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2 The �rst problem was solved positively by the second named author [Pr1,Proposition 5.7], by the use of polynomials universally supported on degeneracy loci- the technique invented and developed in loc.cit.; this result was a starting pointof the present work.We refer the reader to [P-P1] for more information of both mathematical andhistorical nature concerning these topics.In the present paper, in Section 2, we give an explicit formula (Theorem 2.10)for the Euler characteristic �(Dr(')) only under the assumption that ' is anr-general holomorphic morphism of vector bundles on a possibly singular variety.Maybe the most transparent de�nition of the r-generality of a morphism ' overa nonsingular pure-dimensional X is given by imposing the conditions: the subsetDk(')nDk�1(') is nonsingular of pure dimension dimX� (rankF �k)(rankE�k)for every k = 0; 1; :::; r. Thus, the "stronger version" of Harris and Tu's problem ishere positively solved. In fact, we prove a more general result because we compute(in Theorem 2.1) the image of the whole Chern-Schwartz-MacPherson class of Dr(')in the homology of X (the formula for �(Dr(')) then results by taking the degreeof the 0-dimensional component of this image).The key point of our argument is to pass �rst to a certain desingularization ofDr(') and calculate explicitly the image of the homology dual to its Chern class inthe homology of X. To this end, by using some algebra (of symmetric polynomialsand Gysin push forwards), we show that this image has the form P \ c�(X) whereP = P (fcig; fc0jg) is a polynomial universally supported on the r-th degeneracy locusand not universally supported on the (r�1)-th one, specialized by setting ci = ci(E),c0j = cj(F ). Thus "morally", without changing the result of the computation, wecan assume that Dr�1(') = ;. But then the desingularization equals Dr(') and thewanted class is known by [Pr1, Proposition 5.7] quoted above. Precise argumentsrequire some rather detailed information about the algebraic structure of the idealof all polynomials universally supported on the r-th degeneracy locus which is apart of the theory developed in [Pr1] an [Pr2].Secondly, stratifying Dr(') by the subsets where the rank of ' is constant,the desingularization turns out to be a Grassmannian bundle over each stratum.This leads to an equation with the known H�(X)-image of the Chern class of thedesingularization on the one hand side and a linear combination of the unknownH�(X)-images of the Chern-Schwartz-MacPherson classes of Dk(') (k � r) - onthe other one. By varying r, this leads to a system of linear equations in theunknown H�(X)-images of the Chern-Schwartz-MacPherson classes of Dr(') (andwith known coe�cients). Solving this system of equations with the help of somealgebra of binomial numbers, we get the looked at formula. Our method enablesus to write the desired formula in a clear and compact algebro-geometric formas a sum of polynomials universally supported on the subsequent degeneracy lociDr(') � Dr�1(') � : : : � D0(').We need here a theory of Chern classes for singular varieties. There are severalways of extending Chern classes to this case. The approach which we �nd "thebest suited" for computing the Euler characteristic, was given by R.D. MacPherson



3[McP], and in a di�erent form by M. H. Schwartz [S]. The functorial approachof MacPherson is especially useful for the purposes of this paper. We recall itin Section 1 where we also establish some simple and useful properties of Chern-Schwartz-MacPherson classes that we need in the proof of our main Theorem 2.1.As a by-product of our considerations, we get also a formula for the IntersectionHomology-Euler characteristic of Dr(') associated with an r-general morphism '(Theorem 2.12).As an example of an application of our formula, we compute the Euler character-istic of the Brill-Noether loci W rd (C) = fL 2 Picd(C)j h0(C;L) > rg parametrizingall complete linear series of degree d and dimension r on a general curve C (Theorem3.4). This is done using a presentation of W rd (C) as a suitable degeneracy locus inthe Jacobian of C due to Kempf [K] and Kleiman-Laksov [K-L] , combined withsome results of Gri�ths-Harris [G-H] and Gieseker [Gi]. We give also formulas forthe Intersection Homology-Euler characteristic of W rd (C) and the Euler character-istic of Grd(C) = f grd 0s on C g - the variety parametrizing all linear series of degreed and dimension r on C.For the formula of Theorem 2.10 to hold, it is not enough to assume only thatthe degeneracy locus has the expected codimension, even in the case of a sectionof a line bundle over a nonsingular projective variety. We investigate this case indetail in [P-P2]. The di�erence between the Euler characteristic of a "nongeneral"hypersurface and the expected polynomial in Chern classes is measured with thehelp of topological invariants of singularities including some generalizations of theMilnor number and the Chern-Schwartz-MacPherson classes of the closures of thestrata of a Whitney strati�cation of the hypersurface.Some of the results presented here were announced in [P-P1].We thank Professor P. Deligne for an useful suggestion that the method ofa preliminary version of this paper (which appeared as Section 2 of Preprint ofthe Max-Planck Institut f�ur Mathematik No.90-68) should give not only a formulafor �(Dr(')) but also the image of the whole Chern-Schwartz-MacPherson class ofDr(') in the homology of X.Both authors have bene�ted a lot from the hospitality of Professor F. Hirzebruchin the Max-Planck Institut f�ur Mathematik during di�erent periods of the work onthis paper; we acknowledge this hospitality with gratitude. It is our pleasure todedicate the present work to Professor F. Hirzebruch.The second named author thanks J.B. Carrell for organizing a meeting in theU.B.C. in Vancouver (June 1989) where this research started.Notation and conventionsIn the this paper we work exclusively over the �eld of complex numbers. By ananalytic variety we mean, in this paper, a locus in a complex manifold given locallyas the zeros of a �nite collection of holomorphic functions.



4 For a (compact) analytic variety X, by �(X) we denote its Euler characteristicde�ned as the alternating sum of the ranks of the singular homology groups.For a topological space X, by H�(X) = �iHi(X) we understand the Borel-Moore homology groups (see, e.g., [F, Chap.19]) and by H�(X) the singular coho-mology ring (both with integer coe�cients).For any analytic variety X, by [X] we denote the fundamental class of X inH�(X).If f : X ! Y is a morphism of pure-dimensional nonsingular analytic varietiesthen by f� : H�(Y )! H�(X) we denote the morphism:Hi(Y ) = H2dimY�i(Y )! H2dimY�i(X) = Hi+2dimX�2dimY (X):For a given element z 2 H�(X), X compact, by RX z we denote the degree ofthe 0-dimensional component of z.By dimX we mean always the complex dimension of X.If E is a vector bundle on X and f :Y ! X is a morphism of varieties, thenEY denotes the pull-back bundle f�E.For a given vector bundle E on X, by ci(E) 2 H2i(X), i = 1; : : : ; rankE, wedenote the i-th Chern class of E. The top Chern class of E is denoted by ctop(E).By si(E) we denote the i-th Segre class of E i.e. the i-th complete symmetricpolynomial in the Chern roots of E satysfying si(E) = (�1)ici(�E) (Note that thisconvention di�ers from that used in [F], where si(E) = ci(�E)). We assume alsosi(E) = ci(E) = 0 if i < 0.By c(E) = 1 + c1(E) + : : :+ ctop(E) we denote the total Chern class of E.As it is customary, we treat ci(E), si(E) and polynomials in them as operatorsacting on H�(X) (via the "\�" - map).For a nonsingular variety X, we denote by TX the tangent bundle of X; wewrite ci(X) instead of ci(TX) and assume ci(X) = 0 for i < 0.By a partition we mean a sequence of integers I = (i1; : : : ; ik), where i1 �i2 � : : : � ik � 0. We write l(I) for card fp j ip 6= 0g , jIj for P ip i.e. thenumber that is partitioned by I, I� = (j1; j2; : : : ) for the conjugate partition withjp = card fh j ih � pg and (i)k for (i; : : : ; i) (k-times). More generally, if l(I) � kand l(J�) � i then (i)k + I; J denotes the partition (i+ i1; : : : ; i+ ik; j1; j2; : : : ).For two partitions I; J , we write I � J if ik � jk for each k.1. Some properties of Chern-Schwartz-MacPherson classesIn order to prove our main formulas we need some properties of Chern-Schwartz-MacPherson classes. We were, however, unable to �nd convenient references andshall therefore state and prove these simple but useful results below.Let X be a possibly singular analytic variety. Recall that X admits always aWhitney strati�cation (see, e.g., [G-M]).The Chern-Schwartz-MacPherson class c�(X) 2 H�(X), in the version usedin the present paper, was introduced (for an algebraic X) by R.D. MacPherson in



