A FORMULA FOR THE EULER CHARACTERISTIC

OF SINGULAR HYPERSURFACES!

Adam Parusinski’ & Piotr Pragacz

11991 Mathematics Subject Classification. Primary 57R20, 32520, 32525.
2Research carried out during the author’s stay at the Max-Planck-Institut fiir Mathematik as
a fellow of the Alexander von Humboldt Stiftung.

Typeset by AMS-TEX



INTRODUCTION

Formulas expressing topological invariants of varieties using different charac-
teristic classes are among the most useful applications/tools of algebraic geometry.
A particularly rich work on this subject has been devoted to the dependency loci
od vector bundle sections and, more generally, degeneracy loci of vector bundle
morphisms ( i.e. sets of points where a morphism drops the rank) - this theory is
surveyed in [P-P1].

In [P-P2] the authors gave a formula for the (topological) Euler characteristic
of the degeneracy locus of a general morphism ¢: FF — FE of holomorphic vector
bundles on a variety X (that is such that the induced section s,: X — Hom(F, E)
is transverse to all tautological degeneracy loci). It is natural to ask whether this
formula can be generalized to the case of a broader family of morphisms. For
instance, the Giambelli-Thom-Porteous formula describing the fundamental class of
a degeneracy locus is valid under the weaker assumption that the codimension of
the degeneracy locus is ”expected”.

It turns out that the problem is highly nontrivial even in the simplest possible
case, that is when the morphism is a nontrivial section s of a line bundle L and the
degeneracy locus is its zero set Z.

As it is well-known (see, for instance, [Di] and [Pal]) if Z has only isolated
singular points, the difference between the Euler characteristic x(Z) of Z and the
number expected for the Euler characteristic of the zero set of a general section of
L is (up to sign) the sum of Milnor numbers of the singular points of Z. Therefore
the difference in question may be thought as a ”generalized Milnor number”.

In [Pal] the first named author gave the following characterization of the gener-
alized Minor number (in fact this property served for the definition of this number
in loc.cit.). Fix a Hermitian metrix on L and consider a standard decomposition
of the associated metric connection D = D’ + D"”. Then the generalized Milnor
number equals the intersection index of D’s and the zero section computed near Z.

The main purpose of this paper is to give a new formula for the generalized
Milnor number which is completely different in the spirit and is worked out in the
framework of algebraic and analytic geometry (Theorem 4). The present approach
involves three major tools: a Whitney stratification Z of Z, local invariants of the
singularities of Z coming from the Milnor fibration and Chern-MacPherson classes
of the strata closures. Our formula for the generalized Milnor number has a clear
"algebro-geometric” form. It is a sum of the following expressions indexed by the
strata S of Z

[ ) e ne(s),

where a(S) is a certain number determined by the Milnor fibration attached to Z
and c¢,(9) is the Chern-MacPherson class of the closure of S (see [McP] and also
[S],[B-S]).

The proof of Theorem 4 combines the techniques from differential geometry and
topology with that of projective algebraic geometry. The first ones allow us to find
a simple expression for the generalized Milnor number in the situation when there



exists a smooth divisor Z’ linearly equivalent to Z and transverse to Z (Proposition
7). Using the Bertini theorem in the version of Verdier ([V]) and a property of
Chern-MacPherson classes (Lemma 8), this allows us to prove our formula for very
ample L. Now, given an arbitrary line bundle L we pick a very ample M such that
L ® M is also very ample. Let H be a nonsingular and transverse to Z zero set of
a section of M. Then, knowing that the formula is true for Z U H we show that
it holds also for Z, by induction on dimZ. The induction step depends heavily
on subtle calculations of the Euler characteristics of some Milnor fibers (Lemma 3)
and a specialization of the Hirzebruch functional equation for the virtual T)-genus
(cf.(6)). The main formula is proven under the assumption of projectivity of the
ambient space X. We conjecture (see the end of this article) that this assumption
can be dropped.
Some of the results presented here were announced in [P-P1].

Conventions:

Let X be a complex manifold and let L be a holomorphic line bundle on X.
Having chosen a Hermitian metric on L, the norm of a vector in L will be denoted
by ||v]|- By Be € C™ (resp. S2"~! C C") we will denote the open ball (resp. the
sphere of real dimension 2n — 1) with center at the origin and the radius e. Finally,
a complex number ¢ will be called small if |¢| (the absolute value of ¢) is a small
positive real number.




