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INTRODUCTION

The aim of this paper is to study the topological Euler-Poincaré characteristic
(Euler characteristic, for short) of degeneracy loci associated with various bundle
homomorphisms. Recall that for a given holomorphic morphism ¢: F' — E of vector
bundles on a (possibly singular) analytic variety X the r-th degeneracy locus is the
set

D, (p) ={z € X| rank o(z) < r}.

This concept overlaps a large family of interesting varieties (for example, the varieties
of special divisors studied in Section 3).

Several authors have worked out explicit formulas for the Euler characteristic
of D,(¢) in terms of different cohomological and numerical invariants under the
assumption that X is nonsingular and ¢ is appropriately ”general”.

For instance, if ¢ is a section of a vector bundle, then the formulas for the Euler
characteristic x(Do(¢)) were given by Hirzebruch [H] and Navarro-Aznar [N].

If D,(¢) is a curve or a surface in a nonsingular X, some explicit formulas for
X(D,(¢)) were given by Harris and Tu [H-T] in terms of the Chern classes of E, F’
and X, but, under the extra assumption D,_1(¢) = () (which implies that D, (¢)
is nonsingular). In loc.cit. the authors also posed the problem of finding a general
formula for x (D, (p)) - if such exists! - under the assumption D, _1(p) = 0 or, even
stronger, without this assumption.
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The first problem was solved positively by the second named author [Prl,
Proposition 5.7], by the use of polynomials universally supported on degeneracy loci
- the technique invented and developed in loc.cit.; this result was a starting point
of the present work.

We refer the reader to [P-P1] for more information of both mathematical and
historical nature concerning these topics.

In the present paper, in Section 2, we give an explicit formula (Theorem 2.10)
for the Euler characteristic x(D,(¢)) only under the assumption that ¢ is an
r-general holomorphic morphism of vector bundles on a possibly singular variety.
Maybe the most transparent definition of the r-generality of a morphism ¢ over
a nonsingular pure-dimensional X is given by imposing the conditions: the subset
Dy (@) \ Di—1(¢p) is nonsingular of pure dimension dimX — (rankF —k)(rankE — k)
for every kK = 0,1,...,7. Thus, the "stronger version” of Harris and Tu’s problem is
here positively solved. In fact, we prove a more general result because we compute
(in Theorem 2.1) the image of the whole Chern-Schwartz-MacPherson class of D,.(¢)
in the homology of X (the formula for x(D,(¢)) then results by taking the degree
of the 0-dimensional component of this image).

The key point of our argument is to pass first to a certain desingularization of
D, (¢) and calculate explicitly the image of the homology dual to its Chern class in
the homology of X. To this end, by using some algebra (of symmetric polynomials
and Gysin push forwards), we show that this image has the form P N ¢,(X) where
P = P({c;i}, {¢;}) is a polynomial universally supported on the r-th degeneracy locus
and not universally supported on the (r—1)-th one, specialized by setting ¢; = ¢;(E),
¢; = ¢;(F). Thus "morally”, without changing the result of the computation, we
can assume that D,_1(¢) = (). But then the desingularization equals D,.(¢) and the
wanted class is known by [Prl, Proposition 5.7] quoted above. Precise arguments
require some rather detailed information about the algebraic structure of the ideal
of all polynomials universally supported on the r-th degeneracy locus which is a
part of the theory developed in [Prl] an [Pr2].

Secondly, stratifying D,.(¢) by the subsets where the rank of ¢ is constant,
the desingularization turns out to be a Grassmannian bundle over each stratum.
This leads to an equation with the known H,(X)-image of the Chern class of the
desingularization on the one hand side and a linear combination of the unknown
H,.(X)-images of the Chern-Schwartz-MacPherson classes of Dy(p) (k < r) - on
the other one. By varying r, this leads to a system of linear equations in the
unknown H, (X )-images of the Chern-Schwartz-MacPherson classes of D,.(¢) (and
with known coefficients). Solving this system of equations with the help of some
algebra of binomial numbers, we get the looked at formula. Our method enables
us to write the desired formula in a clear and compact algebro-geometric form
as a sum of polynomials universally supported on the subsequent degeneracy loci
D, (¢) D Dr_1(¢) D ... D Do(p).

