(−Y )),

χ(Ω1
X(log Y )(−Y )) = χ(Ω1

X(log Y )) + χ(OY (−Y )),

χ(OY (−Y )) = χ(OX(−Y ))− χ(OX(−2Y )),

and consequently

χ(Ω1
Y ) = χ(Ω1

X)− χ(Ω1
X(−Y ))− χ(OX(−Y )) + χ(OX(−2Y )).

More generally, for any locally free sheaf F on X and any p = 0, . . . , n we have

χ(Ωp
Y ⊗F) =

p∑
q=0

(−1)q
[
χ(Ωp−q

X (−qY )⊗F)− χ(Ωp−q
X (−(q + 1)Y )⊗F)

]
.

As the above formulae make sense for any divisor Y and (by the Riemann-Roch theorem)
depend only on the class of Y , they give the degree of the Fulton–Johnson class ẽ(Y ). Our
goal is to compute the difference (ẽ(Ỹ )− ẽ(Y )). In order to do this we have to study

χ(Ωp

X̃
(−(qỸ ))− χ(Ωp

X(−(qY ))),
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so it is enough to compute the numbers

Dp(L,m) := χ(Ωp

X̃
⊗ σ∗L−1 ⊗OX̃(mE))− χ(Ωp

X ⊗ L
−1)

for an effective line bundle L on X and non–negative integers m, p.
Exact formulae for Dp, p ≤ 2 are given in [9, Thm.5]. Applying those formulae we obtain

Theorem 5.1 ([9, Thm. 6]). Let Y be a surface in a smooth threefold X, σ : X̃ −→ X be a
blow–up of a smooth irreducible variety C ⊂ Y . Denote by Ỹ the strict transform of Y and
by m the multiplicity of Y at a generic point of C. Then

ẽ(Ỹ )− ẽ(Y ) =


−m3 + 2m2, if dimC = 0

(3m2 − 2m− 1)Y C + (−m3 + 1)c1(N )+ if dimC = 1

+(−m2 +m)c1(C).

Theorem 5.2 ([9, Thm. 7]). Let Y be a threefold in a smooth fourfold X, σ : X̃ −→ X be a
blow–up of a smooth irreducible variety C ⊂ Y . Denote by Ỹ the strict transform of Y and
by m the multiplicity of Y at a generic point of C. Then

ẽ(Ỹ )− ẽ(Y ) =



m4 − 3m3 + 2m2 + 2m, if dimC = 0

(−m3 + 2m2)c1(C) + (−m4 +m3+ if dimC = 1

+m2 −m)c1(N ) + (4m3 − 6m2 + 2)Y C,

(−m4 +m3 + 2m2) c2(N )+ if dimC = 2

+ (m2 −m) c2(C) + (6m2 − 3m− 1)Y 2C+

+ (−4m3 + 2m)Y c1(N ) + (−3m2 + 2m+ 1)Y c1(C)+

+ (m4 −m2) c21(N ) + (m3 −m) c1(C)c1(N ).

6. Deformations of double coverings

An infinitesimal deformation of X is a scheme X ′ flat over the ring of dual numbers
D = C[t]/[t2] and such that X ′ ⊗D C ∼= X. If the variety X is smooth, then the space
of infinitesimal deformations is isomorphic to the cohomology group H1ΘX of the tangent
bundle ΘX .

Let π : X −→ Y be a double cover of a smooth algebraic variety branched along a smooth
divisor D. The cover π is not determined by D itself, we have also to fix a line bundle L on
Y s.t. π∗OX ∼= OY ⊕L−1. This L satisfies L⊗2 ∼= OY (D). Since the map π is finite, we have
H i(ΘX) ∼= H i(π∗ΘX). From [21, Lem. 3.16] we get π∗ΘX

∼= ΘY ⊗ L−1 ⊕ΘY (logD) and so

H1ΘX
∼= H1(ΘY (logD))⊕H1(ΘY ⊗ L−1).

Consequently, we obtain the following proposition describing the deformations of a double
covering with smooth branched divisor

Proposition 6.1 ([13, Prop. 2.2]).

(a) H1(ΘY (logD)) ∼= CoKer(H0ΘY −→ H0ND|Y )⊕Ker(H1ΘY −→ H1ND|Y ),
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(b) H1(ΘY (logD)) is isomorphic to the space T 1
X→Y of infinitesimal deformations of X

which are double covers of deformations of Y ,

(c) CoKer(H0ΘY −→ H0ND|Y ) is isomorphic to the space T 1
X/Y of infinitesimal defor-

mations of X which are double covers of Y .

