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2 IntroductionFormulas expressing topological invariants of varieties using di�erent charac-teristic classes are among the most useful applications/tools of algebraic geometry.A particularly rich work on this subject has been devoted to the dependency lociod vector bundle sections and, more generally, degeneracy loci of vector bundlemorphisms ( i.e. sets of points where a morphism drops the rank) - this theory issurveyed in [P-P1].In [P-P2] the authors gave a formula for the (topological) Euler characteristicof the degeneracy locus of a general morphism ':F ! E of holomorphic vectorbundles on a variety X (that is such that the induced section s':X ! Hom(F;E)is transverse to all tautological degeneracy loci). It is natural to ask whether thisformula can be generalized to the case of a broader family of morphisms. Forinstance, the Giambelli-Thom-Porteous formula describing the fundamental class ofa degeneracy locus is valid under the weaker assumption that the codimension ofthe degeneracy locus is "expected".It turns out that the problem is highly nontrivial even in the simplest possiblecase, that is when the morphism is a nontrivial section s of a line bundle L and thedegeneracy locus is its zero set Z.As it is well-known (see, for instance, [Di] and [Pa1]) if Z has only isolatedsingular points, the di�erence between the Euler characteristic �(Z) of Z and thenumber expected for the Euler characteristic of the zero set of a general section ofL is (up to sign) the sum of Milnor numbers of the singular points of Z. Thereforethe di�erence in question may be thought as a "generalized Milnor number".In [Pa1] the �rst named author gave the following characterization of the gener-alized Minor number (in fact this property served for the de�nition of this numberin loc.cit.). Fix a Hermitian metrix on L and consider a standard decompositionof the associated metric connection D = D0 + D00. Then the generalized Milnornumber equals the intersection index of D0s and the zero section computed near Z.The main purpose of this paper is to give a new formula for the generalizedMilnor number which is completely di�erent in the spirit and is worked out in theframework of algebraic and analytic geometry (Theorem 4). The present approachinvolves three major tools: a Whitney strati�cation Z of Z, local invariants of thesingularities of Z coming from the Milnor �bration and Chern-MacPherson classesof the strata closures. Our formula for the generalized Milnor number has a clear"algebro-geometric" form. It is a sum of the following expressions indexed by thestrata S of Z Z �S �(S)�c(LjS)�1 \ c�( �S)� ;where �(S) is a certain number determined by the Milnor �bration attached to Zand c�( �S) is the Chern-MacPherson class of the closure of S (see [McP] and also[S],[B-S]).The proof of Theorem 4 combines the techniques from di�erential geometry andtopology with that of projective algebraic geometry. The �rst ones allow us to �nda simple expression for the generalized Milnor number in the situation when there



3exists a smooth divisor Z 0 linearly equivalent to Z and transverse to Z (Proposition7). Using the Bertini theorem in the version of Verdier ([V]) and a property ofChern-MacPherson classes (Lemma 8), this allows us to prove our formula for veryample L. Now, given an arbitrary line bundle L we pick a very ample M such thatL
M is also very ample. Let H be a nonsingular and transverse to Z zero set ofa section of M . Then, knowing that the formula is true for Z [ H we show thatit holds also for Z, by induction on dimZ. The induction step depends heavilyon subtle calculations of the Euler characteristics of some Milnor �bers (Lemma 3)and a specialization of the Hirzebruch functional equation for the virtual Ty-genus(cf.(6)). The main formula is proven under the assumption of projectivity of theambient space X. We conjecture (see the end of this article) that this assumptioncan be dropped.Some of the results presented here were announced in [P-P1].Conventions:Let X be a complex manifold and let L be a holomorphic line bundle on X.Having chosen a Hermitian metric on L, the norm of a vector in L will be denotedby kvk. By �B" � Cn (resp. S2n�1" � Cn) we will denote the open ball (resp. thesphere of real dimension 2n� 1) with center at the origin and the radius ". Finally,a complex number c will be called small if jcj (the absolute value of c) is a smallpositive real number.



