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Abstract. In this note, we give Gysin formulas for partial flag bundles for the
classical groups. We then give Gysin formulas for Schubert varieties in Grassmann
bundles, including isotropic ones. All these formulas are proved in a rather
uniform way by using the step-by-step construction of flag bundles and the Gysin
formula for a projective bundle. In this way we obtain a comprehensive list of
new general formulas. The content of this paper was presented by Piotr Pragacz
at the International Festival in Schubert Calculus in Guangzhou, November 6-10,
2017.

1. Introduction

Let E → X be a vector bundle of rank n on a variety X over an algebraically
closed field. Let π : F(E) → X be the bundle of flags of subspaces of dimensions
1, 2, . . . , n − 1 in the fibers of E → X. The flag bundle F(E) is used, e.g., in splitting
principle, a standard technique which reduces questions about vector bundles to the
case of line bundles; namely the pullback bundle π∗E decomposes as a direct sum of
line bundles. One can construct F(E) inductively as a sequence of projective bundles,
using the following iterative step, that decreases the rank by 1. Let p1 : P(E)→ X
denote the projective bundle of lines in E, and let U1 := OP(E)(−1) denote the
universal subbundle on P(E), then one has a universal exact sequence of vector
bundles on P(E)

0→ U1 −→ p∗1E −→ Qn−1 → 0,
where Qn−1 (the universal quotient bundle on P(E)) is a rank n − 1 vector bundle.
Replacing E by Qn−1, one obtains a universal subbundle on P(Qn−1), together with
a universal quotient bundle Qn−2. Iterating this process until obtaining a quotient
bundle Q1 of rank one, one gets a sequence of projective bundles

(1) F(E) := P(Q2)
pn−1
−→ . . .→ P(Qn−1)

p2
−→ P(E)

p1
−→ X,

a flag bundle filtration

0 ( (pn−1 ◦ · · · ◦ p2)∗U1 ( (pn−1 ◦ · · · ◦ p3)∗U2 ( . . . ( Un−1 ( π
∗E,

where Ui → P(Qn+1−i) is the kernel bundle of the composition

(pi ◦ · · · ◦ p1)∗E � Qn−1 � . . .� Qn−i,

and universal exact sequences of vector bundles on P(Qn−i+1):

(2) 0→ Ui/p∗i Ui−1 → p∗i Qn−i+1 → Qn−i → 0.

In the Grothendieck group of F(E), one can write (droping the pullback notation)

π∗E = U1 + U2/U1 + · · · + Un−1/Un−2 + Q1,

as the sum of (the pullback of) the different line bundles appearing in (1).
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Now we would like to outline how to obtain a Gysin formula for the flag bundle
π : F(E)→ X (cf. Example 1), and introduce some notation.

We shall work in the framework of intersection theory of [3]. Recall that a
proper morphism g : Y → X of nonsingular algebraic varieties over an algebraically
closed field yields an additive map g∗ : A•Y → A•X of Chow groups induced by
push-forward cycles, called the Gysin map. The theory developed in [3] allows also
one to work with singular varieties, or with cohomology. In this note, X will always
be nonsingular.

For E → X a vector bundle, let s(E) be the Segre class of E, that is the formal
inverse of the Chern class c(E) in the Chow ring of X. Let ξ = c1(OP(E)(1)); then
A•(P(E)) is generated algebraically by ξ over A•X—here we identify A•X with a
subring of A•(P(E))—and

(3) (p1)∗ξi = si−(n−1)(E),

cf. [3]. To obtain a Gysin formula for the sequence of projective bundles (1), it
suffices to appropriately iterate formula (3). The intermediate formulas involve the
individual Segre classes of the universal quotient bundles, that can be eliminated
using (2) and the Whitney sum formula. However, it seems rather difficult to obtain
a universal formula in this way. A universal formula should hold for any polynomial
in characteristic classes of universal vector bundles and depend explicitly on the
Segre classes of the original bundle E. To obtain such a formula, we use the
generating series of the Segre classes of the universal quotient bundles. A prototype
is the reformulation of (3) in