5[McP]. In fact, the approach of MacPherson de�nes a class c�(X) also in the Chowgroup of cycles on X modulo rational equivalence (see [F, Ex.19.1.7]). It is knownthat MacPherson's c�(X) 2 H�(X) is equal, via the Alexander isomorphism, to theM.H. Schwartz class (see [S], [B-S]) de�ned originally in a di�erent way.Let us �rst recall briey MacPherson's de�nition. Assume that an irreduciblevariety X of dimension n is imbedded in a manifold M . Then the tangent bundleto the smooth part Xreg of X de�nes a section over Xreg of the Grassmannianbundle Gn(TM). By the Nash blowing-up �: eX ! X of X we mean the closureeX of the image of this section together with a map � induced by the restrictionof the projection of Gn(TM) on M . We denote by eT (or eTX) the restriction toeX of the tautological bundle over Gn(TM). Note that eT j��1(Xreg) is isomorphicto ��T (Xreg). All the above data are analytically independent of the imbeddingchosen since near each point, X has a unique minimal local analytic imbedding.The Chern-Mather class of X is de�ned in H�(X) bycM (X) = ��(c( eT ) \ [ eX]) :where [ eX] is the fundamental class of eX. We may de�ne cM for any analytic cyclePniVi of X by cM (XniVi) =Xni (incli)�cM (Vi) ;where incli is the inclusion of Vi in X.In [McP], MacPherson de�ned the local Euler obstruction EuX(x) of X atx 2 X. The function EuX is constructable with integer values. Though the originalde�nition of MacPherson is transcendental, there exists an algebraic approach toEuX due to Gonz�alez-Sprinberg and Verdier. The interested reader is referred to[Go], [L-T] or [F, Ex. 4.2.9]. We now record some well known properties of the localEuler obstruction needed in the sequel.Lemma 1.1.(1) EuX(x) is constant on the strata of (any) Whitney strati�cation of X.(2) EuX(x) = 1 if x 2 Xreg.(3) Assume that X is locally imbedded in C N and a nonsingular subvariety W �C N intersects a Whitney strati�cation of X transversely. Then, EuW\X(x) =EuX(x) for x 2W \X.(4) EuX�Y (x; y) = EuX(x)�EuY (y) for x 2 X and y 2 Y .In [McP] MacPherson de�ned an isomorphism T between the free abelian groupof analytic cycles on an analytic variety X and the space of constructable functionswith integer values on X by: T (PniVi) =PniEuVi(�). Here, given an irreduciblesubvariety V of X, we understand by EuV (�) the constructable function on Xwhich is equal to the above mentioned EuV on V , and zero otherwise. Let uscall T�1(1X) the Schwartz-MacPherson cycle of X. Equivalently, this is the cycle



6PniVi characterized by the property PniEuVi(x) = 1 for every x 2 X. TheChern-Schwartz-MacPherson class of X is de�ned in H�(X) byc�(X) = cM (T�1(1X)) ;and satis�es good functorial properties (see [McP] or [F, Ex.19.1.7]. Of course, for anonsingularX, we have c�(X) = c(TX)\[X]. Moreover, the following generalizationof Hopf's theorem or the Gauss-Bonnet formula for compact manifolds (that isexposed e.g. in [H, pp. 70-71]) now holds for possibly singular compact analyticvariety X:(1.1) �(X) = ZX c�(X) :Let us �x a Whitney strati�cation X of X. Let E be a holomorphic vectorbundle on X and let Z be the variety of zeros of a holomorphic section s of E.Assume that s intersects, on each stratum of X , the zero section of E transversely.Let �:Z ! X be the inclusion.We now record the following easy consequences of the properties of Whitneystrati�cations, Lemma 1.1 and the de�nition of the Schwartz-MacPherson cycle.Lemma 1.2. Let E, X, X and Z be as above. Then:(1) X induces a Whitney strati�cation of Z whose strata are of the form S \Z forS 2 X .(2) The Nash blowing-up of Z equals �Z : eZ = ��1(Z) ! Z where �Z is therestriction of � to eZ: eZ ~�����! eX�Z??y �??yZ �����! XMoreover, on eZ we have an exact sequence of vector bundles(1.2) 0! eTZ ! eTX jeZ ! ��Z(EjZ)! 0 :(3) If PniVi is the Schwartz-MacPherson cycle for X, then PniVi \Z is the onefor Z.It follows from (1.2) that c(eTZ) = ~�����c(E)�1 �c(eTX)�, and consequently wehave��cM (Z) = ��(�Z)��c(eTZ) \ [ eZ]� = ��(�Z)��~�����c(E)�1 �c(eTX)� \ [ eZ]�= ��~���~�����c(E)�1 �c(eTX)� \ [ eZ]� = �����c(E)�1 �c(eTX) \ ~��[ eZ]�= �����c(E)�1 ���ctop(E)�c(eTX) \ [ eX]� = c(E)�1 �ctop(E) \ cM (X):



7Assume that Y is a subvariety of X given by a union of strata of X . Then,since Z intersects X transversely, by the same argument as above for the inclusion�0 : Z \ Y ! Y , we have�0�cM (Z \ Y ) = c(E)�1 �ctop(E) \ cM (Y ) :It is known (see [L-T]) that the Schwartz-MacPherson cycle on X is a Z-combinationof the closures of strata (which are the unions of strata) of a Whitney strati�cationof X. Therefore, using this information, the above de�nition of the Chern-Schwartz-MacPherson class and Lemma 1.2(3), we now infer the following formula.Proposition 1.3. Let X;E and �:Z ! X be as above. Then��(c�(Z)) = c(E)�1 �ctop(E) \ c�(X) :In particular, for a compact analytic variety X,�(Z) = ZX c(E)�1 �ctop(E) \ c�(X) :We pass now to another formula. For a given vector bundle E on X, let�:Gr(E)! X denote the Grassmannian bundle parametrizing all rank r subbundlesof E. The variety G = Gr(E) is equipped with the tautological sequence0! R! EG ! Q! 0 ;where rankR = r.Observe that since �:G ! X is a locally trivial �bration with a nonsingular�ber, we have by Lemma 1.1:Lemma 1.4.(1) X induces a Whitney strati�cation of G whose strata are of the form ��1(S)for S 2 X .(2) The Nash blowing-up �G: eG! G of G is equal to the �bre product of � and �:(1.3) eG e�����! eX�G??y �??yG �����! X(3) For any z 2 G, EuG(z) = EuX(�(z)) and if PniVi is the Schwartz--MacPherson cycle for X then Pni��1(Vi) is the one for G.