Corollary 6.2 ([13, Cor. 2.3]).

(a) Every deformation of X is a double cover of a deformation of Y iff H1(ΘY⊗L−1) = 0.
(b) Every deformation of X is a double cover of Y iff H1(ΘY ⊗ L−1) = 0 and the map

H1ΘY −→ H1ND|Y is injective (e.g. Y is rigid).

The situation becomes more complicated when we allow singularities of the branch divisor
D. Then the double cover X is singular. We shall consider a resolution of singularities of X
obtained by a special embedded resolution of D.

For any birational morphism σ : Ỹ −→ Y we have σ∗D = D̃ +
∑

j njEj (where D̃ is the

strict transform of D, Ej are the σ–exceptional divisors and nj ≥ 0). Therefore, the divisor

D∗ = D̃ +
∑
26 |nj

Ej = σ∗D − 2
∑
j

⌊nj
2

⌋
Ej

is reduced and even. In fact, it is the only reduced and even divisor satisfying

D̃ ≤ D∗ ≤ σ∗D.

Let X̃
π̃−−−→ Ỹ be the double cover branched along D∗ defined by σ∗L⊗OY (−

∑
jb
nj

2
cEj).

We can find a birational morphism X̃
ρ−−−→ X that fits into the following commutative

diagram

X̃
ρ−−−→ X

π̃

y yπ
Ỹ

σ−−−→ Y
It follows from the Hironaka desingularization theorem that we can find a sequence of

blow–ups with smooth centers σ : Ỹ −→ Y such that D∗ is a smooth divisor. Obviously,
such a sequence gives a resolution of singularities of the double cover.

Assume that σ : Ỹ −→ Y is a sequence σ = σn−1 ◦ · · · ◦ σ0 of blow–ups σi : Yi+1 −→ Yi of
smooth subvarieties Ci ⊂ Yi such that D∗ is smooth, Y0 = Y , Yn = Ỹ . Let mi be the integer
such that D∗i+1 = σ∗iD

∗
i −miEi, where Ei ⊂ Yi+1 is the exceptional divisor of σi.

Theorem 6.3 ([13, Thm. 4.1]). H1(ΘỸ (logD∗)) is isomorphic to the space of simultaneous
deformations of D ⊂ Y which have simultaneous resolution i.e. which can be lifted to defor-
mations of Ci ⊂ D∗i ⊂ Yi in such a way that the multiplicity of the deformation of D∗i along
the deformation of Ci is at least mi.

Definition 6.4. We call an infinitesimal deformation of D in Y equisingular if it satisfies
the assertion of the above theorem.

Theorem 6.3 is particularly useful when we have an explicit description of infinitesimal
deformations of Y , for instance when Y is rigid.

Corollary 6.5 ([13, Cor. 4.3]). If the variety Y is rigid, then the space of equisingular de-
formations of D in Y is isomorphic to H1(ΘỸ (logD∗)).
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We can compute H1(ΘỸ (logD∗)) explicitely in local coordinates. Let I(Ci) stand for

the ideal sheaf of Ci in Yi, and let Ĩmi
i be (for a nonnegative integer mi) the push–forward

(σi−1 ◦ · · · ◦ σ0)∗(I(Ci)
mi) of the mi–th power of I(Ci) to Y . Denote by Ji the image of

the homomorphism ΘYi ⊗ OD∗
i
−→ ND∗

i |Yi , and by J̃i its pushforward (σi−1 ◦ · · · ◦ σ0)∗(Ji)
to Y . Let J stand for the image of the map H0(ΘY ) −→ H0ND|Y induced by the exact
sequence (2.4).

Theorem 6.6 ([13, Thm. 4.6]). Under the above assumptions we have

H1(ΘỸ (logD∗)) ∼=
n−1⋂
i=0

(
H0

((
Ĩmi
i ⊗ND|Y

)
+ J̃i

))/
J.

In the most interesting case Y = PN this formula can be written in a form more suitable
for computations with a computer algebra system. Indeed, define the equisingular ideal of
D in PN (w.r.t. σ) as

Ieq(D) =
n−1⋂
i=0

(
I(C̃i)

(mi) + Ji
F

)
,

where C̃i is the image of Ci in Pn, and J iF is the homogeneous ideal associated to Ji.

Theorem 6.7 ([13, Thm. 4.7]). The space of equisingular deformations of D is isomorphic
to the space of degree–d forms in the quotient of the equisingular ideal modulo the Jacobian
ideal

H1(ΘỸ (logD∗)) ∼= (Ieq(D)/JF )d .