(4) (p1)∗ξi = [tn−1]
(
tis1/t(E)

)
,

where we consider the specialization in x = 1/t of the Segre polynomial sx(E) =∑
i si(E)xi and where for a monomial m and a Laurent polynomial P, [m](P) denotes

the coefficient of m in P. Formula (4) and the projection formula imply that for any
polynomial f in one variable with coefficients in A•X

(5) (p1)∗ f (ξ) = [tn−1]
(
f (t)s1/t(E)

)
.

In this formula, (i) one does not need to expand f into a combination of monomials;
(ii) one uses the Segre polynomial that, like the total Segre class, is a group homo-
morphism from the Grothendieck group of X to the multiplicative group of units
with degree zero term = 1 in A•X.

Iterating the Gysin formula (5) yields a closed universal Gysin formula for the
flag bundle F(E)→ X, as announced in Example 1.

It is clear that the outlined strategy of proof applies to more general step-by-step
constructions than the construction (1) of the flag bundle F(E)→ X. Considering
the truncated composition pk ◦ · · · ◦ p1 in (1) yields formulas for full flag bundles,
i.e. bundles of flags of subspaces of dimensions 1, 2, . . . , k in the fibers, for k =

1, . . . , n − 1. Then, using certain commutative diagrams (see [1, (5)]), one extends
these formulas to arbitrary partial flag bundles.

One other interesting generalization is to restrict to the zero locus of a section
of some vector bundle at each step of the sequence of projective bundles. In other
words, one can impose some geometric conditions that the subspaces of the flag
have to satisfy. An illustrative example is Theorem 2.3, in the orthogonal setting,
obtained by considering at each step quadric bundles of isotropic lines in projective
bundles of lines.
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This method of step-by-step construction of generalized flag bundles leads to
uniform short proofs of the different results announced in this note.

This note is organized as follows. In Section 2, we shall announce universal
Gysin formulas for partial flag bundles for general linear groups, symplectic groups
and orthogonal groups. The proofs of the results announced there can be found in
[1].

In Section 3 we give Gysin formulas for Kempf-Laksov flag bundles. These
generalized flag bundles are used to desingularize Schubert varieties in Grassmann
bundles. Theorem 3.1 is established in [2]. Theorem 3.2 is announced for the first
time in the present note.

2. Universal Gysin formulas for flag bundles

In this section, the letter f denotes a polynomial in the indicated number of
variables with coefficients in A•X. The appropriate symmetries that f has to satisfy
to be in the Chow ring of the flag bundle under consideration are always implied.
Here we consider non-singular varieties X. Note that the theory developed in
Fulton’s book [3] allows one to generalize the results to singular varieties over a
field and their Chow groups; moreover, for complex varieties, one can also use the
cohomology rings with integral coefficients.

We shall discuss separately the cases of general linear groups, symplectic groups
and orthogonal groups.

2.1. General linear groups. Let E → X be a rank n vector bundle. Let 1 ≤ d1 <
· · · < dm = d ≤ n−1 be a sequence of integers. We denote by π : F(d1, . . . , dm)(E)→
X the bundle of flags of subspaces of dimensions d1, . . . , dm in E. On F(d1, . . . , dm)(E),
there is a universal flag Ud1 ( · · · ( Udm of subbundles of π∗E, where rk(Udk ) = dk
(the fiber of Udk over the point (Vd1 ( · · · ( Vdm ⊂ E(x)), where x ∈ X, is equal to
Vdk ). For a foundational account on flag bundles, see [4].

For i = 1, . . . , d, set ξi = −c1(Ud+1−i/Ud−i).