8 It follows from Lemma 1.4(2) that [eTG] = [e�� eTX ] + [��G(R_ 
 Q)] and conse-quently we havecM (G) = (�G)��c(eTG) \ [ eG]� = (�G)����G�c(R_ 
Q) + e��c(eTX)� \ [ eG]�= c(R_ 
Q) \ (�G)��e��c( eTX) \ [ eG]�= c(R_ 
Q) \ (�G)��e��c( eTX) \ e��[ eX]�= c(R_ 
Q) \ (�G)� e���c( eTX) \ [ eX]�= c(R_ 
Q) \ �����c(TX) \ [ eX]� = c(R_ 
Q) \ ��cM (X)by the equality (�G)� � e�� = �� � �� which is a consequence of the �bre square (1.3).Let Y be a subvariety of X given by a union of strata of X . By the sameargument as above we getcM (��1Y ) = c(R_ 
Q) \ ��cM (Y ) ;where R and Q denote now the restrictions of the tautological bundles on G to��1Y , for brevity.Hence, arguing as in the proof of Proposition 1.3 and using Lemma 1.4(3), weobtain the following formula.Proposition 1.5. Let X;E; �:G! X;R and Q be as above. Thenc�(G) = c(R_ 
Q) \ ��c�(X) :For a given analytic variety X, denote by F (X) the group of constructablefunctions on X (with integer values). F (X) is a free abelian group generated bycharacteristic functions associated with irreducible subvarieties of X; given such asubvariety V � X, we de�ne its characteristic function 1V by 1V (x) = 1 if x 2 Vand zero otherwise. With every proper morphism of analytic varieties f :X ! Y , weassociate a homomorphism of groups fF� :F (X) ! F (Y ) de�ned on the generatorsof F (X) by fF� (1V )(y) = �(f�1(y) \ V );where � denotes the Euler characteristic. This makes F a covariant functor.Let f :X ! Y be a proper morphism of analytic varieties. Let S = fS�g be astrati�cation of Y such that the function fF� (1X) is constant along each stratum S�.In other words, for every � there exists an integer �� such that �(��1(x)) = �� forevery x 2 S�. (Note that all �� are �nite because f is proper.) Moreover, assumethat there is a unique top dimensional stratum of S, denoted S0.



9Proposition 1.6. In the above situation, there exists a unique family of integersfd�g such that fF� (1X) =X� d�1 �S� :Proof. We set d0 = �0. Assume that d� has been de�ned for every � such thatcodimY S� < c. We then de�ne, for every � such that codimY S� = c,d� := �� �X d� ;where the sum is over all � such that S� � S� . It is easy to check that the sode�ned family of integers fd�g satis�es the assertion. �2. Degeneracy LociLet X be an analytic variety. Let us �x a Whitney strati�cation X of X.Let ':F ! E be a holomorphic morphism of vector bundles on X of respectiveranks m and n. In order to state our main result we need an appropriate notion ofthe generality of the morphism. For a nonnegative integer k, let Dk � Hom(F;E)denote the k-th universal (tautological) degeneracy locus (the �ber of Dk over x 2 Xis equal to ff 2 Hom(F (x); E(x))j rank f � kg). We say that ' is r-general if thesection s':X ! Hom(F;E) induced by ' intersects, on each stratum of X , thesubset Dk nDk�1 transversely for every k = 0; 1; : : : ; r. For an pure-dimensional,nonsingular X, this condition can be expressed in a more transparent way (seeLemma 2.9(2)): a morphism ' is r-general i� for every k = 0; 1; :::; r, the subsetDk(') n Dk�1(') is nonsingular of pure dimension dimX � (m � k)(n � k) (here,D�1(') = ;).To state the main result of this paper we need some de�nitions.Given two vector bundles E;F (of �xed ranks n and m) on X and a partitionI = (i1; : : : ; ik), we de�ne in H2jIj(X) the classsI(E � F ) := Det �sip�p+q(E � F )�1�p;q�k ;where si(E � F ) := iXp=0(�1)i�psp(E)ci�p(F ) :In particular, if F = 0 then sI(E) = Det �sip�p+q(E)�1�p;q�k ; if E = 0 thensI(�F ) = (�1)jIjsI�(F ).Let m ^ n denote the minimum of m and n.



10 We now de�ne the following element in H�(X). We set	(k) := Pk(E;F ) \ c�(X);where Pk(E;F ) :=X(�1)jIj+jJjDkI;J s(m�k)n�k+I;J�(E � F ):Here, the sum is over all partitions I; J such that l(I) � m ^ n�k; l(J) � m ^ n�k,and DkI;J := Det �� ip + jq +m+ n� 2k � p� qip + n� k � p ��1�p;q�m^n�k :Observe that this determinant depends only on m � k, n � k and I, J . Thiswill be reected in the notation Dm�k;n�kI;J for this determinant, used in Section 3.The following formula gives an explicit expression for the image of the Chern-Schwartz-MacPherson class of Dr(') in the homology of X. Let �:Dr(') ! Xdenote the inclusion.Theorem 2.1. If ' is r-general then one has in H�(X)��(c�(Dr('))) = rXk=0 (�1)k�m ^ n� r + k � 1k �	(r � k):We refer the reader to the end of this Section for some examples illustratingthe theorem.The proof of Theorem 2.1 requires several preliminary de�nitions and results.Following [Pr1] we say that a polynomial P (c1; : : : ; cn; c01; : : : ; c0m), where fcig; fc0jgare independent variables, is universally supported on the r-th degeneracy locus iffor every variety X and every morphism ':F ! E of vector bundles on X withrank F = m, rankE = n and every � 2 H�(X), we haveP (c1(E); : : : ; cn(E); c1(F ); : : : ; cm(F )) \ � 2 Im(��) :Here, �� : H�(Dr(')) ! H�(X) denotes the induced morphism of the homologygroups. The set of polynomials universally supported on the r-th degeneracy locusforms an ideal which was originally described with generators and a Z-basis in [Pr1]for Chow homology replacing in the above de�nition the Borel-Moore homology. Itwas then shown in [P-R] that for Borel-Moore homology the analogous ideal admitsexactly the same description. Let us recall a coarse description of this ideal.Given c1; : : : ; cn as above, we de�ne inductively (ci = 0 for i > n),si := si�1ci � si�2c2 + � � �+ (�1)i�1ci:



11Then, we de�ne si(c:; c0:) by the formulasi(c:; c0:) :=X(�1)i�pspc0i�p :Finally, for a given partition I = (i1; : : : ; ik) we setsI(c:; c0:) := Det �sip�p+q(c:; c0:)�1�p;q�k :In particular, the class sI(E � F ) de�ned above is sI(c:; c0:) with ci := ci(E),c0j =: cj(F ).Then the ideal in question is generated by the polynomials sI(c:; c0:) whereI � (m � r)n�r. Observe that, in particular, Pr(E;F ) is a polynomial universallysupported on the r-th degeneracy locus , specialized with ci := ci(E), c0j =: cj(F ).We now record:Proposition 2.2. (i) No nonzero Z[c1; : : : ; cn]-combination of the sI(c:; c0:) withI 6� (m� r)n�r is universally supported on the r-th degeneracy locus.(ii) There exist nonsingular varieties Xv;w, vector bundles Ev;w, Fv;w and vectorbundle homomorphisms 'v;w depending on a pair of positive integers such that:1. The Chern classes of Ev;w and Fv;w are algebraically independent if v; w!1.2. Setting Dr(v; w) = Dr('v;w), �v;w : Dr(v; w)! Xv;w for the inclusion and let-ting v; w!1, the image Im(�v;w)� of H�(Dr(v; w)) considered in H�(Xv;w)is equal to the ideal of polynomials universally supported on the r-th degeneracylocus, specialized by setting ci = ci(Ev;w), c0j = cj(Fv;w).Proof. (i) This assertion is a consequence of [Pr2, Theorem 5.3(i)] and its proofcombined with the Borel-Moore homology version of the main Theorem 3.4 of [Pr1],given in [P-R].(ii) We use here the construction given before Lemma 2.5 in [P-R]. We nowrecall briey this construction (and refer the reader to [P-R] for details). Let V;W becomplex vector spaces of dimension v = dim V and w = dim W . Let Gm = Gm(W )be the Grassmannian parametrizing m-quotients of W and Gn = Gn(V ) be theGrassmannian parametrizing n-subspaces of V . Denote by Q the tautological rankm quotient bundle on Gm and by R the tautological rank n (sub)bundle on Gn. Wede�ne Xv;w to be the total space of the Grassmannian bundleGm(QGm�Gn �RGm�Gn)over Gm � Gn. The variety Xv;w is endowed with the tautological rank m(sub)bundle S � (Q � R)Xv;w . We put Fv;w = S, Ev;w = RXv;w , and de�ne 'v;was the composite: Fv;w = S ,! (Q�R)Xv;w pr2��! Ev;w = RXv;w :



12Finally, we set Dr(v; w) = Dr('v;w). It is proved in loc.cit. that properties 1 and 2hold true. �Fix now ' and write Dr = Dr(') for brevity. We will need, in the sequel, thefollowing property of 	(r) which stems implicitly from [Pr1]. Let �E :Gr(E)! X(resp. �F :Gr(F ) ! X) be the Grassmannian bundle parametrizing r-subbundlesof E (resp. r-quotients of F ). Moreover, let0! R(r)E ! EGr(E) ! Q(n�r)E ! 00! R(m�r)F ! FGr(F ) ! Q(r)F ! 0be the tautological sequences on Gr(E) and Gr(F ). Consider the following �breproduct of Grassmannian bundles� :GG := Gr(F )�X Gr(E) �F�1���! Gr(E) �E��! X :The morphism ' induces the section s' of Hom(F;E) and thus the section s' ofH = Hom(F;E)GG=Hom(QF ; RE). Let Y be the variety of zeros of s'. Denote by� the restriction of � to Y . It factorizes through Dr: � � l = ���, where l : Y ! GGis the inclusion. Let k:Dr nDr�1 ! Dr be the inclusion and let K (resp. C) bethe kernel (resp. cokernel) bundle of ' restricted to Dr nDr�1.Lemma 2.3. (i) Assume that X is pure-dimensional nonsingular and Y is nonsin-gular of pure codimension mn� r2 in GG. We set in H�(Dr):a = ���c��(R_F 
QE)jY � \ (�l)�c�(X)�:Then ��(a) = 	(r) and k�(a) = c(�K_ 
 C) \ (�k)�c�(X).(ii) The variety Y associated with the morphism 'v;w from Proposition 2.2 satis�esthe assumptions of (i).Proof. (i) Note that (�l)� makes sense because X and Y are nonsingular. Also, sinceDr nDr�1 is isomorphic to ��1(Dr nDr�1) which is an open subset of a nonsingularY , �k : Dr nDr�1 ! X is a morphism of nonsingular varieties, so (�k)� makes sense.We now prove the �rst assertion. It follows from the assumptions that l�[Y ] =ctop(H)\[GG]. This equation combined with ���� = ��l� and the projection formulayields: ��(a) = (�l)��c��(R_F 
QE)jY � \ (�l)�c�(X)�= ���c(�R_F 
QE) � ctop(H) \ ��c�(X)�:The assertion now follows from a calculation analogous to the one in [Pr1, Propo-sition 5.7]; the only di�erence being the use of Lemma 3.1 from loc.cit. instead ofLemma 5.1 from loc.cit..



13The second assertion is immediate as RF jY restricts (via k) to K and QE jY -to C.(ii) We must check that Y associated with 'v;w is a nonsingular variety of purecodimension mn� r2 in GG. Consider the standard coordinate bundle of Xv;w:U = Hom(QGm�Gn ;RGm�Gn);in the notation of Proposition 2.2(ii). We can identify GGU with the total space ofthe vector bundle: Hom(QFlm;r�Flr;n ;RFlm;r�Flr;n);where Flm;r (resp. Flr;n) is the Flag variety parametrizing the (rank m, rank r)-ags of quotients of W (resp. (rank r, rank n)-ags of subspaces of V ). Under thisidenti�cation YU � GGU becomes the subbundleHom(Q0Flm;r�Flr;n ;R0Flm;r�Flr;n);where Q0 (resp. R0) is the tautological rank r bundle on Flm;r (resp. on Flr;n).This implies easily that Y satis�es the assumptions of (i). �At the end of the list of preliminary results we record the following consequenceof the Littlewood-Richardson rule for the multiplication of the sI(F )'s.Lemma 2.4. Let I; J be two partitions such that l(I�) � a, l(J) � b. Then thenonzero coe�cients K occuring in the decomposition:sI(F )�sJ(F ) =X K sK(F ) (K 2 Z);are indexed by partitions K 6� (a+ 1)b+1.Proof. We use the terminology and formulation of the quoted rule as in [M, I.9].Recall that the diagrams of K for which K 6= 0 are obtained by adding to thediagram of I the boxes coming from the diagram of J according to certain rules.One of these rules implies that the number of new boxes added in a single columncannot be greater than l(J). Our assertion now follows from the observation thatthe (a+ 1)-th column of the diagram of K, for which K 6= 0, cannot contain b+ 1boxes because i1 < a+ 1 and l(J) � b. �Assume now thatm � n (we can assume this without loss of generality throughreplacing ' by its dual, if necessary).Consider the following geometric construction. Fix a morphism ' and considerthe variety Zr = Zr(') (r = 0; 1; :::; n) de�ned by:(2.1) Zr = Zr(') =Zeros(FG 'G�! EG ! Q) j�! G = Gr(E)??y� ??y�Dr �����! X



14where Gr(E) is the Grassmannian bundle of r-subbundles of E and Q is (n � r)-bundle appearing in the exact (tautological) sequence 0 ! R ! EG ! Q ! 0on G. In particular, for the construction given in Proposition 2.2(ii), we de�neZv;w = Z('v;w).The key information for the purposes of this Section is contained in:Proposition 2.5. Assume that ' : F ! E is a holomorphic homomorphism of vec-tor bundles over an analytic variety such that the section of Hom(FG; Q) associatedwith the morphism FG 'G��! EG ! Q intersects the zero section transversely. Then��j�(c�(Zr)) = 	(r).Proof. Our proof is rather conceptual than computational, is divided into severalsteps and relies heavily on several formulas that were used in [Pr1]. We refer thereader to loc.cit. for the precise source-references.Step 1 We claim that the following identity holds:(2.2) ��j�(c�(Zr)) = ���s(m)n�r (Q� FG)c(R_ 
Q� F_G 
Q) \ ��c�(X)� :By Propositon 1.3 we getj�(c�(Zr)) = c(F_G 
Q)�1ctop(F_G 
Q) \ c�(G)= s(m)n�r (Q� FG)c(F_G 
Q)�1 \ c�(G) ;where the last equality follows from the well-known decomposition of the resultantinto Schur polynomials (loc.cit., Lemma 1.2). Combining this with the formula forc�(G) from Proposition 1.5, the identity (2.2) follows.It follows from the formula for Gysin push-forward in a Grassmannian bundle(loc.cit., Proposition 2.2) that Equation (2.2) can be rewritten in the form(2.3) ��j�(c�(Zr)) = ePr(E;F ) \ c�(X) ;where ePr(E;F ) is a certain universal polynomial expression (with integer coe�-cients) in the Chern classes of F and E. Moreover, it is clear from its de�nitionthat ePr(E;F ) is a polynomial universally supported on the r-th degeneracy locus,specialized by setting ci := ci(E), c0j =: cj(F ).Step 2 We claim that it is su�cient to work with ' = 'v;w in the notation ofProposition 2.2. Indeed, ' = 'v;w satis�es the assumptions of Proposition 2.5.This follows, e.g., from the fact that Zr(v; w) is of pure dimension dimG�m(n� r)and nonsingular (see [P-R, Lemma 2.6]).Moreover, if we writeePr(E;F ) =X�IJ sI(E) � sJ(F );