The remaining part of the deformations space H1(ΘY ⊗L−1) coming from the deformations
that fail to be a double cover is much more difficult to understand. However, in many
situations it is easy to compute its dimension. There is a special case where the formula is
particularly simple.

Proposition 6.8 ([13, Prop. 5.1]). If KY = L−1 and σ : Ỹ −→ Y is a sequence of blow–ups
satisfying the condition 1

2
D∗ +KỸ = σ∗(1

2
D +KY ), then we have the equality

h1(ΘỸ ⊗ L̃
−1) = h1(ΘY ⊗ L−1) +

∑
codimCi=2

h0(KCi
).

If dimY = 3, then the above assumptions correspond to a construction of a Calabi–Yau
threefold. In this case the second summand coincides with the sum of genera of the blown–up
(double and triple) curves.

If we specialize further to the case Y = P3 and D =
∑8

i=1Di, where D1, . . ., D8 are eigth
planes satisfying the following conditions

• no six intersect,
• no four contain a common line,

the above construction gives a Calabi–Yau threefold called a double octic ([10, 34]). For a
generic choice of the eight planes the singularities of the octic surface are given by 28 double
lines with threefold intersections at 56 triple points. In order to obtain a Calabi–Yau smooth
model it suffices to blow–up only the double lines, the triple points do not require any special
treatment. At each triple point exactly one of the intersecting planes is blown–up (the one
that does not contain the double line through that point that was blown–up first).
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Consequently the resulting Calabi–Yau threefold is a double covering of the projective
space P3 blown–up 28 times at a line branched along a disjoint sum of 8 planes blown–up
56 times at a point and so its Euler characteristic equals

2(4 + 28× 2)− (8× 3 + 56) = 40.

For special arrangements we have to take into account the number and types of singularities
of D ([10, Thm. 2.1]). In this special case the equisingular ideals becomes

Ieq =
⋂
C

(
ImultCDC + JF

)
,

the intersection being taken over all multiple curves and points of the arrangement D, and

JF :=

(
∂F

∂z0
, . . . ,

∂F

∂z3

)
is the Jacobian ideal of D.

7. Clemens’ and Werner’s defect formulae

The first examples of singular hypersurfaces are the ones that have ordinary double points
(nodes) as the only singularities. We shall call such hypersurfaces nodal. A three-dimensional
node admits two kinds of resolutions: the big one (blow–up of the singular point) and small
resolutions (blow–ups along analytic smooth surfaces through the node in question). A small
resolution replaces a singular point with a smooth rational curve. However, as we blow–up
along a local analytic submanifold, the resulting manifold may fail to be projective (the
delicate problem of an existence of a projective small resolution of a nodal variety is treated
in details in Chapter III of Werner’s thesis [48]). There are two different small resolutions
of a node; each of which corresponds to a ruling of the projectivised tangent cone. A big
resolution may be obtained from a small resolution by blowing–up the exceptional rational
curve. In particular, the Hodge numbers of a small resolution are uniquely determined.

A double covering of a smooth algebraic variety branched along a nodal hypersurface is
also nodal. In the seminal paper [6] Betti numbers of so-called double solids; i.e. double
coverings X of P3 branched along a nodal surface D of an even degree d, are studied. Clemens
proves that certain Betti numbers of a double solid depend not only on the number of nodes
but on their position as well. The latter is encoded in the so–called defect. Clemens defines
the defect of a nodal double solid as the difference between the second and the fourth Betti
number of the singular threefold. Let S := sing(D) be the set of nodes. Moreover, let us
put V to denote the vector space of degree–(3

2
d − 4) homogeneous polynomials on P3, and

by VS the subspace of V that consists of polynomials vanishing at S. Then (see [6]) one has
the equality

δ = dimVS − (dimV − µ), where µ = #S,

i.e. the defect equals the number of dependent conditions that vanishing on S imposes on
the homogeneous polynomials of degree (3

2
d− 4).
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The following formula for the Hodge numbers of the big resolution X̃ of the nodal double
solid X is given in [6]:

h1,1(X̃) = 1 + µ+ δ,

h1,2(X̃) =

(
3d/2− 1

3

)
− 4

(
d/2

3

)
− µ+ δ.

Clemens uses topological arguments in his proof. Using basic properties of logarithmic
differential forms we can give a simple algebraic proof of the following direct generalization

Theorem 7.1. Let Y be a smooth projective three–dimensional variety, and let D ⊂ Y be an
ample nodal hypersurface. Moreover, assume that D is even, i.e. there exists a line bundle
L on Y such that D = L⊗2 in Pic(Y ), and the following equality holds

H2(Ω1
Y ⊗ L−1) = 0.