Let X be a compact n-dimensional complex manifold and let L be a holomorphic
line bundle over X. Take s € H°(X, L) a holomorphic section of L such that the
zero set Z of s is a (nowhere dense) hypersurface in X.

We define the number pu(Z, X) as follows

w2, X) = (-1)"(x(2) — x(X]|L)),

where for a vector bundle FE over X, we define

C(X[E) = [ B) e (E)e(X).
X

Recall that x(X|E) equals the Euler characteristic of the zero set of a general section

of E, i.e. a section transverse to the zero section (see e.g. [P-P]). Usually, we will

write p(Z) instead of u(Z, X).

Example 1. Assume that Z has only isolated singular points. Pick one such z € Z.
In local coordinates z = (z1,...,2,) around = € Z the hypersurface Z is defined
by a holomorphic function f. We may assume that x is the origin in C" and f is
defined in a neighbourhood of z. For small positive € and 6 (and 0 < § < ¢) the
intersection f~1(6)N B. has the homotopy type of a bouquet SV...VS, where S is
a sphere of real dimension n — 1 (see [Mi]). The number of spheres p,, say, is called

o

the Milnor number of Z at x. Since Z N B, is contractible
X(Z N P’e) - X(f_l((s) N f)’e) = (_1)n:um .

It is not difficult to see (cf. [Pal] for instance) that if Z has only isolated singularities,
then
W(Z) = x(Z) - x(XIL) = (-1 Y .
z€Sing(Z)

Recall that an alternative algebraic expression for the Milnor number is given
by the formula

po = dimc C{z}/(0f[0z1,- - ,0f/0z) .
For other interpretations of the Milnor number we refer the reader to [M] and [O].

In virtue of the example p(Z) may be thought as a ” generalized Milnor number”.

Let x be an arbitrary point of Sing(Z) and assume that in local coordinates
around = the hypersuface Z is the zero set of (the germ of) an analytic function
f:(C™,0) — (C,0). Choose an ¢ > 0 small enough and ¢ > 0 such that 0 < § < e.
Let Dy = {z € C;0 < |2|] < 6} be a small open punctured disc in C. Then, f
restricted to B, N f7Y(Dz) is a smooth locally trivial fibration for any 0 < § < ¢
small enough (this variant of the Milnor fibration theorem [Mi] stems from [Lé] and
[Ha]). We call this fibre the Milnor fibre attached to x and will denote it by F,.



Definition. We define u(Z,z) := (=1)""1(x(F;) — 1).

Example 2. If z is a nonsingular point of Z, then p(Z,z) = 0. If x is an isolated
singularity, then u(Z,z) = (=1)""1 (1 + (=1)" " tdimqH" ! (F,, Q) — 1) = /5, the

usual Milnor number of Z at z.

Let Z be a Whitney stratification (see e.g. [G-M]) of Z. Then by a recent
result obtained independently in [Pa2| and [B-M-M], Z is a "good” stratification of
Z. Recall that a stratification Z of Z is traditionally called "good” if it satisfies the
following local condition (which is independent of the choice of local coordinates).
Assume that as above Z is described locally as the zero set of f: C™" — C. We say
that Z is a "good” stratification of Z if for each sequence x € C™ \ Z converging
to o € Z and such that the sequence T}, (f~*(f(xx))) of the tangent spaces to the
fibres of f has a limit 7 (in P"~1), T contains the tangent space to the stratum
containing . Now we pass to a characterization of ”good” stratifications using
local coordinates. Assume that x is the origin and the stratum containing z is
given locally by the equations z; = ... = z; = 0. Then the above condition can be
described as follows:

||(8f/8z,7+1(z)7 v 78f/8zn(z))|| z—0

1@F[02(2), .. .01 /02,(2))] -

(1)

If Z is a Whitney stratification of Z then by Thom’s Second Isotopy Lemma
(see e.g. [G, Theorem 5.8]) the topological type of the Milnor fibres F, at z is
constant along the strata of Z.

Notation. For S € Z we denote by pg the value of 2 +— p(Z,z) on S.

The following result, which is a particular case of Theorem A of [N], gives an
example of a more elaborate calculation of x(Z,z), which will be important in the
inductive step of the proof of Theorem 4. We present a short, independent proof
for the reader’s convenience.

Lemma 3. Let Z be a hypersurface in X and let H be a nonsingular hypersurface
of X transverse to a Whitney stratification of Z. Then for each x € Z N H

mZUH,x)=(-1)"

(in the other words the Euler characteristic of the Milnor fibre of Z U H attached to
x 18 zero).