4 Let X be a compact n-dimensional complex manifold and let L be a holomorphicline bundle over X. Take s 2 H0(X;L) a holomorphic section of L such that thezero set Z of s is a (nowhere dense) hypersurface in X.We de�ne the number �(Z;X) as follows�(Z;X) := (�1)n(�(Z)� �(XjL));where for a vector bundle E over X, we de�ne�(XjE) := ZX c(E)�1crankE(E)c(X) :Recall that �(XjE) equals the Euler characteristic of the zero set of a general sectionof E, i.e. a section transverse to the zero section (see e.g. [P-P]). Usually, we willwrite �(Z) instead of �(Z;X).Example 1. Assume that Z has only isolated singular points. Pick one such x 2 Z.In local coordinates z = (z1; : : : ; zn) around x 2 Z the hypersurface Z is de�nedby a holomorphic function f . We may assume that x is the origin in Cn and f isde�ned in a neighbourhood of x. For small positive " and � (and 0 < � � ") theintersection f�1(�)\�B" has the homotopy type of a bouquet S_ : : :_S, where S isa sphere of real dimension n� 1 (see [Mi]). The number of spheres �x, say, is calledthe Milnor number of Z at x. Since Z \ �B" is contractible�(Z \ �B")� �(f�1(�) \ �B") = (�1)n�x :It is not di�cult to see (cf. [Pa1] for instance) that if Z has only isolated singularities,then �(Z) = �(Z)� �(XjL) = (�1)n Xx2Sing(Z)�x :Recall that an alternative algebraic expression for the Milnor number is givenby the formula �x = dimCCfzg=(@f=@z1; � � � ; @f=@zn) :For other interpretations of the Milnor number we refer the reader to [M] and [O].In virtue of the example �(Z) may be thought as a "generalized Milnor number".Let x be an arbitrary point of Sing(Z) and assume that in local coordinatesaround x the hypersuface Z is the zero set of (the germ of) an analytic functionf : (Cn; 0) ! (C; 0). Choose an " > 0 small enough and � > 0 such that 0 < � � ".Let D�� = fz 2 C; 0 < jzj < �g be a small open punctured disc in C. Then, frestricted to �B" \ f�1(D�� ) is a smooth locally trivial �bration for any 0 < � � "small enough (this variant of the Milnor �bration theorem [Mi] stems from [Lê] and[Ha]). We call this �bre the Milnor �bre attached to x and will denote it by Fx.



5De�nition. We de�ne �(Z; x) := (�1)n�1(�(Fx)� 1).Example 2. If x is a nonsingular point of Z, then �(Z; x) = 0. If x is an isolatedsingularity, then �(Z; x) = (�1)n�1�1 + (�1)n�1dimQHn�1(Fx;Q)� 1� = �x, theusual Milnor number of Z at x.Let Z be a Whitney strati�cation (see e.g. [G-M]) of Z. Then by a recentresult obtained independently in [Pa2] and [B-M-M], Z is a "good" strati�cation ofZ. Recall that a strati�cation Z of Z is traditionally called "good" if it satis�es thefollowing local condition (which is independent of the choice of local coordinates).Assume that as above Z is described locally as the zero set of f :Cn ! C. We saythat Z is a "good" strati�cation of Z if for each sequence xk 2 Cn n Z convergingto x 2 Z and such that the sequence Txk�f�1(f(xk))� of the tangent spaces to the�bres of f has a limit T (in Pn�1), T contains the tangent space to the stratumcontaining x. Now we pass to a characterization of "good" strati�cations usinglocal coordinates. Assume that x is the origin and the stratum containing x isgiven locally by the equations z1 = : : : = zj = 0. Then the above condition can bedescribed as follows:(1) k(@f=@zj+1(z); : : : ; @f=@zn(z))kk(@f=@z1(z); : : : ; @f=@zj(z))k z!0���! 