If X is the double covering of Y branched along D and defined by L, and σ : X̃ −→ X is
the big resolution, then one has the following formula

h1,1(X̃) = h1,1(Y ) + µ+ δ,

where
δ = h0(L⊗3 ⊗KY ⊗ IS)− (h0(L⊗3 ⊗KY )− µ),

and IS stands for the ideal of S.

Proof. Let π : X̃ −→ Ỹ be the double covering of Ỹ branched along the strict transform D̃
of D. By [21, Lem. 3.16(d)] we have

π∗Ω
1
X̃

= Ω1
Ỹ
⊕ Ω1

Ỹ
(log D̃)⊗ L̃−1,

where L̃ = σ∗L ⊗ OX̃(−E), E is the sum of exceptional divisors of σ. Since the map π is
finite it suffices to prove

h1(Ω1
Ỹ

(log D̃)⊗ L̃−1) = δ.

By the first exact sequence of (2.1) we have

0 −→ Ω1
Ỹ
⊗ L̃−1 −→ Ω1

Ỹ
(log D̃)⊗ L̃−1 −→ OD̃ ⊗ L̃

−1 −→ 0.

Using Proposition 3.1 we show that σ∗(Ω
1
Ỹ
⊗ L̃−1) = Ω1

Y ⊗ L−1 and Riσ∗(Ω
1
Ỹ
⊗ L̃−1) = 0

for i ≥ 1. By the (degenerate case of) Leray spectral sequence and Nakano vanishing
H i(Ω1

Ỹ
⊗ L̃−1) = H i(Ω1

Y ⊗ L−1) = 0, for i = 1, 2 and so it remains to show the equality

(7.1) δ = h1(OD̃ ⊗ L̃
−1).

Since L̃−1 = σ∗L−1 ⊗OX̃(E) from Proposition 3.1 and projection formula we get

σ∗L̃−1 = L−1 and Riσ∗L̃−1 = 0, for i > 0.

So by the Leray spectral sequenceH i(L̃−1) = H i(L−1) = 0 for i = 1, 2. Using the cohomology
exact sequence associated to

0 −→ L̃−3 −→ L̃−1 −→ OD̃ ⊗ L̃
−1 −→ 0

we get

H1(OD̃ ⊗ L̃
−1) ∼= H2(L̃−3).
11



Again, using Proposition 3.1 and projection formula we get

σ∗L̃−3 = L−3, R1σ∗L̃−3 = 0, R2σ∗L̃−3 = L−3 ⊗OS (a sky–scraper sheaf).

Now, the Leray spectral sequence implies

h2L̃−3 = µ− (h3(L−3)− h3(L̃3)).

By Serre duality

h3(L−3) = h0(L⊗3 ⊗KY )

while

h3(L̃−3) = h0(L̃⊗3 ⊗KỸ ) = h0(σ∗(L⊗3 ⊗KY )⊗OỸ (−E)) = h0(L⊗3 ⊗KY ⊗ IS)

and the theorem follows. �

Nodal hypersurfaces were studied by J. Werner in his PhD thesis ([48]). Using some
topological arguments he was able to deduce an analogue of Clemens’ defect formula for
nodal hypersurfaces in the projective space P4(C) (see Example 8.1). Using a similar line of
arguments as in the proof of Thm 7.1 one can obtain the following generalization of Werner’s
result.

We have the following formulae for the Hodge numbers of the big resolution of a nodal
threefold hypersurface.

Theorem 7.2 ([13, Thm. 2]). Let Y be a nodal hypersurface in a smooth projective four-
dimensional manifold satisfying the conditions

A1: the line bundle M := OX(Y ) is ample,
A2: H2Ω1

X = 0,
A3: H3(Ω1

X ⊗M−1) = 0.

Then

h1Ω1
Ŷ

= h1Ω1
X + δ

h2Ω1
Ŷ

= h0(OX(2Y +KX)) + h3OX − h0(L0 ⊗KX)−
− h3Ω1

X − h4(Ω1
X ⊗ L−10 )− µ+ δ

where µ is the number of nodes and δ is a non–negative integer called defect equal to the
number of dependent equations that vanishing at nodes of S imposes on the global sections
of the line bundle (M⊗2 ⊗KX) on X.

One can show, that if Ỹ (resp. Ŷ ) is the big (resp. a small resolution) of a nodal threefold
Y with µ nodes, then their Hodge numbers are related by the equalities

h1,1(Ỹ ) = h1,1(Ŷ ) + µ ,

h1,2(Ỹ ) = h1,2(Ŷ ) .