Theorem 2.1. With the above notation, for f (ξ1, . . . , ξd) ∈ A•(F(d1, . . . , dm)(E)),
one has

π∗ f (ξ1, . . . , ξd) =
[
t1e1 . . . tded

](
f (t1, . . . , td)

∏
1≤i< j≤d

(ti − t j)
∏

1≤i≤d
s1/ti(E)

)
,

where for j = d − dk + i with i = 1, . . . , dk − dk−1, we denote e j = n − i.

Example 1. For the complete flag bundle π : F(E)→ X, one has

π∗ f (ξ1, . . . , ξn−1) =
[n−1∏

i=1
t(n−1)
i

](
f (t1, . . . , tn−1)

∏
1≤i< j≤n−1

(ti − t j)
n−1∏
i=1

s1/ti(E)
)
;

and for the Grassmann bundle π : F(d)(E)→ X, one has

π∗ f (ξ1, . . . , ξd) =
[ d∏
i=1

tn−i
i

](
f (t1, . . . , td)

∏
1≤i< j≤d

(ti − t j)
d∏

i=1
s1/ti(E)

)
.
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2.2. Symplectic groups. Let E → X be a rank 2n vector bundle equipped with a
non-degenerate symplectic form ω : E ⊗ E → L (with values in a certain line bundle
L → X). We say that a subbundle S of E is isotropic if S is a subbundle of its
symplectic complement S ω, where

S ω := {w ∈ E | ∀v ∈ S : ω(w, v) = 0}.

Let 1 ≤ d1 < · · · < dm ≤ n be a sequence of integers. We denote by
π : Fω(d1, . . . , dm)(E)→ X the bundle of flags of isotropic subspaces of dimensions
d1, . . . , dm in E. On Fω(d1, . . . , dm)(E), there is a universal flag Ud1 ( · · · ( Udm of
subbundles of π∗E, where rk(Udk ) = dk.

For i = 1, . . . , d, set ξi = −c1(Ud+1−i/Ud−i).

Theorem 2.2. With the above notation, for f (ξ1, . . . , ξd) ∈ A•(Fω(d1, . . . , dm)(E)),
one has

π∗ f (ξ1, . . . , ξd) =
[
t1e1 · · · tded

](
f (t1, . . . , td)

∏
1≤i< j≤d

(c1(L) + ti + t j)(ti − t j)
∏

1≤i≤d
s1/ti(E)

)
,

where for j = d − dk + i with i = 1, . . . , dk − dk−1, we denote e j = 2n − i.

Example 2. For the symplectic Grassmann bundle π : Fω(d)(E)→ X, where ω has
values in a trivial line bundle, one has

π∗ f (ξ1, . . . , ξd) =
[ d∏
i=1

t2n−i
i

](
f (t1, . . . , td)

∏
1≤i< j≤d

(t2
i − t2

j )
d∏

i=1
s1/ti(E)

)
.

2.3. Orthogonal groups. Let E → X be a vector bundle of rank 2n or 2n + 1
equipped with a non-degenerate orthogonal form Q : E ⊗ E → L (with values in a
certain line bundle L → X). We say that a subbundle S of E is isotropic if S is a
subbundle of its orthogonal complement S ⊥, where

S ⊥ := {w ∈ E | ∀v ∈ S : Q(w, v) = 0}.

Let 1 ≤ d1 < · · · < dm ≤ n be a sequence of integers. We denote by
π : FQ(d1, . . . , dm)(E)→ X the bundle of flags of isotropic subspaces of dimensions
d1, . . . , dm in E. On FQ(d1, . . . , dm)(E), there is a universal flag Ud1 ( · · · ( Udm of
subbundles of π∗E, where rk(Udk ) = dk.

For i = 1, . . . , d, set ξi = −c1(Ud+1−i/Ud−i).

Theorem 2.3. With the above notation, for f (ξ1, . . . , ξd) ∈ A•(FQ(d1, . . . , dm)(E)),
one has

π∗ f (ξ1, . . . , ξd) =[
t1e1 · · · tded

](
f (t1, . . . , td)

∏
1≤i≤d

(2ti + c1(L))
∏

1≤i< j≤d
(c1(L) + ti + t j)(ti − t j)

∏
1≤i≤d

s1/ti(E)
)
,

where for j = d − dk + i with i = 1, . . . , dk − dk−1, we denote e j = rk(E) − i.