15then for v; w � 0 the coe�cients �IJ 2 Z, computed in the above situation forE = Ev;w, F = Fv;w, are the same as the wanted universal ones. This follows fromthe property that the Chern classes of Ev;w and Fv;w are algebraically independentif v; w!1.Express ePr(E;F ) as(2.4) ePr(E;F ) =XI �I(E)sI(E � F ) ;where the sum is taken over partitions, and �I(E) depend only on c:(E) and do notdepend on c:(F ) ( This is possible by the linearity formula ([Pr1, Formula 4] ).Step 3 We claim that I 6� (m� r+ 1)n�r+1 if �I(E) 6= 0. To prove it, let us lookat (2.2) and analyse for which partitions L the following property holds: ifePr(E;F ) = XL �L(E)sL(F ) ;where �L(E) 2 Z[c:(E)], then �L(E) 6= 0.Note �rst that every sI(FG) appearing in the decomposition of s(m)n�r (Q�FG),as a Z-combination of the products of the form sK(Q) � sI(FG), satis�esl(I�) � rkQ = n� r(loc.cit., Formula (2)). Moreover, every sJ (FG) appearing in the decomposition ofci(�F_G
Q) = (�1)isi(F_G
Q), as a Z-combination of the the products of the formsL(Q)�sJ(FG), satis�es l(J) � n� r (loc.cit., Lemma 5.6). But, by Lemma 2.4, ifl(I�) � n� r and l(J) � n� r � m� r;then the nonzero K occuring insI(F )�sJ(F ) =XK KsK(F ) (K 2 Z);are indexed by partitions K 6� (n� r + 1)m�r+1. Consequently, using the propertythat sK(�F ) = �sK�(F ) and the linearity formula decomposing sI(E � F ) as aZ-combination of the products of the form sM (E) � sN (F ), we infer that if in (2.4)�I(E) 6= 0 then I 6� (m� r + 1)n�r+1, as claimed.Step 4 We claim that ��j�(c�(Zr)) = Pr(E;F ) \ c�(X). It is enough to showthat ePr(E;F ) = Pr(E;F ). We know that it is su�cient to prove this assertion forthe variety Xv;w equipped with the morphism 'v;w : Fv;w ! Ev;w (see Proposition



162.2(ii)) by letting v; w ! 1. We write X = Xv;w, Dr = Dr(v; w), Zr = Zr(v; w),E = Ev;w and F = Fv;w for brevity.We have the following commutative diagramH�(Zr) k�2����! H�(Zr n ��1(Dr�1))??y�� �0�??y'H�(Dr) k�����! H�(Dr nDr�1)??y�� ??y�0�H�(X) k�1����! H�(X nDr�1)where �0; k; k1; k2 are the inclusions and �0 is the restriction of �.We now record:Claim: k�1�Pr(E;F )� ePr(E;F )� = 0:To prove the claim let K (resp. C) be the kernel (resp. cokernel) bundle of 'restricted to Dr nDr�1. We havek���(c�(Zr)) = �0�k�2�c�(R_ 
Q)Zr � (F_G 
Q)Zr� \ (��)�c�(X)�= c(�K_ 
 C) \ (�k)�c�(X) :On the other hand, it follows from Lemma 2.3 that 	(r) 2 H�(X) is the image by�� of an element a 2 H�(Dr) satisfying the propertyk�(a) = c(�K_ 
 C) \ (�k)�c�(X):Since ��j� = ����, these two equalities givek�1�	(r)� ��j�(c�(Zr))� = 0 :Interpreting k�1 as the ring homomorphism of the corresponding cohomologyrings, we then inferk�1�	(r)� ��j�(c�(Zr))� = k�1�Pr(E;F )� ePr(E;F )� � k�1�c�(X)� = 0:Sincek�1�c�(X)� = 1+ �elements of higher degree in H�(X nDr�1)�is a non-zero-divisor in H�(X nDr�1), our Claim follows.



17By [F, Chap.19] and Proposition 2.2(ii) we have exact sequences:H2i(Dr�1) ���! H2i(X) k�1�! H2i(X nDr�1) ;where i � 0 and � : Dr�1 ! X is the inclusion. Hence, we infer by Claim thatPr(E;F )� ePr(E;F ) is contained in Im(��). We thus conclude, using Proposition2.2(ii), that Pr(E;F )� ePr(E;F ) is a polynomial universally supported on the (r�1)-th degeneracy locus, specialized by setting ci = ci(E) and c0j = cj(F ).By Step 3 we know that Pr(E;F )� ePr(E;F ) is a Z[c:(E)]-combination of thesI(E � F ), where I 6� (m � r + 1)n�r+1. In virtue of Proposition 2.2(i) with rreplaced by r � 1, this forces the equality: Pr(E;F ) = ePr(E;F ), as desired.The proposition has been proved.Remark: The above proof is given in the Borel-Moore homology framework which isthe original setup for the Chern-Schwartz-MacPherson classes. A similar proof canbe given for the Chern-Schwartz-MacPherson classes de�ned in the Chow groupsA�(�) of cycles modulo rational equivalence (see [F, Ex.19.1.7]). In fact, all for-mulas from Section 1 that were used in the above proof hold in the Chow groupssetup. Then the above proof goes through mutatis mutandis (with the Chow groupsreplacing the Borel-Moore homology groups and the Chow rings replacing the coho-mology rings). The specialization construction from Proposition 2.2(ii) works well;however, it can be replaced by the construction (13) from [Pr1] which also makesthe job. �In the next lemma, �F� will denote the group homomorphism from F (Zr) toF (Dr) de�ned in Section 1, where F (Zr) (resp. F (Dr)) stands for the free abeliangroup of constructable functions on Zr (resp. Dr).Lemma 2.6. We have in F (Dr)�F� (1Zr ) = rXk=0�n� r + k � 1k �1Dr�k :Proof. The family fDk n Dk�1g0�k�r (where D�1 = ;) provides a strati�cationof Dr such that �F� (1Zr ) is constant on strata. The �ber of � over any point ofDk nDk�1 is the Grassmannian Gr�k(C n�k ). Since its Euler characteristic is �n�kr�k�,the proof of Lemma 1.6 shows that�F� (1Zr ) = rXk=0 dk1Dr�k ;where d0 = 1 and, by induction on k, we have:
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dk = �n� r + kk �� k�1Xi=0 di = �n� r + kk �� k�1Xi=0 �n� r + i� 1i �

= �n� r + kk �� �n� r + k � 1k � 1 � = �n� r + k � 1k �: �Corollary 2.7. Denoting by �k:Dk ! X the inclusion, we have in H�(X),(�j)�(c�(Zr)) = rXk=0�n� r + k � 1k �(�r�k)�(c�(Dr�k)) :Lemma 2.8. For every positive integers a; k, the following equality holds:�a+ kk � = kXp=1(�1)p�1�a+ pp ��a+ kk � p� :Proof. The assertion is a consequence of the following two equalities:�a+ kk �" kXp=0(�1)p�kp� # = 0and �a+ kk ��kp� = �a+ pp ��a+ kk � p�where p = 1; : : : ; k, a veri�cation of the latter being straightforward. �In order to prove our main Theorem 2.1 we need some properties of Dr andZr. We were, however, unable to �nd convenient references and shall therefore stateand prove these simple but useful results in the next lemma. In this lemma and ina forthcoming proof of Theorem 2.1 we write D0k = Dk n Dk�1, Gk := Gk(E); �kdenotes the projection Gk ! X and Qk means the tautological quotient bundle onGk. Moreover, sk : Gk ! Hk := Hom(FGk ; Qk) is the section associated with themorphism FGk 'Gk���! EGk ! Qk.



19Lemma 2.9. (1) The following two conditions are equivalent:(i) The section s' intersects Dk nDk�1 transversely.(ii) The section sk intersects the zero section of Hk transversely on ��1k (D0k).(2) Assume that X is pure-dimensional and nonsingular. Then the section s' in-tersects Dk n Dk�1 transversely i� D0k is nonsingular of pure dimension dimX �(m�k)(n�k). In particular, ' is r-general i� D0k is nonsingular of pure dimensiondimX � (m� k)(n� k) for all k = 0; 1; :::; r (D�1 = ;).Proof. (1) Let us examine when s' intersects Dk n Dk�1 transversely at x 2 D0k.The problem being local, we can proceed in an open neighbourhood U of x andassume that: F = F1 � F2, E = E1 � E2 are trivial with rank F1 = rank E1 = k,say; ' is given by an isomorphism between F1 and E1 (we can choose such bases inF1 and E1 that this isomorphism is given by the identity matrix over U); the mapsbetween F1 and E2, F2 and E1 are zero; �nally, assume that the value of the map' between F2 and E2 is given by a matrix A of order (n� k) � (m� k). Then s'intersects Dk n Dk�1 transversely at x i� the section of Hom(F2; E2) determinedby A, intersects its zero section transversely at x. The latter condition is expressed,equivalently, by the property that the entries of A form a part of a regular systemof parameters in the local ring of x.On the other hand, we now calculate the value of the composition morphism:FGk 'Gk���! EGk ! Qkover the open subset of the form U�(standard Grassmannian chart), where U isthe above neighbourhood of x 2 D0k. It su�ces to examine when the section skof Hk intersects its zero section transversely at the point (x; y) where y belongs tothe Grassmannian chart such that over the above open subset, the map EGk !Qk is given as follows. The entries of the (n � k) � k-matrix of E1 ! E2 arethe indeterminates fz�g ("Grassmannian chart coordinates") and E2 ! E2 is theidentity morphism. As the result of performing the above composition we get a(n � k) � m-matrix whose (n � k) � k-submatrix corresponding to F1 ! E2 hasentries fz�g and (n� k)� (m� k)- submatrix corresponding to F2 ! E2 equals A.Then the section sk of Hk intersects its zero section transversely at (x; y) i� fz�gand the entries of A form a part of a regular system of parameters in the local ringof (x; y). The latter condition is expressed, equivalently, by the property that theentries of A form a part of a regular system of parameters in the local ring of x.Comparison of the results of these two reasonings yields assertion (1).(2) Pick the open neighbourhood U of a given point x in D0k and the matrix A asin the proof of (1) above. Then, by a well known property of commutative algebra,D0k is nonsingular of pure dimension dimX � (m � k)(n � k) i�, for every point xof Dk0 , the entries of A form a part of a regular system of parameters in the localring of x. But the latter condition is also equivalent to the fact that s' intersectsDk nDk�1 transversely (see the proof of (1) above). This proves assertion (2). �



20Proof of Theorem 2.1. We want to prove that for an r-general morphism ', wherer = 0; 1; :::; n, the folowing equality holds (recall that we have assumed m � n):��(c�(Dr)) = rXk=0 (�1)k�n� r + k � 1k �	(r � k):At �rst, for r = 0 the formula reads: ��(c�(D0)) = 	(0). We mimic the proofof [Pr1, Proposition 5.7]. In virtue of Proposition 1.3 it su�ces to show thatc(F_ 
 E)�1ctop(F_ 
 E) =X(�1)jIj+jJjD0I;J s(m)n+I;J�(E � F );the sum over partitions I; J of length � n.The above equality is a direct consequence of the following three formulas: thewell-known decomposition of the resultant into Schur polynomials, a factorizationformula: sIE sJ(F_)s(m)n(E � F ) = s(m)n+I;J�(E � F ) , andc(F_ 
 E)�1 =Xi (�1)isi(F_ 
E) =X(�1)jIj+jJjD0I;JsI(E) sJ(F_);the sum over partitions I; J of length � n.These formulas were used in similar calculations in [Pr1] (see Lemmas 1.2, 1.1and 5.6 in loc.cit.) where we refer the reader for the precise source-references.Suppose now that the formula is correct for every k � r � 1. We have byCorollary 2.7��(c�(Dr)) = (�rj)�(c�(Zr))� rXp=1�n� r + p� 1p �(�r�p)�(c�(Dr�p)):Since ' is r-general, ' is also k-general for k < r. We can thus use the induction as-sumption with respect to (�r�p)�(c�(Dr�p)), p = 1; :::; r. Moreover, the assumptionof Proposition 2.5 is satis�ed. Indeed, it su�ces to show that the section sr inter-sects the zero section of Hr transversely on ��1r (D0k) where k = 0; 1; :::; r. For k = r,this follows from Lemma 2.9(1). For k < r, let Flk;r(E) denote the Flag varietyparametrizing all (rank k, rank r)-ags of subbundles of E. Let p : Flk;r(E)! Gkand q : Flk;r(E) ! Gr denote the projections. By the assumption and Lemma2.9(1), sk intersects the zero section of Hk transversely on ��1k (D0k). Hence thecomposition s of p�sk with the surjection p�Hk ! q�Hr intersects the zero sectionof q�Hr transversely on p�1��1k (D0k) = q�1��1r (D0k). Since s = q�sr, the section srintersects transversely the zero section of Hr on ��1r (D0k), as desired.Finally, using Proposition 2.5 and the induction assumption, we can rewrite theabove expression for ��(c�(Dr)) in the form
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	(r)� rXp=1�n� r + p� 1p �" r�pXq=0(�1)q�n� r + p+ q � 1q �	(r � p� q) #
= rXk=0(�1)k	(r � k)" kXp=1(�1)p�1�n� r + p� 1p ��n� r + k � 1k � p � #
= rXk=0(�1)k�n� r + k � 1k �	(r � k);where the last equality follows from Lemma 2.8 with a = n� r � 1.Thus the proof of Theorem 2.1 is complete. �In particular the degree of the 0-dimensional component of the so obtainedexpression for ��(c�(Dr)) gives an explicit answer to the problem posed by Harrisand Tu [H-T].Theorem 2.10. If X is a compact analytic variety and ' is r-general, then�(Dr(')) = ZX rXk=0 (�1)k�m ^ n� r + k � 1k �	(r � k):Recall that 	(k) =X(�1)jIj+jJjDkI;J s(m�k)n�k+I;J� (E � F ) \ c�(X) ;where the sum runs over all partitions I; J such that l(I) � m^n�k; l(J) � m^n�kand DkI;J is the binomial determinant de�ned before Theorem 2.1.Remark 2.11. Under the assumption Dr�1(') = ;, the above formula reads�(Dr(')) = RX 	(r). This result was established in [Pr1, Proposition 5.7] as aparticular case of an algorithm for computation the Chern numbers of nonsingulardegeneracy loci.As a by-product of the proof of Theorem 2.1 we get the following formula forthe Intersection Homology-Euler characteristic, shortly �IH(�), of Dr(').