In [48] Werner gave also a sufficient and necessary condition for projectivity of a given small
resolution. A necessary condition for a nodal threefold hypersurfaces to admit a projective
small resolution is the existence of a Weil but not Q–Cartier divisor. Recall that a variety
X is called Q–factorial if every Weil divisor on X is Q–Cartier. An easy observation is that
a nodal hypersurface in the projective space P4 (or a nodal double covering of the projective
space P3) is Q–factorial iff its defect is zero.

12



The simplest example of a nodal hypersurface of degree d in P4 is given by a degree–d
polynomial of the form

pkqd−k + rlsd−l,

where pk, qd−k, rl, sd−l are generic homogeneous polynomials of degrees k, d − k, l, d − l re-
spectively (1 ≤ k, l ≤ d − 1). One easily verifies that F = 0 is degree-d nodal variety with
exactly k(d − k)l(d − l) nodes given by pk = qd−k = rl = sd−l = 0. As the Hilbert function
of the singular locus of X equals

(1− tk)(1− tl)(1− td−k)(1− td−l)
(1− t)5

,

a simple computation shows that the defect of Y is always one.
The above construction is a special case of the following

Theorem 7.3 ([29, Thm. 2.1]). Let D ⊂ PN be a smooth surface that is a scheme–theoretic
base locus of a linear system of hypersurfaces of degree d. Then the generic complete inter-
section Y of N − 3 hypersurfaces of degree d containing D is a nodal threefold.

The above examples cover the case of complete intersection surfaces in P4. In the case
when D is a plane, we obtain a degree–d non–factorial hypersurface with (d − 1)2 nodes.
Cheltsov ([5]) proved that the above number of nodes is minimal possible: every degree–d
nodal hypersurface in P4 with at most (d− 1)2 − 1 singular points is factorial.

For a general case we can use the last formula from Thm. 5.2 to compute the number of
nodes and obtain

µ = c2(N ) + Y 2D − Y c1(N ).

If we consider degree–d surfaces, where d ≤ 6, that are considered in [36], we get ten non
Q—factorial quintics with the following number of nodes

deg(D) KDH µ

P2 1 −3 16
P1 ×X1 2 −4 24
d1,3 3 −3 24
F1 3 −5 34
D2,2 4 −4 36
Veronese 4 −6 46
PC(E) 5 −5 50
Castelnuovo 5 −3 40
D2,3 6 0 36
Bordiga 6 −2 46

For a more detailed account of the above construction see [12].
The question which number of nodes can be realized on a hypersuface of degree d is

open. Even the maximal number µn(d) of nodes on a degree–d hypersurface in Pn remains
unknown. The best known upper bound is Varchenko’s spectral bound

µn(d) ≤ Arn(D),
13



where Arn(D) is the Arnold number

Arn(D) := #{(k0, . . . , kn) : ki ∈ {1, . . . , d− 1},
n∑
i=0

ki = bnd
2
c+ 1}.

This bound is sharp in the case of a cubic. For surfaces in P3 the exact values are known
for d ≤ 6

µ3(3) = 4, µ3(4) = 16, µ3(5) = 31, µ3(6) = 65.

The upper bound for the octic surface is µ3(8) ≤ 174, whereas the best known example has
168 nodes and was constructed by Endrass ([20]). In higher dimensions much less is known.
For a quintic hypersurface in P4 there is the upper bound µ4(5) ≤ 135, and the best known
example is due to van Straten ([47]). It is a quintic with 130 nodes.

The pairs of integers µ, δ that can be realized as a number of nodes and the defect of
a nodal quintic threefold or a nodal double octic were studied by Borcea ([3]). He uses
deformation arguments to prove the following result.

Theorem 7.4 ([3]). Let X be a nodal quintic threefold (resp. a double solid ramified along a
nodal octic surface) with ν nodes and defect δ. Then for all but δ integers d ∈ {0, 1, . . . , µ},
there exists a nodal quintic (resp. nodal double octic) with d nodes.

The defect of the Endrass double octic is 19, so all integers smaller than 169 with at most
19 exceptions are realized as the number of nodes of an octic surface. In his thesis Werner
computed defect for some examples getting the pairs (108, 0), (123, 3), (136, 7) and (144, 9),
so all integers up–to 108 can be realized, there are at most three gaps up–to 123 etc.

The defect of van Straten’s example is 29 so there are at most 29 gaps in the region below
130. There exist examples with µ = 50, δ = 1 (degeneracy locus of a generic (5× 5) matrix
of linear forms in x0, . . . , x4) and µ = 100, δ = 3 (dependency locus of two generic sections
in the Horrocks–Mumford bundle). Consequently there is at most one gap up–to 50 and at
most 3 gaps up–to 100.