Note that, if the rank is 2n and d = n, we consider both of the two isomorphic
connected components of the flag bundle. Thus, if one is interested in only one of
the two components, the result should be divided by 2. When c1(L) = 0, this makes
appear the usual coefficient 2n−1.
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3. Universal Gysin formulas for Kempf–Laksov flag bundles

In this section, we give Gysin formulas for Kempf–Laksov flag bundles, that are
desingularizations of Schubert bundles in Grassmann bundles. We also extend the
results to the symplectic setting. The orthogonal cases will be treated elsewhere.

3.1. General linear groups. Let E → X be a rank n vector bundle on a variety X
with a reference flag of bundles E1 ( · · · ( En = E on it, where rk(Ei) = i. Let
π : Gd(E) = F(d)(E) → X be the Grassmann bundle of subspaces of dimension
d in the fibers of E. For any partition λ ⊆ (n − d)d, there is the Schubert bundle
$λ : Ωλ(E•)→ X in Gd(E) given over the point x ∈ X by

(6) Ωλ(E•)(x) := {V ∈ Gd(E)(x) : dim(V ∩ En−d−λi+i(x)) ≥ i, for i = 1, . . . , d}.

We denote by

(ν1, . . . , νd) := (n − d − λd + d, . . . , n − d − λ1 + 1)

the dimensions of the spaces of the reference flag involved in the definition of
Ωλ(E•)—in reverse order—. The partition ν is a strict partition, and furthermore,
n − i ≤ νi ≤ ν1 = n − λd ≤ n for any i. Note that the above definition of Ωλ(E•) can
be restated using ν with the conditions

(7) dim(V ∩ Eνi(x)) ≥ d + 1 − i, for i = 1, . . . , d.

For a strict partition µ ⊆ (n)d with d parts, consider the flag bundle ϑµ : Fµ(E•)→
X given over the point x ∈ X by
(8)
Fµ(E•)(x) :=

{
0 ( V1 ( · · · ( Vd ∈ F(1, . . . , d)(E)(x) : Vd+1−i ⊆ Eµi(x), for i = 1, . . . , d

}
.

We will call Kempf–Laksov flag bundles such bundles ϑµ introduced in [5].
These appear naturally as desingularizations of Schubert bundles. For a partition

λ ⊆ (n − d)d, defining ν as above, by (7) the forgetful map F(1, . . . , d)(E)→ Gd(E)
induces a birational morphism Fν(E•)→ Ωλ(E•). On the Schubert cell given over
the point x ∈ X by

Ω̊λ(E•)(x) :=
{
V ∈ Gd(E)(x) : dim(V ∩ Eνi(x)) = d + 1 − i, for i = 1, . . . , d

}
,

which is open dense in Ωλ(E•), the inverse map is V 7→ (V ∩Eνd (x), . . . ,V ∩Eν1(x)).
It establishes a desingularization of Ωλ(E•) (see [5]).

We construct Fµ(E•) by induction on the length of flags. For d = 1, it is
simply P(Eµd ). Assume thus that for d > 1 we have constructed the variety F′ ⊆
F(1, . . . , d − 1)(E) parametrizing flags{

0 ( V1 ( · · · ( Vd−1 ∈ F(1, . . . , d − 1)(E)(x) : Vd+1−i ⊆ Eµi(x), for i = 2, . . . , d
}
.

Let Ud−1 be the universable subbundle of rank d − 1 on F(1, . . . , d − 1)(E). Note
that in restriction to F′, the condition Vd−1 ⊆ Eµ2(x) yields: Ud−1 ⊆ Eµ2 ⊆ Eµ1 ; we
can therefore consider the subvariety

P((Eµ1/Ud−1)|F′) ⊆ P((E/Ud−1)|F′) ⊆ P(E/Ud−1) = F(1, . . . , d)(E).