0 :If Z is a Whitney strati�cation of Z then by Thom's Second Isotopy Lemma(see e.g. [G, Theorem 5.8]) the topological type of the Milnor �bres Fx at x isconstant along the strata of Z.Notation. For S 2 Z we denote by �S the value of x 7! �(Z; x) on S.The following result, which is a particular case of Theorem A of [N], gives anexample of a more elaborate calculation of �(Z; x), which will be important in theinductive step of the proof of Theorem 4. We present a short, independent prooffor the reader's convenience.Lemma 3. Let Z be a hypersurface in X and let H be a nonsingular hypersurfaceof X transverse to a Whitney strati�cation of Z. Then for each x 2 Z \H�(Z [H; x) = (�1)n(in the other words the Euler characteristic of the Milnor �bre of Z [H attached tox is zero).Proof. Assume that x is the origin in Cn and let Z and H be the zero sets of fand zn respectively, so Z [H is the zero set of g(z) = znf(z). For z 2 Cn we writez = (z0; zn), where z0 2 Cn�1. We assume that the line l = f(0; zn) 2 Cn�1 � Cg



6is contained in the stratum of a Whitney strati�cation Z of Z which contains x.Denote by G the Milnor �bre of Z [ H at the origin. We shall show that, up tohomotopy equivalence, G �bres over a circle and therefore �(G) = 0, as desired. Inthe proof we use standard facts of real analytic geometry which can be found in [ L]and [G].First, consider the family of hypersurfaces Z(zn) in Cn�1 given by the equationsf(�; zn) = 0 with �xed zn. Since Z is "good", the Milnor �bres of Z(zn) at 0 2 Cn�1are homeomorphic to the Milnor �bre F 0 of Z \ H at the origin, provided zn issu�ciently small. Moreover, by the regular separation [ L; x18], one may �nd "0 > 0and m 2 N such that for every jznj � "0 and 0 < " � "0, c 2 C with 0 < jcj � "m,the space fz0 2 Cn�1; kz0k � "; f(z0; zn) = cg;depending on zn and c, is homeomorphic to F 0. Instead of the ordinary representa-tives of G G";c = g�1(c) \ �B" c 2 C ; 0 < jcj � "� 1we consider ~G";c = g�1(c) \ U" c 2 C ; 0 < jcj � "� 1 ;where U" = f(z0; zn) 2 Cn; kz0k < "; jznj < "; jf(z0; zn)j < "mg(we will show below that they are homotopically equivalent). Note that the image of~G";c by the projection �n de�ned by �n(z) = zn, is the annulus fz 2 C; c"m < z < "gand the �bres are homeomorphic to F 0. Since �n restricted to ~G";c is semi-analyticand can be strati�ed, this already gives �( ~G";c) = 0. But, in fact, using (1) one mayeasily prove that �nj ~G";c is a locally trivial smooth �bration.To complete the proof we will show that ~G";c are homotopically equivalent toG";c for 0 < jcj � "� 1.Consider a one-parameter family of neighbourhoods of the origin in CnV" = '�1([0; ")) ;where ':Cn ! R is a semi-analytic continuous function (the same argument isvalid if ' is subanalytic) and '�1(0) = 0. Fix "00 > 0 and c 2 C n f0g and let�:V"00 \ g�1(ftc; 0 � t � 1g) ! R+ � [0; 1]be given by �(z) = (kzk; g(z)=c). Since � is semi-analytic and continuous, it canbe strati�ed and by the properties of semi-analytic sets there exist "0 and m 2 Nsuch that all G0";t = g�1(tc) \ V" :are homeomorphic if only ("; t) 2 f("; t); 0 < " � "0; 0 < t � "mg =: A, say.Moreover, the homeomorphisms can be obtained by the integration of vector �elds