Proof. Assume that x is the origin in C™ and let Z and H be the zero sets of f
and z, respectively, so Z U H is the zero set of g(z) = z, f(z). For z € C™ we write
z = (2, 2,), where 2’ € C"~1. We assume that the line | = {(0, z,) € C"~! x C}



is contained in the stratum of a Whitney stratification Z of Z which contains x.
Denote by G the Milnor fibre of Z U H at the origin. We shall show that, up to
homotopy equivalence, G fibres over a circle and therefore x(G) = 0, as desired. In
the proof we use standard facts of real analytic geometry which can be found in [L]
and [G].

First, consider the family of hypersurfaces Z(z,) in C*~! given by the equations
f(x,2,) = 0 with fixed z,,. Since Z is "good”, the Milnor fibres of Z(z,) at 0 € C*~!
are homeomorphic to the Milnor fibre F’ of Z N H at the origin, provided z, is
sufficiently small. Moreover, by the regular separation [L, §18], one may find ¢y > 0
and m € N such that for every |z,| < ep and 0 < e < ¢g, c € C with 0 < |¢] < ™,
the space

{(# e OV L] < e, f(, ) =}

depending on z, and ¢, is homeomorphic to F’. Instead of the ordinary representa-
tives of G )
Gee=g (c)NB: ¢eC,0<|¢c|l<ex1

we consider
Gee =g He)NU. ceC,0<|clxex,

where
Ue ={(z,22) € C ||| <&, |zn] <&, |f(Z,2,)] <™}

(we will show below that they are homotopically equivalent). Note that the image of
G, by the projection 7, defined by 7, (2) = 2y, is the annulus {z € C; % < z < ¢}
and the fibres are homeomorphic to F”’. Since m,, restricted to G . is semi-analytic

and can be stratified, this already gives x(G. ) = 0. But, in fact, using (1) one may
easily prove that Tn|G. . is a locally trivial smooth fibration.

To complete the proof we will show that ée,c are homotopically equivalent to
Gec for 0 < Je] € e < 1.
Consider a one-parameter family of neighbourhoods of the origin in C”

Ve=¢7'([0,¢)),

where ¢p: C" — R is a semi-analytic continuous function (the same argument is
valid if ¢ is subanalytic) and ¢=1(0) = 0. Fix ¢j > 0 and ¢ € C \ {0} and let

®:Vy Ng H({te;0 <t <1}) — Ry x [0, 1]

be given by ®(z) = (||z]|,9(2)/c). Since ® is semi-analytic and continuous, it can
be stratified and by the properties of semi-analytic sets there exist ¢y and m € N
such that all

G, =g '(te)NVe.

are homeomorphic if only (e,t) € {(,¢);0 < € < €0,0 < t < ™} =: A, say.
Moreover, the homeomorphisms can be obtained by the integration of vector fields
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(Thom’s First Isotopy Lemma |G, Theorem 5.2]) and therefore for all (e, t), (¢/,t) €
A, e <€, G, is a deformation retract of G, ;.. Take e9 good for both families

B. and U, and choose ¢; (i = 1,2,3) such that
B, DU, DB, DU,,.

By the above, for sufficiently small ¢ > 0, G, ;. is a deformation retract of G, .

and éel,tc is a deformation retract of ég37tc. Therefore G, +. and éghtc are homo-
topically equivalent. This ends the proof. [

The next theorem, which is the main result of this paper, gives a formula for
the generalized Milnor number p(Z) in terms of a Whitney stratification of Z, local
invariants of the singularities of Z coming from the Milnor fibration and Chern-
MacPherson classes of the strata closures.

Theorem 4. Let X be a nonsingular subvariety of PN and let Z be the zero set of
a holomorphic section of a holomorphic line bundle L over X. Let Z be a Whitney
stratification of Z. Then

u(2)= Y a(s): [ (elLls) " ned(s)).

Sez o

where a(S) = ps — D g5 .55 a(S'), and c«(S) denotes the Chern-MacPherson
class of S (-the closure of the stratum S ).

For a definition of Chern-MacPherson classes the reader can consult [McP];
classes essentially equivalent to the above were defined independently by M. H.
Schwartz [S], [B-S]. In [P-P2, Section 1] we recall a more algebraic approach to
Chern-MacPherson classes, given by Gonzalez-Sprinberg, Verdier and others and
provide some auxiliary properties of Chern-MacPherson classes needed in the sequel
of the present paper.

Before we start the proof we give some examples illustrating the theorem.