Iterating this inductive step, we get a sequence of projective bundles

(9) Fµ(E•) = P(Eµ1/Ud−1)→ P(Eµ2/Ud−2)→ . . .→ P(Eµd−1/U1)→ P(Eµd ).

By restriction, the universal line bundle on P(Eµi/Ud−i) is Ud−i+1/Ud−i. Set ξi =

−c1(Ud−i+1/Ud−i), i = 1, . . . , d.
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Let f be a polynomial in d variables with coefficients in A•(X).

Theorem 3.1. With the above notation, one has

(ϑµ)∗ f (ξ1, . . . , ξd) =
[
tµ1−1
1 · · · tµd−1

d

] (
f (t1, . . . , td)

∏
1≤i< j≤d

(ti − t j)
∏

1≤i≤d
s1/ti(Eµi)

)
.

A proof of this theorem is based on (9) and (5).

3.2. Symplectic groups. Let E → X be a rank 2n symplectic vector bundle en-
dowed with the symplectic form ω : E ⊗ E → L with value in a line bundle L→ X,
over a variety X. For d ∈ {1, . . . , n}, let Gω

d (E) = Fω(d)(E) be the Grassmannian
bundle of isotropic d-planes in the fibers of E. Let

0 = E0 ( E1 ( · · · ( En = Eω
n ( · · · ( Eω

0 = E

be a reference flag of isotropic subbundles of E and their symplectic complements,
where rk(Ei) = i. For i = 1, . . . , n, we set En+i := Eω

n−i. For a partition λ ⊆ (2n−d)d,
there is the Schubert cell Ω̊λ(E•) in Gω

d (E) given over the point x ∈ X by the
conditions

Ω̊λ(E•)(x) :=
{
V ∈ Gω

d (E)(x) : dim
(
V ∩ E2n−d+i−λi(x)

)
= i, for i = 1, . . . , d

}
.

Denote νd+1−i := 2n − d + i − λi the dimension of the reference space appearing
in the ith condition. A partition indexing the Schubert cell Ω̊λ must satisfy the
conditions νi + ν j , 2n + 1 (see [6, p. 174], where this is shown for d = n, and for
arbitrary d the argument is the same). For such partitions one defines the Schubert
bundle $λ : Ωλ → X as the Zariski-closure of Ω̊λ, given over a point x ∈ X by the
conditions

Ωλ(E•)(x) :=
{
V ∈ Gω

d (E)(x) : dim
(
V ∩ E2n−d+i−λi(x)

)
≥ i, for i = 1, . . . , d

}
.

For a strict partition µ ⊆ (2n)d with d parts, such that µi + µ j , 2n + 1 for all i, j,
we introduce the isotropic Kempf–Laksov bundle ϑµ : Fµ(E•)→ X given over the
point x ∈ X by

Fµ(E•)(x) :=
{
0 ( V1 ( · · · ( Vd ∈ Fω(1, . . . , d)(E)(x) : Vd+1−i ⊆ Eµi(x)

}
.

Note that as in the previous section, Fν(E•) is birational to Ωλ(E•), but here it is not
smooth in general.

Let Ui stands for the restriction to Fµ(E•) of the rank i universal bundle on
F(1, . . . , d)(E). Set ξi = −c1(Ud−i+1/Ud−i), for i = 1, . . . , d.

Let f be a polynomial in d variables with coefficients in A•(X).

Theorem 3.2. With the above notation, one has

(ϑµ)∗ f (ξ1, . . . , ξd) =[
tµ1−1
1 · · · tµd−1

d
](

f (t1, . . . , td)
∏

1≤i< j≤d
(ti − t j)

∏
1≤i< j≤d

µi+µ j>2n+1

(c1(L) + ti + t j)
∏

1≤ j≤d
s1/t j(Eµ j)

)
.

A proof of this theorem will appear in a separate publication.
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