7(Thom's First Isotopy Lemma [G, Theorem 5.2]) and therefore for all ("; t); ("0; t) 2A, " � "0, G0";tc is a deformation retract of G0"0;tc. Take "0 good for both families�B" and U" and choose "i (i = 1; 2; 3) such that�B"0 � U"1 � �B"2 � U"3 :By the above, for su�ciently small t > 0, G"0;tc is a deformation retract of G"2;tcand ~G"1;tc is a deformation retract of ~G"3;tc. Therefore G"2;tc and ~G"1;tc are homo-topically equivalent. This ends the proof. �The next theorem, which is the main result of this paper, gives a formula forthe generalized Milnor number �(Z) in terms of a Whitney strati�cation of Z, localinvariants of the singularities of Z coming from the Milnor �bration and Chern-MacPherson classes of the strata closures.Theorem 4. Let X be a nonsingular subvariety of PN and let Z be the zero set ofa holomorphic section of a holomorphic line bundle L over X. Let Z be a Whitneystrati�cation of Z. Then�(Z) = XS2Z �(S)�Z�S�c(LjS)�1 \ c�( �S)� ;where �(S) = �S �PS0 6=S; �S0�S �(S0), and c�( �S) denotes the Chern-MacPhersonclass of �S (-the closure of the stratum S).For a de�nition of Chern-MacPherson classes the reader can consult [McP];classes essentially equivalent to the above were de�ned independently by M. H.Schwartz [S], [B-S]. In [P-P2, Section 1] we recall a more algebraic approach toChern-MacPherson classes, given by Gonz�alez-Sprinberg, Verdier and others andprovide some auxiliary properties of Chern-MacPherson classes needed in the sequelof the present paper.Before we start the proof we give some examples illustrating the theorem.Example 5. Assume that Y = Sing(Z) is nonsingular and that the pair (Z nY; Y )satis�es Whitney Conditions. Then, for x 2 Y�Y = �(Z; x) = (�1)m�(n�m)(Z; x) ;where m = dimY and �(n�m)(Z; x) is the (n � m)-th Teissier number of Z at x(see [T]). Recall that �(n�m)(Z; x) is the Milnor number at x of Z \L where L is asu�ciently general (n�m)-dimensional linear space containing x. Now the theoremasserts �(Z) = �Y ZY c(Y )�c(LjY )�1 :As it was proved in [Pa1], using the index characterization of �(Z) recalled in theIntroduction, the above formula holds without the assumption of projectivity of X.



8Example 6. Let Y = Sing(Z) be nonsingular and let Z consists of 3 strata:S1 = Z � Y; S2 = Y � S3 and S3. Then the theorem gives�(Z) = �S2 ZY c(Y )�c(LjY )�1 + (�S3 � �S2) ZS3 c(S3)�c(LjS3)�1 :In order to prove Theorem 4, let us �rst prove the following proposition (inwhich we do not assume the projectivity of X).Proposition 7. Let L be a holomorphic line bundle over a compact n-dimensionalmanifold X. Assume that a hypersurface Z in X is the zero set of s 2 H0(X;L)and let s0 be a holomorphic section of L such that the zero set Z 0 of s0 is nonsingularand transverse to a Whitney strati�cation Z of Z. Then�(Z) = XS2Z �S ��(S n Z 0) = XS2Z �(S)��( �S n Z 0) :Proof. We will approximate Z by the zero sets Zt of the sections st = s�ts0 (t 2 C).First, we note that for small t 6= 0 all the Zt are nonsingular and transverse to Z.In fact, by Bertini's Theorem (e.g [G-H, p.137]) the singularities of generic Zt arecontained in Z \ Z 0. Fix x0 2 Z \ Z 0 and investigate Zt around x0. Denote thesections