Example 5. Assume that Y = Sing(Z) is nonsingular and that the pair (Z\Y,Y)
satisfies Whitney Conditions. Then, for z € Y

py = p(Z,x) = (_l)m/'l'(n_m)(zv ),
where m = dimY and p("~™)(Z,z) is the (n — m)-th Teissier number of Z at
(see [T]). Recall that u(»~™)(Z, z) is the Milnor number at x of Z N L where L is a

sufficiently general (n —m)-dimensional linear space containing . Now the theorem
asserts

mm=ug/dmfwwrP

Y

As it was proved in [Pal], using the index characterization of p(Z) recalled in the
Introduction, the above formula holds without the assumption of projectivity of X.
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Example 6. Let Y = Sing(Z) be nonsingular and let Z consists of 3 strata:
S1=72-Y,5 =Y — 53 and S3. Then the theorem gives

W(Z) = ps, /

[ r)elEly) ™ + (s, = ) / ¢(S3)-¢(Lls,) "

S3

In order to prove Theorem 4, let us first prove the following proposition (in
which we do not assume the projectivity of X).

Proposition 7. Let L be a holomorphic line bundle over a compact n-dimensional
manifold X. Assume that a hypersurface Z in X is the zero set of s € H°(X, L)
and let s be a holomorphic section of L such that the zero set Z' of s is nonsingular
and transverse to a Whitney stratification Z of Z. Then

wZ) =Y ps-x(S\Z') =Y a(S)-x(S\ 7).

Sez SeZ

Proof. We will approximate Z by the zero sets Z; of the sections sy = s—ts’ (t € C).
First, we note that for small ¢ # 0 all the Z; are nonsingular and transverse to Z.
In fact, by Bertini’s Theorem (e.g [G-H, p.137]) the singularities of generic Z; are
contained in Z N Z'. Fix xg € Z N Z' and investigate Z; around xy. Denote the
sections s and s’ by f and g respectively and consider them as functions. By the
transversality of Z’/ to Z and the fact that Z is a "good” stratification, the levels
of f and g are transverse with the angle bounded from below by a nonzero positive
constant. In particular, d (f — tg) = d f — t-d g nowhere vanishes on Z; (for ¢t # 0)
and Z; is transverse to Z.

Let us fix a Hermitian metric on L. For ¢ small enough it is easy to see that
Z N Z'"is a strong deformation retract of

Zye ={w € Zy; ||s' (@)l <e}

provided ¢ is sufficiently small. (For ¢ = 0, this follows from the transversality
assumption.)

Step 1. We claim that for a sufficiently small ¢ we can find an universal € > 0 such
that Z N Z’ is a strong deformation retract of Z; .

Proof of the assertion of Stepl. Take small ¢ # 0. We shall show that Z; . can be
retracted onto Z N Z’ using the flow generated by the orthogonal projection on Z; .
of grad ||s'||. To prove it, it suffices to show that the projected vector field does not
vanish on Z; .\ ZNZ'. We proceed locally in a neighbourhood of some zy € ZNZ’.
So assume that z is the origin in C™ and s = f-e, s’ = g-e, where e is a non-
vanishing holomorphic section of L defined in a neighbourhood of xy and f, g are
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holomorphic functions. Let D be the associated connection and #-the connection
form with respect to e. Then

d(||s'|?) = (g-e, Dg-e) + (Dg-e, g-e)
(2) = (dlgl* + |g>(0 + 6))]le|”
= ((gdg + |9/°0) + (gdg + |g9]20))|le])”.

As xp is a regular point of g, we may choose such local coordinates with the
origin in g, that g(z) = 2z, and in a neighbourhood of zy a given stratum of Z
(that is transverse to H = {z;z, = 0} by the assumption) is given locally by the
equations z; = ... = z; = 0 where j < n. Then, writing df = d'f + (0f/0z)dzp,
we have (near xg) by (1)

(3) ld'fl| = C-|0f [0zl

for some universal C' > 0.

Take z ¢ Z U Z' and near xq (these properties of z will be assumed up to the
end of Step 1). We show that the levels of ||s’||? and f/g are transverse at z. For
this purpose we consider the conormal vectors to them. Let t(z) := f(2)/g(2). The
holomorphic part of the conormal vector to the former, given by (2), equals

g(z) dg(2) + 9(2)|*0(2) = zZndan + |2a|*0(2)
and the holomorphic conormal vector to the latter is

9(2) 7 ((df (2) — t(2)-dg(2)) = 2, " (df (2) — (£ (2)/ 2n)dn) -

To prove the statement it is enough to show that the above vectors are independent
for z sufficiently close to xg.