22Theorem 2.12. If X is nonsingular compact analytic variety and ' is r-general,then �IH (Dr(')) = ZX 	(r):Proof. We can assume without loss of generality that m � n. Since, e.g., by Lemma2.9 we have dim�Dk(')nDk�1(')� = dimX�(m�k)(n�k) for every k = 0; 1; :::; r,we easily show that Zr is a small desingularization of Dr('). The theorem nowfollows from a general result asserting that for every small desingularization Z �! Dwe have �IH(D) = �(Z) (see, e.g., Goresky and MacPherson's paper "Problems andbibliography on intersection homology" in [B&al.]). �Example 2.13. We collect here several examples illustrating Theorems 2.1 and2.10. If ' is r-general thencodimDr(')Dr�1(') = (m� r) + (n� r) + 1;in particular this codimension is at least 3. Therefore, for dimDr(') = 0; 1; 2,the formula of Theorem 2.1 reduces to a single summand corresponding to k = 0:���c��Dr(')�� = 	(r).If dimDr(') = 0 then	(r) = s(m�r)n�r (E � F ) \ c�(X) = s(m�r)n�r (E � F ) \ [X]:If dimDr(') = 1 then	(r) = �s(m�r)n�r (E � F )� (n� r)s(m�r)n�r;(1)(E � F )� (m� r)s(m�r)n�r+(1)(E � F )� \ c�(X):If dimDr(') = 2 then 	(r) equals�s(m�r)n�r (E � F )� (n� r)s(m�r)n�r;(1)(E � F )� (m� r)s(m�r)n�r+(1)(E � F )+ �n� r + 12 �s(m�r)n�r;(1;1)(E � F ) + �m� r + 12 �s(m�r)n�r+(2)(E � F )+ �n� r2 �s(m�r)n�r;(2)(E � F ) + �m� r2 �s(m�r)n�r+(1;1)(E � F )+ �(m� r)(n� r) + 1�s(m�r)n�r+(1);(1)(E � F )� \ c�(X)Of course, the degree of the 0-dimensional components of these expressionsevaluates the Euler characteristic of Dr(') (see [Pr1, Example 5.8]).



23Let us look now at the "next simplest" case when, for a general ', dim Dr(') =3 and the formula of Theorem 2.1 has more then one summand. Then Dr�1(') 6= ;.It follows from the above that the unique possibility for that is: m = n = 2, r = 1.Consequently, dim X = 4, and Dr(') = D1(') is a hypersurface in X. Then theformula of Theorem 2.1 reads���c��D1(')�� = 	(1)�	(0);where the �rst term	(1) = � Xi+j�3(�1)i+j�i+ jj �s1+i;(1)j (E � F )� \ c�(X)would give ���c�(D1('))� if D0(') were empty. The "correction term" equals	(0) = s2;2(E � F ) \ [X] = ctop(F_ 
E) \ [X]:In case X is nonsingular and compact, the formula��D1(')� = ZX�	(1)�	(0)�admits the following interpretation. Let L be the line bundle �2F_ 
 �2E. ThenD1(') is the variety of zeros of the section of L given by the determinant of '. It iteasy to see that ZX 	(1) = ZX c1(L) � c(L)�1 \ c�(X);where c1(L) = c1(E�F ). The expression on the right hand side is known to evaluatethe Euler characteristic of the (smooth) variety of zeros associated with a generalsection of L. Observe D1(') is a hypersurface in X with isolated singularitiesD0(').Near each singular point of D1('), there exist local coordinates (x1; x2; x3; x4) suchthat D1(') is given (locally) by the equation x1x2 � x3x4 = 0. Hence the Milnornumbers of all the points in D0(') are equal to 1. Since RX 	(0) evaluates thecardinality of D0('), we conclude that the above formula for ��D1(')� expressesthe following known property: the "true" Euler characteristic of a hypersurfacewith isolated singularities di�ers (up to a sign) from the one "expected" for thenonsingular case by the sum of the Milnor numbers of the singularities. We referthe reader to [P-P1,2] for a precise statement of the latter property as well as itsgeneralization.



24 3. Special DivisorsLet C be a nonsingular curve (over C ) of genus g. Consider the subvarietyW rd (C) of Picd(C) parametrizing complete linear series on C of degree d and di-mension at least r :W rd (C) = �L 2 Picd(C)j h0(C;L) > r + 1	:These varieties play a crucial role in the Brill-Noether theory of special divisors inJacobians (we refer the interested reader to [A-C-G-H] for a fairly complete accountto the theory of special divisors including a detailed treatment of the varieties W rd ).We will assume throughout this section that d and r are integers such that d � 1,r � 0 and g � d+ r > 0. As a matter of fact, it is shown in loc.cit, p. 204, that wecan limit ourselves even to the cases r > 0, g > d > 2r. (Note that "r" and also"m" below will have here a di�erent meaning from that in the previous section. Weintend to follow, in this section, the classical notation of [A-C-G-H]).Recall (see e.g. [A-C-G-H, p.309]) that the varieties W rd (C) admit a presen-tation as degeneracy loci due to Kempf [K] and Kleiman-Laksov [K-L]. Picking aninteger m >> 0, W rd (C) can be presented as the locus where a certain morphism'C : F ! E of bundles of respective ranks m� g + d+ 1 and m, over Picm+d(C) ,has the rank not greater than m� g + d� r. In other words,W rd (C) = Dm�g+d�r('C ):We refer the interested reader for details of this construction to [A-C-G-H, pp. 176-179 and pp. 308-309]. Furthemore, ci(E) = 0 for i > 0 (loc.cit. p. 309) andc(�F ) = e� = 1+ � + 12!�2 + 13!�3 + : : :(loc.cit. p.319) where � is the class of the theta divisor in Picm+d(C) i.e. the trans-late of the theta divisor on the Jacobian of C canonically isomorphic to Pic0(C).Recall that � de�nes the principal polarization of the Jacobian of C and R �g = g!(here and in the sequel, we identify the top-dimensional cohomology class with itsdual 0-dimensional homology class).We now invoke the following results due to Gri�ths-Harris [G-H], Fulton-Lazarsfeld [F-L] and Gieseker [Gi] (which should be compared with [A-C]); see also[A-C-G-H, Chap.V]). Let � := �(r) := �(g; d; r) := g � (r + 1)(g � d + r) be theBrill-Noether number.Theorem 3.1. Let C be a general curve of genus g. Let d and r be integers asabove. Then, for � > 0, W rd (C) is irreducible and, for any �, the dimension ofW rd (C) equals �. Moreover, SingW rd (C) =W r+1d (C).The above theorem implies that for a general curve C, the morphism 'C is(m � g + d � r)-general. We can thus apply Theorem 2.10 to compute the Euler