s and s0 by f and g respectively and consider them as functions. By thetransversality of Z 0 to Z and the fact that Z is a "good" strati�cation, the levelsof f and g are transverse with the angle bounded from below by a nonzero positiveconstant. In particular, d (f � tg) = d f � t�d g nowhere vanishes on Zt (for t 6= 0)and Zt is transverse to Z.Let us �x a Hermitian metric on L. For t small enough it is easy to see thatZ \ Z 0 is a strong deformation retract ofZt;� = fx 2 Zt; ks0(x)k < �gprovided � is su�ciently small. (For t = 0, this follows from the transversalityassumption.)Step 1. We claim that for a su�ciently small t we can �nd an universal � > 0 suchthat Z \ Z 0 is a strong deformation retract of Zt;�.Proof of the assertion of Step1. Take small t 6= 0. We shall show that Zt;� can beretracted onto Z \Z 0 using the ow generated by the orthogonal projection on Zt;�of grad ks0k2. To prove it, it su�ces to show that the projected vector �eld does notvanish on Zt;� nZ \Z 0. We proceed locally in a neighbourhood of some x0 2 Z \Z 0.So assume that x0 is the origin in Cn and s = f �e; s0 = g �e, where e is a non-vanishing holomorphic section of L de�ned in a neighbourhood of x0 and f , g are



9holomorphic functions. Let D be the associated connection and �-the connectionform with respect to e. Then(2) d (ks0k2) = hg �e; Dg �ei+ hDg �e; g �ei= (d jgj2 + jgj2(� + ��))kek2= ((�g dg + jgj2�) + (�g dg + jgj2�))kek2 :As x0 is a regular point of g, we may choose such local coordinates with theorigin in x0, that g(z) � zn and in a neighbourhood of x0 a given stratum of Z(that is transverse to H = fz; zn = 0g by the assumption) is given locally by theequations z1 = : : : = zj = 0 where j < n. Then, writing df = d0f + (@f=@zn)dzn,we have (near x0) by (1)(3) kd0fk � C �j@f=@znj ;for some universal C > 0.Take z =2 Z [ Z 0 and near x0 (these properties of z will be assumed up to theend of Step 1). We show that the levels of ks0k2 and f=g are transverse at z. Forthis purpose we consider the conormal vectors to them. Let t(z) := f(z)=g(z). Theholomorphic part of the conormal vector to the former, given by (2), equals�g(z) dg(z) + jg(z)j2�(z) = �zndzn + jznj2�(z) ;and the holomorphic conormal vector to the latter isg(z)�1((df(z)� t(z)�dg(z)) = z�1n (df(z)� (f(z)=zn)dzn) :To prove the statement it is enough to show that the above vectors are independentfor z su�ciently close to x0.Suppose that they are linearly dependent. Then this implies the linear depen-dence of l1(z) = dzn + zn�(z) and l2(z) = dzn + (@f=@zn(z)� f(z)=zn)�1d0f(z) forz su�ciently close to x0. We use the following inequality due to  Lojasiewicz [ L, x18Proposition 1]: k(@f=@z1; : : : ; @f=@zn)k � jf j� ;for some 0 < � < 1, which holds in some neighbourhood of x0. Since � is boundedin a neighbourhood of x0, the second summand of l1(z) is bounded near x0. Onthe other side, it follows from the  Lojasiewicz inequality combined with (3) that thesecond summand of l2(z) is unbounded in a neghbourhood of x0. This leads to acontradiction.The proof of the assertion of Step 1 is complete. �Fix � given by Step 1 and let Y be a compact manifold (with boundary) de�nedas X n fx 2 X; ks0(x)k < �g. Note that the strati�cation Z is transverse to @Y .