8. The case of A-D-E singularities

In this section we deal with hypersurfaces with certain higher singularities. Let Y be a
hypersurface in a smooth four-dimensional projective variety X. Moreover, we assume that
sing(Y ) consists of A-D-E points. In general, A-D-E points can be defined in various ways
(see [19]). The following definitions/characterizations of this class are of use for us:

According to [19, Char. C 9], a point P ∈ sing(Y ) is A-D-E iff we can choose (analytic)
coordinates x1,P , . . . , x4,P centered at P such that the germ of Y at P is given by the
semiquasihomogenous equation

(8.1) n(x1,P , x2,P , x3,P ) + x24,P + F (x1,P , x2,P , x3,P , x4,P ) = 0 ,

where n(x1,P , x2,P , x3,P ) is the normal form of the equation of a two-dimensional A-D-E
singularity and F (x1,P , x2,P , x3,P , x4,P ) is a polynomial of order strictly greater than 1 with
respect to the weights wn(x1,P ), wn(x2,P ), wn(x3,P ), wn(x4,P ) given in the table below:

14



(8.2)

n(x1, x2, x3) (wn(x1), . . . ,wn(x4))

Am, m ≥ 1 xm+1
1 + x22 + x23 ( 1

m+1
, 1
2
, 1
2
, 1
2
)

Dm, m ≥ 4 x1 · (x22 + xm−21 ) + x23 ( 1
m−1 ,

m−2
2(m−1) ,

1
2
, 1
2
)

E6 x41 + x32 + x23 (1
4
, 1
3
, 1
2
, 1
2
)

E7 x31 · x2 + x32 + x23 (2
9
, 1
3
, 1
2
, 1
2
)

E8 x51 + x32 + x23 (1
5
, 1
3
, 1
2
, 1
2
)

In particular the singularities of Y are absolutely isolated, i.e. we have the big resolution
σ : Ỹ → Y of the threefold Y ([19, p.137]) obtained as the composition

(8.3) σ = σn ◦ . . . ◦ σ1 : Ỹ → Y =: Ỹ 0 ,

where Ỹ := Ỹ n is smooth and σj : Ỹ j → Ỹ j−1, for j = 1, . . . , n, is the blow-up with the center

sing(Ỹ j−1) 6= ∅, that consists of isolated points. By direct computation, the singularities of
Ỹ j are double points for each j ≤ n − 1. The number of singular points (different from P )
which are infinitely near P is as follows

(8.4)
Am, m ≥ 1 Dm, m ≥ 4 E6 E7 E8

dm/2e − 1 2 · bm/2c − 1 3 6 7

By [46, Thm 1] the above property of the big resolution characterizes A-D-E singularities:
if P ∈ Y is an absolutely isolated double point (i.e. P is an isolated double point and all
singularities infinitely near P are isolated double points), then it is an A-D-E singularity.

Let X̃0 := X and let X̃j stand for the fourfold obtained from X̃j−1 by blowing it up along
sing(Ỹ j−1), j = 1, . . . , n. We put X̃ := X̃n. The composition of the blow-ups in question is
denoted by σ : X̃ → X. Moreover, let

∑
l klEl := KX̃/X and let π∗Y = Ỹ +

∑
lmlEl, where

El are (reduced) components of the exceptional locus of σ. In order to generalize the notion
of defect one defines the following sheaf ([11, Def.2.1])

(8.5) IY := σ∗(OX̃((kl − 2ml)El))

Then the defect of the hypersurface Y is defined as the integer

(8.6) δY = h0(KX(2Y )⊗ IY )− (h0(KX(2Y ))− µY ),

where µY stands for the number of singularities and infinitely near singularities of Y . The
motivation for the choice of the sheaf IY in the above definition becomes clear, if one applies
the projection formula to the map σ and the sheaf

KX̃ + 2Ỹ ∼ σ∗(KX + 2Y ) +
∑

(kl − 2ml)El ,

to obtain the equality h0(KX̃(2Ỹ )) = h0(KX(2Y )⊗ IY ).
One can follow a more direct approach (see [43, § 3]) and consider the space VY of sections

H ∈ H0(KX(2Y )⊗ Ising(Y )) such that
15



• if P ∈ Y is an Am point, with m ≥ 1 then ∂jH

∂xj1,P
(P ) = 0 for j ≤ dm/2e − 1 ,

• for every Dm singularity of P ∈ Y , where m ≥ 4, one has

∂H

∂x2,P
(P ) =

∂jH

∂xj1,P
(P ) = 0 for j ≤ bm/2c − 1 ,

• if P is an Em point, where m = 6, 7, 8, then ∂H
∂x2,P

(P ) = ∂jH

∂xj1,P
(P ) = 0 for j ≤ m− 5 ,

where x1,P , . . . , x4,P are analytic local coordinates centered at the point P such that the hy-
persurface Y is given near P by the semiquasihomogenous equation (8.1). By [43, Lemma 3.3]
(see also [ibid., (4.2)]), the defect of Y can be expressed as

δY = dim(VY )− h0(KX(2Y )) + µY .