Suppose that they are linearly dependent. Then this implies the linear depen-
dence of I1(z) = dz, + 2,0(z) and l2(2) = dz, + (0f/02,(2) — f(2)/2,) " d' f(2) for
z sufficiently close to xp. We use the following inequality due to Lojasiewicz [L, §18
Proposition 1]:

10f/0z1,...,0f[0zn)l| = |FI*,

for some 0 < o < 1, which holds in some neighbourhood of zy. Since # is bounded
in a neighbourhood of zg, the second summand of /;(z) is bounded near zy. On
the other side, it follows from the Lojasiewicz inequality combined with (3) that the
second summand of l2(z) is unbounded in a neghbourhood of zy. This leads to a
contradiction.

The proof of the assertion of Step 1 is complete. [

Fix e given by Step 1 and let Y be a compact manifold (with boundary) defined
as X \ {z € X;||s'(x)|| < ¢€}. Note that the stratification Z is transverse to 9Y.
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One of the main properties of Whitney stratification is a topological equisingu-
larity. It says that if (Z, Z) is a set with Whitney stratification, then the topological
type of Z at x € S € Z, does not depend on the choice of the point z on a given
stratum S. This follows from Thom'’s First Isotopy Lemma, whose proof is based
on the technique of extending vector fields (the reader can consult [G, Chapter II])
and requires a construction of the system of tubular neighbourhoods of the strata
(loc.cit. Chapter II §2).

Step 2 (A construction of a system of tubular neighbourhoods I's of SNY in Y')
For § € Z we define I'g inductively on dimS as follows:

s = {z € Y;dist(z,5) < b6s}u | Ts,
5'CS\S
where dg is a sufficiently small number such that:
(a) Gs =T's \ Usicz\5Int(l's) is a manifold with corners which (as a stratified
set) is transverse to Z.
(b) G is a locally trivial topological fibration over S := § N Gs (by Thom’s First
Isotopy Lemma) We denote this fibration by 7g.
(¢) S is a manifold with corners with the same homotopy type as SNY (which can
be shown by gluing the vector fields given by (b)).
(A more complicated system of tubular neighbourhoods satisfying the above
properties was constructed by Dubson [Du, Proposition I 1.4.2.B])

Claim: The map 7TS|ZmGS ZiNGg — S is a locally trivial topological fibration
and its fibre F,,, z € S, is homotopically equivalent to the Milnor fibre F,.

Indeed, since Z is a "good” stratification, Z; (for sufficiently small ¢t # 0) is
transverse to the fibres of Ts. In partlcular slznGs: Ze N Gg — S is a locally
trivial fibration. Its fibre F, at # € S is homotopically equivalent to the Milnor
fibre F, by Thom’s First Isotopy Lemma.

Finally we have

x(Z) = x(Zi) =x(ZNY)-x(Z:nY)
=) (x(S) = x(Z:n Gs))

Sez

= Z (X(S') — X(S’)x(ﬁ’m)) (by Claim; here, z € S)
Sez

(" 3 Sus

If € is sufficiently small, then x(S) = x(SNY) = x(S\ Z') for every S € Z.
Therefore, by the above we get

w(Z) = (~1)"[X(2) = x(Z)) = ) ns-x(S\ Z')
SeZ

= > al8)x(5\ 2,

Sez
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where the latter expression is just a simple rewriting of the former.
This completes the proof of Proposition 7. [

We record the following formula for a proof of which we refer to [P-P2, Sect.1].

Lemma 8. Let s be a general section of a vector bundle E over a possibly singular
variety X . Denoting by Z the zero set of s, one has

X(Z):/Xc(E)_l-cmnkE(E)ﬁc*(X). 0

Proof of Theorem 4.
Step 1 We claim that the assertion is true if L is very ample.

By Bertini theorem in the version of Verdier (see [V] and [G-H p.137]) there
exists a section s’ of L whose zero set Z’ is nonsingular and transverse to Z. Then
we have

= Y ad)[ [ e~ [ el el ne.d)

Here, the first equality follows from Proposition 7 and the third one - from a standard
property of the Chern-MacPherson classes and Lemma 8.

Now consider the general case. We proceed by induction on n = dimX.

Let M be a very ample line bundle on X such that L ® M is also very ample
(such a bundle exists since X is projective). Let H be the zero set of a section of M
such that H is nonsingular and transverse to Z. Then the family S\ H (for S € 2Z),
SNH (for S € Z) and H \ Z defines a Whitney stratification of Z U H.