10 One of the main properties of Whitney strati�cation is a topological equisingu-larity. It says that if (Z;Z) is a set with Whitney strati�cation, then the topologicaltype of Z at x 2 S 2 Z, does not depend on the choice of the point x on a givenstratum S. This follows from Thom's First Isotopy Lemma, whose proof is basedon the technique of extending vector �elds (the reader can consult [G, Chapter II])and requires a construction of the system of tubular neighbourhoods of the strata(loc.cit. Chapter II x2).Step 2 (A construction of a system of tubular neighbourhoods �S of S \ Y in Y )For S 2 Z we de�ne �S inductively on dimS as follows:�S = fx 2 Y ; dist(x; S) � �Sg [ [S0� �SnS �S0 ;where �S is a su�ciently small number such that:(a) GS = �S n SS0� �SnS Int(�S0) is a manifold with corners which (as a strati�edset) is transverse to Z.(b) GS is a locally trivial topological �bration over ~S := S \ GS (by Thom's FirstIsotopy Lemma) We denote this �bration by �S .(c) ~S is a manifold with corners with the same homotopy type as S \Y (which canbe shown by gluing the vector �elds given by (b)).(A more complicated system of tubular neighbourhoods satisfying the aboveproperties was constructed by Dubson [Du, Proposition I 1.4.2.B])Claim: The map �S jZt\GS :Zt \ GS ! ~S is a locally trivial topological �brationand its �bre ~Fx, x 2 ~S, is homotopically equivalent to the Milnor �bre Fx.Indeed, since Z is a "good" strati�cation, Zt (for su�ciently small t 6= 0) istransverse to the �bres of �S . In particular �SjZt\GS :Zt \ GS ! ~S is a locallytrivial �bration. Its �bre ~Fx at x 2 ~S is homotopically equivalent to the Milnor�bre Fx by Thom's First Isotopy Lemma.Finally we have�(Z)� �(Zt) = �(Z \ Y )� �(Zt \ Y )= XS2Z(�( ~S)� �(Zt \GS))= XS2Z��( ~S)� �( ~S)�( ~Fx)� (by Claim; here, x 2 ~S)= (�1)n XS2Z �( ~S)�S :If � is su�ciently small, then �( ~S) = �(S \ Y ) = �(S n Z 0) for every S 2 Z.Therefore, by the above we get�(Z) = (�1)n[�(Z)� �(Zt)] = XS2Z �S ��(S n Z 0)= XS2Z �(S)��( �S n Z 0) ;



11where the latter expression is just a simple rewriting of the former.This completes the proof of Proposition 7. �We record the following formula for a proof of which we refer to [P-P2, Sect.1].Lemma 8. Let s be a general section of a vector bundle E over a possibly singularvariety X. Denoting by Z the zero set of s, one has�(Z) = ZX c(E)�1 �crankE(E) \ c�(X) : �Proof of Theorem 4.Step 1 We claim that the assertion is true if L is very ample.By Bertini theorem in the version of Verdier (see [V] and [G-H p.137]) thereexists a section s0 of L whose zero set Z 0 is nonsingular and transverse to Z. Thenwe have �(Z) = XS2Z �(S)��( �S n Z 0)= XS2Z �(S)�[�( �S)� �( �S \ Z 0)]= XS2Z �(S)�hZ �S c�( �S)� Z �S c(LjS)�1c1(LjS) \ c�( �S)i= XS2Z �(S)�Z�S(c(LjS)�1 \ c�( �S)) :Here, the �rst equality follows from Proposition 7 and the third one - from a standardproperty of the Chern-MacPherson classes and Lemma 8.Now consider the general case. We proceed by induction on n = dimX.Let M be a very ample line bundle on X such that L 