In particular (for A-D-E singularities) we have kl ≤ 2ml and the sheaf IY is indeed a sheaf
of ideals.

Using the properties of logarithmic differential forms (see Sect. 2 and Sect. 3) one obtains
the following formulae for Hodge numbers:

Theorem 8.1. [11, Thm 2.2] Let X be a smooth projective fourfold, and let Y ⊂ X be a
hypersurface with A-D-E singularities. If

h2(Ω1
X) = h3(Ω1

X(−Y )) = h3(OX(−Y )) = h2(OX(−Y )) = 0 ,

then

h1,1(Ỹ ) = h1,1(X) + (χ(Ω1
X(−Y ))− h4(Ω1

X(−Y )))− (χ(OX(−2Y ))− h4(OX(−2Y ))) +

−2h1(OX(−Y )) + µY + δY ,

h1,2(Ỹ ) = h4,1(X) + h0,2(X) + h0(KX(2Y ))− h3,1(X)− h4(Ω1
X(−Y ))− h0(KX(Y )) +

−µY + δY ,

where δY (resp. µY ) is the defect (resp. the number of singularities and infinitely near
singularities) of Y .

Let us comment on the proof of the above result. The reasoning consists of three steps:
(Step 1:) the Serre duality is applied to study Ω3

X (and its twists) instead of Ω1
X (resp. its

twists),
(Step 2:) one uses the Leray spectral sequence to compare the cohomologies of various
twisted sheaves of differentials on X and on the blow-up X̃,
(Step 3:) the Hodge numbers of the big resolution Ỹ are computed via Poincare residue on
the blow-up X̃.

The assumption on singularities of Y implies vanishing of certain higher direct image
sheaves, which in particular yields the equality

h1(Ω3
X̃

(Ỹ )) = h1(Ω3
X(Y )).

Once one knows that h1(Ω3
X̃

(Ỹ )), h2(Ω3
X̃

) vanish, one can see that the exact sequence of
cohomology associated to the Poincare residue (resp. to the resolution of the sheaf of log-
arithmic differentials – see (2.1)) breaks into shorter exact sequences. The advantage of
replacing one–forms with three–forms becomes apparent when we recall the resolution (2.3)
of the sheaf of logarithmic three–forms. Details of the proof can be found in [11]. It should be
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pointed out, however, that the above formulae cease to hold once we weaken the assumptions
(see [11, Example 3.6]).

In order to see how Thm 8.1 works, let us consider the following example

Example 8.1. Let Y ⊂ P4 be a degree-d hypersurface with A-D-E singularities, where d ≥ 3.
Recall that VY was defined (see the paragraph preceeding 8.1) as the space of degree-(2d−5)
polynomials that vanish along sing(Y ) and such that some of their partial derivatives vanish
in every Am (resp. Dm, Em) point of Y . Thm 8.1 implies the equalities

h1,1(Ỹ ) = 1 + 2 · µY + dim(VY )−
(

2d− 1

4

)
,

h1,2(Ỹ ) = dim(VY )− 5 ·
(
d

4

)
.

In particular, for a nodal hypersurface we regain Werner’s formula [48, Satz on p. 27].

In general, big (divisorial) resolutions perturb the canonical class: if one starts from a
(singular) hypersurface with trivial canonical class (e.g. Calabi-Yau threefold), one obtains
a smooth threefold without that property. That is why small resolutions are of interest. As
we already mentioned in Sect. 7 small resolutions exist for three–dimensional nodal hyper-
surfaces. One can show that analogous resolutions can be also constructed for certain higher
three-dimensional singularities. If we suppose that there exists a proper holomorphic map
σ̂ : Ŷ → Y such that Ŷ is smooth , σ̂|Ŷ \σ̂−1(sing(Y )) is an isomorphism onto the image and
the exceptional set

Ê := σ̂−1(sing(Y ))

is a curve, then σ̂ (and sometimes Ŷ ) is called a small resolution of Y . By [22, Thm 1.3]
(see also [45]) it suffices to assume that Y has Gorenstein singularities to show that the

exceptional set Ê consists of smooth rational curves meeting transversally. Let us put Ẽ to
denote the exceptional divisor of the big resolution. Then, the following simple lemma can
be applied to use Thm 8.1 to compute Hodge numbers of small resolutions

Proposition 8.2. [43, Prop. 6.1] If h1(OY ) = 0, h3(Ẽ,C) = 0 and Ŷ is Kähler, then

h2,2(Ỹ ) = h2,2(Ŷ ) + h4(Ẽ,C) .