25characteristic ofW rd (C) for a general curve C. We will write in the sequel Dm�k;n�kI;Jinstead of DkI;J for the binomial determinants de�ned before Theorem 2.1 (withm;nas in Section 2).We �rst record (in the next lemma m is >> 0, like in Kempf's and Kleiman-Laksov's construction):Lemma 3.2. Let E, F be the above vector bundles over Picm+d(C) and 	(k) theelement de�ned in Section 2. If �(r) � 0 then one has:ZX 	(m� g + d� r) = (�1)�(r)g!XDr+1;g�d+rI;J =h(Ig;d;r + I; J�);where X = Picm+d(C), Ig;d;r is the partition (r+1)g�d+r, the sum is over partitionsI; J with length � (r+1)^ (g� d+ r) and such that jIj+ jJ j = �(r). Moreover, fora partition I, h(I) denotes the product of all hook lengths associated with the boxesin the Ferrers' diagram of I (see [M, Chap.I]).Proof. Recall (see Section 2 and its notation) that for an irreducible nonsingularvariety X, the cohomology dual to the 0-dimensional component of 	(k) equalsX(�1)jIj+jJjDm�k;n�kI;J s(m�k)n�k+I;J� (E � F )cd(k)�jIj�jJj(X) ;where d(k) = dimX � (m � k)(n � k) and the sum is over all partitions I; J suchthat l(I) � m ^ n� k; l(J) � m ^ n� k.By substituting our data we get:RX 	(m� g + d� r) =RXP(�1)jIj+jJjDr+1;g�d+rI;J s(r+1)g�d+r+I;J� (�F )c�(r)�jIj�jJj(X):Since X = Picm+d(C) is an abelian variety, the above summation runs over I; J oflength � (r + 1) ^ (g � d + r) and jIj+ jJ j = �(r). Moreover, c(�F ) = e� impliessi(�F ) = �i=i! for every i � 0. This givesZX s(r+1)g�d+r+I;J�(�F ) = ZX h(Ig;r;d + I; J�)�1�g = g!=h(Ig;d;r + I; J�)(for the assertions in the latter two sentences see [M, Ex.I.3.5]).Putting this together,ZX 	(m� g + d� r) = (�1)�(r)g!XDr+1;g�d+rI;J =h(Ig;d;r + I; J�);the sum over I; J with length � (r + 1) ^ (g � d+ r), as asserted. �For �(r) � 0, let �(g; d; r) denote the R.H.S. of the formula of Lemma 3.2. Weset �(g; d; r) = 0 if �(r) < 0.



26Corollary 3.3. For �(r) � 0 one has �(g; d; r) > 0 (resp. �(g; d; r) < 0 ) i� �(r)is even (resp. �(r) is odd).The fact that we have here strict inequalities is a consequence of [G-V, Corollary2]. Indeed, this result implies the inequalities Dr+1;g�d+rI;J > 0 (recall that the D'sare determinants of binomial coe�cients de�ned before Theorem 2.1).Combining Theorems 2.10, 3.1 and Lemma 3.2 we get:Theorem 3.4. Assume that a curve C of genus g is general. Let d, r be integersas above and such that �(r) � 0. Then one has�(W rd (C)) =Xk�r(�1)k�r� kk � r��(g; d; k):From this formula, one deduces the following corollary. If we �x g; d; r suchthat �(r) � 0 and the nonnegative numbers �(r), �(r + 1); : : : change successivelythe parity, then �(W rd (C)) > 0 (resp. �(W rd (C)) < 0) i� �(r) is even (resp. �(r) isodd). Observe that the above numbers change successively the parity if r + 1 andr+ g� d are of the same parity. This latter condition holds i� g 6� d(mod 2). Thuswe get, in the situation of Theorem 3.4, the following result.Corollary 3.5. Assume g 6� d(mod 2). Then �(W rd (C)) < 0 (resp. �(W rd (C)) > 0)i� g � r(mod 2) (resp. g 6� r(mod 2) ).Example 3.6. We give here formulas for �(g; d; r) when � = 0; 1; 2. We seta := r + 1, b := g � d+ r and h := h((a)b). We then have using Example 2.13:- for � = 0 , �(g; d; r) = card(W rd (C)) = g!=h ;- for � = 1 , �(g; d; r) = �2g!ab(a+ b)h ;- for � = 2 , �(g; d; r) = g!ab(2ab+ 1)(a+ b� 1)(a+ b+ 1)h :Since for � = 0; 1; 2 the �rst sum in Theorem 3.4 is reduced to a single summandcorresponding to k = r, the above expressions give �(W rd (C)) for a general curveC. The case � = 0 is the Castelnuovo formula.The last formula of Example 2.13, applied to a general curve C of genus 4 gives�(W 03 (C)) = �(4; 3; 0)� �(4; 3; 1) = �20� 2 = �22:Finally, we record the following two consequences of the above calculations.Combining Lemma 3.2 and Theorem 2.12 we get:



27Theorem 3.7. For a general curve and �(r) � 0,�IH(W rd (C)) = �(g; d; r):Let Grd(C) = f grd0s on C g be the variety parametrizing linear series of degree dand dimension r on C (i.e. all series and not only the complete ones). This variety,ultimately related to W rd (C), was widely studied in [A-C] and [A-C-G-H, Chap.IVand V]. It is known (loc.cit.) that in notation of Section 2, Grd(C) = Zm�g+d�r('C).Therefore, combining Proposition 2.5 and Lemma 3.2 we thus get:Theorem 3.8. For a general curve and �(r) � 0,�(Grd(C)) = �(g; d; r):References[A-C] A. Arbarello, M. Cornalba, Su una Congettura di Petri, Comment. Math. Helv. 56(1981), 1{38.[A-C-G-H] A. Arbarello, M. Cornalba, P.A. Gri�ths, J. Harris, Geometry of Algebraic Curves,vol. I, Springer-Verlag, Berlin-Heidelberg-New York, 1984.[B&al.] A. Borel et al., Intersection Cohomology, Progress in Math., vol. 50, Birkh�auser,Boston-Basel-Berlin, 1984.[B-S] J.P. Brasselet, M.H. Schwartz, Sur les classes de Chern d'un ensemble analytiquecomplexe, Ast�erisque 82{83 (1981), 93{147.[F] W. Fulton, Intersection Theory, Springer-Verlag, Berlin-Heidelberg-New York, 1984.[F-L] W. Fulton, R. Lazarsfeld, On the connectedness of degeneracy loci and special divisors,Acta Math. 110 (1981), 271-283.[G-V] I. Gessel, G. Viennot, Binomial determinants, paths and hook length formulae, Adv.in Math. 58 (1985), 300{321.[Gi] D. Gieseker, Stable curves and special divisors: Petri's conjecture, Invent. Math. 66(1982), 251{275.[G-M] M. Goresky, R.D. MacPherson, Strati�ed Morse Theory , Springer-Verlag, Berlin-Heidelberg-New York, 1988.[Go] G. Gonz�alez-Sprinberg, L'obstruction locale d'Euler et le th�eor�eme de MacPherson,Ast�erisque 82{83 (1981), 7{32.[G-H] P.A. Gri�ths, J. Harris, On the variety of special linear systems on a general algebraiccurve, Duke Math. J. 47 (1980), 233{272.[H] F. Hirzebruch, Topological methods in algebraic geometry, Springer-Verlag, Berlin-Heidelberg-New York, 1966.[H-T] J. Harris, L. Tu, Chern numbers of kernel and cokernel bundles, Invent. Math. 75(1984), 467-475.[K] G. Kempf, Schubert methods with an application to algebraic curves, Publications ofMathematisch Centrum, Amsterdam (1972).
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