M is also very ample(such a bundle exists since X is projective). Let H be the zero set of a section of Msuch that H is nonsingular and transverse to Z. Then the family S nH (for S 2 Z),S \H (for S 2 Z) and H n Z de�nes a Whitney strati�cation of Z [H.Let T be the zero set of a general section of L
M such that T is nonsingularand transverse to the above strati�cation of Z [H.Step 2 We claim that(4) �(Z [H) = XS2Z �(S)h�( �S)� �( �SjM)� �( �SjL
M))� �( �SjM � (L
M))i� �(Z \H)� �(Z \H \ T )+ (�1)n(�(XjL�M)� �(XjL�M � (L
M)) ;



12where �(Z \H) = �(Z \H;H) and �(Z \H \ T ) = �(Z \H \ T;H \ T ).Indeed, by considering the above strati�cation of Z [H, we have�(Z [H) = XS2Z �SnH(Z [H)��(S nH n T ) + �HnZ(Z [H)��(H n Z)+ XS2Z �S\H(Z [H)��(S \H n T ) (by Proposition 7)= XS2Z �S ��(S nH n T ) + (�1)n XS2Z �(S \H n T )because obviously �SnH(Z[H) = �S(Z) = �S , �HnZ = 0, and �S\H(Z[H) = (�1)nby Lemma 3. Thus�(Z [H) = XS2Z �S ��( �S nH n T ) + (�1)n[�(Z \H)� �(Z \H \ T )] :But we have�( �S nH n T ) = �( �S)� �( �SjM)� �( �SjL
M) + �( �SjM � (L
M))and (�1)n�(Z \H) = ��(Z \H) + (�1)n�(HjL)= ��(Z \H) + (�1)n�(XjL�M) ;(�1)n�1�(Z \H \ T ) = ��(Z \H \ T ) + (�1)n�1�(H \ T jL)= ��(Z \H \ T ) + (�1)n�1�(XjL�M � (L
M)) :All these equalities give (4).Step 3 We claim that(5) �(Z [H) =�(Z) + �(Z \H)+ (�1)n��(XjL) + �(XjM)� �(XjL�M)� �(XjL
M)� :Indeed, by the de�nition of �(�) and the additivity of Euler characteristic, wehave �(Z [H) =(�1)n[�(Z [H)� �(XjL
M)]=(�1)n[�(Z) + �(H)� �(Z \H)� �(XjL
M)]=�(Z) + (�1)n[�(H)� �(Z \H) + �(XjL)� �(XjL
M)] :But �(H) = �(XjM) and (�1)n�1[�(Z \H)� �(XjL�M)] = �(Z \H). Thus theabove equation gives (5).



13Step 4 For arbitrary line bundles L and M on any compact analytic variety Y , thefollowing equality holds(6) 2�(Y jL�M) + �(Y jL
M) = �(Y jL) + �(Y jM) + �(Y jL�M � (L
M)) :This equation was proved in a more general framework in [H, Theorem 11.3.1].We leave to the reader a veri�cation of the following equality2ab(1 + a)�1(1 + b)�1 + (a+ b)(1 + a+ b)�1=a(1 + a)�1 + b(1 + b)�1 + ab(a+ b)(1 + a)�1(1 + b)�1(1 + a + b)�1 :This equality (with a = c1(L) and b = c1(M)) and the de�nition of �(XjE) implies(6).Step 5 (Inductive step) In order to prove the formula we use the induction onn = dimX. Assume that the formula holds for �(Z \H) and �(Z \H \ T )(7) �(Z \H) = XS2Z �(S)[�( �SjM)� �( �SjL�M)] ;(8) �(Z \H \ T ) = XS2Z �(S)[�( �SjM � (L
M))� �( �SjL�M � (L
M))] :It follows from (4) and (5) that�(Z) =XS �(S)���( �S)� �( �SjM)� �( �SjL
M) + �( �SjM � (L
M))�� 2�(Z \H)� �(Z \H \ T )+ (�1)n�1h�(XjL) + �(XjM)� �(XjL
M)�2�(XjL�M)� �(XjL�M � (L
M))i ;the latter summand being zero by (6). Using (7) and (8) we thus obtain:�(Z) =XS �(S)h�( �S)� �( �SjM)� �( �SjL
M) + �( �SjM � (L
M))+ 2�( �SjM)� 2�( �SjL�M)��( �SjM � (L
M))� �( �SjL�M � (L
M))i=XS �(S)[�( �S)� �( �SjL)] ;by applying (6) once again. This gives the desired assertion. �



14 Theorem 4 has been proven under the assumption of the projectivity of theambient space X, which allows one to use the Bertini-Verdier theorem. Nevertheless,it seems reasonable to state the following:Conjecture:The formula of Theorem 4 holds for any compact complex manifold X. In otherwords, the assumption of projectivity of X can be dropped.(See Example 5 for some evidence for this conjecture.)
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