9. Further generalizations

A large class of ambient varieties X where the result from the previous section can be
applied consists of toric varieties. Indeed one has Bott-type formulae (see e.g. [32]) for
cohomology of various twisted sheaves of differentials, even if the considered ambient space
is singular. Having that in mind we assume now that X is a four-dimensional normal complex
variety, so the canonical (Weil) divisor KX is well-defined (up to the linear equivalence). We
have one-to-one correspondence between the linear equivalence classes of Weil divisors and
isomorphism classes of rank-1 reflexive sheaves on X:

D → OX(D).

We put Ω
3

X := j∗Ω
3
reg(X), where j : reg(X)→ X stands for the inclusion, to denote the Zariski

sheaf of germs of 3-forms. In order to obtain a direct generalization of Thm 8.1 one has to
17



assume that Y ⊂ X is a a hypersurface with A-D-E singularities such that

(9.1) sing(X) ∩ Y = ∅ .
In particular, the above assumptions assure that the defect δY of Y is well-defined. One has
the following theorem:

Theorem 9.1. [11, Thm 3.2] Let Y ⊂ X satisfy the assumptions of this section. If

h1(OX(Y +KX)) = h2(Ω
3

X) = h1(Ω
3

X(Y ) = 0 and h2(OX(−Y )) = h3(OX(−Y )) = 0 ,

then the following equalities hold

h1,1(Ỹ ) =h3(Ω
3

X) + (χ(Ω
3

X(Y ))− h0(Ω3

X(Y ))) + (χ(OX(Y +KX))− h0(OX(Y +KX))) +

+h1(OX)− h4(Ω3

X)− (χ(OX(2Y +KX))− h0(OX(2Y +KX)))− h1(OX(−Y ))

+µY + δY ,

h1,2(Ỹ ) =h0(Ω
3

X) + h2(OX) + h0(OX(2Y +KX))− h1(Ω3

X)− h0(OX(Y +KX)) +

−h0(Ω3

X(Y ))− µY + δY .

Here, we no longer assume X to be Cohen-Macaulay, so we cannot apply the Serre duality.
The proof consists of steps 2, 3 of the proof of Thm 8.1. Indeed, the assumption (9.1) enables
us to work with logarithmic 3-forms as in the smooth case.
Again, as in the previous section the first three vanishings are essential. The others are
needed to control the Hodge numbers h1,0(Ỹ ), h2,0(Ỹ ).

In particular, in toric case, many summands in Thm 9.1 vanish and one arrives at the
following result

Corollary 9.2. [11, Cor 3.4] Let X be a complete toric fourfold, and let Y ⊂ X be a
hypersurface with A-D-E singularities such that sing(X) ∩ Y = ∅. If OX(Y ) is ample, then

h1,1(Ỹ ) = h3(Ω
3

X) + µY + δY ,

h1,2(Ỹ ) = h0(OX(2Y +KX))− h0(OX(Y +KX))− h0(Ω3

X(Y ))− µY + δY .

It is an interesting exercise to see what generalizations of the classical Clemens formula
for double solids one can derive from Cor 9.2. Such generalizations can be found in [43, § 5].

In view of recent progress concerning study of behaviour of reflexive differential forms on
singular varieties (see e.g. [25]), one should ask what is natural set-up for generalization of
Thm 9.1. In particular, it seems natural to ask to what extent the assumption (9.1) can
be weakened. In general, a residue map does not have to exist (see [25, § 11.B]). However,
[ibid., Thm 11.7] suggests that a generalization (possibly with extra correction summands)
can be obtained provided (X, Y ) is a dlt pair.
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[39] A. Parusiński, P. Pragacz, Characteristic classes of hypersurfaces and characteristic cycles, J. Alg.
Geom. 10 (2001), 63–79.

[40] C. Peters, J. Steenbrink, Infinitesimal variations of Hodge structure and the generic Torelli problem for
projective hypersurfaces. Classification of algebraic and analytic manifolds (Katata, 1982), Progr. Math.
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