Let T be the zero set of a general section of L ® M such that T' is nonsingular
and transverse to the above stratification of Z U H.

Step 2 We claim that

w(ZUH)= Za(S)[X(S)—X(5|M)—X(5|L®M))—X(5|M@(L®M))
Sez
(4) —WZNH) - u(ZOHNT)

+(-D)"x(X|LeM)-—x(X|[LeMa (Lo M)),
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where p/(ZNH)=pu(ZNH,H)and pf(ZNHNT)=pu(ZNHNT,HNT).
Indeed, by considering the above stratification of Z U H, we have

W(ZUH) =Y ps\a(Z U H)x(S\ H\T) + pgy2(Z U H)x(H \ 2)

Sez
+ Y psnu(ZUH)-x(SNH\T)  (by Proposition 7)
SezZ
=> s x(S\H\T)+(-1)" Y _ x(SNH\T)
SezZ SezZ

because obviously pus\g(ZUH) = ps(Z) = ps, pa\z = 0, and psng(ZUH) = (—-1)"
by Lemma 3. Thus

pZUH) = asx(S\H\T)+ (-)"[xX(ZNH) = x(ZnHNT)].
SeZ

But we have

L

X(S\H\T)=x(5) = x(S|M) - x(S|L® M)+ x(S|M & (Lo M))

and
(=1)"X(Z N H) = —u(Z 1 H) + (~1)"x(H|L)
=—wZNnH)+ (-1)"x(X|Lo M),

()" *x(ZNHNT)=—u(ZNHNT)+ (-1)""'x(HNTI|L)
—uw(ZOHNT)+ (-1)" x(X|Leo M & (L® M)).

All these equalities give (4).
Step 3 We claim that

W(Z U H) =p(Z) + (20 H)

(5) + (=) [X(X|L) + X(X|M) = x(X|L & M) — X(X|L® M)] .

Indeed, by the definition of u(x) and the additivity of Euler characteristic, we
have
wZUH)=(-1)"[x(ZUH) - x(X|L® M)
=(=D"[x(2) + x(H) = x(ZNH) — x(X|L & M)
=u(Z) + (=1)"[x(H) = x(Z N H) + x(X|L) = x(X|L ® M)].

But x(H) = x(X|M) and (—=1)""}[x(ZNH) - x(X|L& M)] = pu(Z N H). Thus the
above equation gives (5).
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Step 4 For arbitrary line bundles L and M on any compact analytic variety Y, the
following equality holds

(6) 2x(Y|[LeM)+x(YILOM)=xY|L)+xY|M)+x(Y|ILeMea (Lo M)).

This equation was proved in a more general framework in [H, Theorem 11.3.1].
We leave to the reader a verification of the following equality

2ab(1+a) M1 +b) "1+ (a+b)(L +a+b)7?
=a(l+a) " +b1+b)" " +abla+b)(1+a) " (1+b) ' (1+a+b)~".

This equality (with a = ¢;(L) and b = ¢1(M)) and the definition of x(X|E) implies

(6)-

Step 5 (Inductive step) In order to prove the formula we use the induction on
n = dimX. Assume that the formula holds for u(Z N H) and u(ZNHNT)

(7) w(ZNH) =Y a(S)X(SIM) - x(S|IL e M),
SezZ

(8) wZnHNT) = Z a(S)[x(SIM & (L® M)) —x(SILe& M ® (L® M))].
Sez

It follows from (4) and (5) that

wZ) =" a(S)-[x(5) = x(8|M) - x(S|L ® M) + x(S|M & (L ® M))]
S
—2(ZNH)—pu(ZNHNT)
+ (=1)" 7 (XIL) + X(X|M) = X(X|L ® M)

“O(X|LoM)—y(X|[LoMe (Lo M))] ,
the latter summand being zero by (6). Using (7) and (8) we thus obtain:

) :Za(s)[x(g)—X(5|M)—X(5|L®M)+X(5|M@(L®M))
S

+2x(S|M) — 2x(S|L & M)
—x(SIM® (Le M))—x(S|IL&M & (L® M))

by applying (6) once again. This gives the desired assertion. [
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Theorem 4 has been proven under the assumption of the projectivity of the
ambient space X, which allows one to use the Bertini-Verdier theorem. Nevertheless,
it seems reasonable to state the following:

Conjecture:
The formula of Theorem 4 holds for any compact complex manifold X. In other

words, the assumption of projectivity of X can be dropped.
(See Example 5 for some evidence for this conjecture.)
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