We need here a theory of Chern classes for singular varieties. There are several
ways of extending Chern classes to this case. The approach which we find ”the
best suited” for computing the Euler characteristic, was given by R.D. MacPherson
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[McP], and in a different form by M. H. Schwartz [S]. The functorial approach
of MacPherson is especially useful for the purposes of this paper. We recall it
in Section 1 where we also establish some simple and useful properties of Chern-
Schwartz-MacPherson classes that we need in the proof of our main Theorem 2.1.

As a by-product of our considerations, we get also a formula for the Intersection
Homology-Euler characteristic of D, (¢) associated with an r-general morphism ¢
(Theorem 2.12).

As an example of an application of our formula, we compute the Euler character-
istic of the Brill-Noether loci W7 (C) = {L € Pic*(C)| h°(C, L) > r} parametrizing
all complete linear series of degree d and dimension r on a general curve C' (Theorem
3.4). This is done using a presentation of Wj(C') as a suitable degeneracy locus in
the Jacobian of C' due to Kempf [K] and Kleiman-Laksov [K-L] , combined with
some results of Griffiths-Harris [G-H] and Gieseker [Gi]. We give also formulas for
the Intersection Homology-Euler characteristic of W (C) and the Euler character-
istic of G3(C) = { g} 's on C } - the variety parametrizing all linear series of degree
d and dimension r on C.

For the formula of Theorem 2.10 to hold, it is not enough to assume only that
the degeneracy locus has the expected codimension, even in the case of a section
of a line bundle over a nonsingular projective variety. We investigate this case in
detail in [P-P2]. The difference between the Euler characteristic of a "nongeneral”
hypersurface and the expected polynomial in Chern classes is measured with the
help of topological invariants of singularities including some generalizations of the
Milnor number and the Chern-Schwartz-MacPherson classes of the closures of the
strata of a Whitney stratification of the hypersurface.

Some of the results presented here were announced in [P-P1].

We thank Professor P. Deligne for an useful suggestion that the method of
a preliminary version of this paper (which appeared as Section 2 of Preprint of
the Max-Planck Institut fiir Mathematik No.90-68) should give not only a formula
for x(D,(¢)) but also the image of the whole Chern-Schwartz-MacPherson class of
D, () in the homology of X.

Both authors have benefited a lot from the hospitality of Professor F. Hirzebruch
in the Max-Planck Institut fir Mathematik during different periods of the work on
this paper; we acknowledge this hospitality with gratitude. It is our pleasure to
dedicate the present work to Professor F. Hirzebruch.

The second named author thanks J.B. Carrell for organizing a meeting in the
U.B.C. in Vancouver (June 1989) where this research started.

Notation and conventions

In the this paper we work exclusively over the field of complex numbers. By an
analytic variety we mean, in this paper, a locus in a complex manifold given locally
as the zeros of a finite collection of holomorphic functions.



For a (compact) analytic variety X, by x(X) we denote its Euler characteristic
defined as the alternating sum of the ranks of the singular homology groups.

For a topological space X, by H.(X) = &;H;(X) we understand the Borel-
Moore homology groups (see, e.g., [F, Chap.19]) and by H*(X) the singular coho-
mology ring (both with integer coefficients).

For any analytic variety X, by [X]| we denote the fundamental class of X in
H.(X).

If f: X — Y isamorphism of pure-dimensional nonsingular analytic varieties
then by f*: H.(Y) — H,.(X) we denote the morphism:

H,(Y) — H2dimY—i(y) N H2dimY—i(X) _ Hi+2dimX—2dimY(X)-

For a given element z € H,(X), X compact, by [, z we denote the degree of
the 0-dimensional component of z.

By dimX we mean always the complex dimension of X.

If F is a vector bundle on X and f:Y — X is a morphism of varieties, then
FEy denotes the pull-back bundle f*FE.

For a given vector bundle E on X, by ¢;(E) € H*(X), i = 1,... ,rankE, we
denote the i-th Chern class of E. The top Chern class of E is denoted by cip(F).
By s;(E) we denote the i-th Segre class of E i.e. the i-th complete symmetric
polynomial in the Chern roots of E satysfying s;(E) = (—1)*c;(—E) (Note that this
convention differs from that used in [F], where s;(E) = ¢;(—FE)). We assume also
si(E) = ci(E)=0if i <0.

By ¢(E) =1+ ci1(E) + ...+ ciop(E) we denote the total Chern class of E.

As it is customary, we treat ¢;(F), s;(E) and polynomials in them as operators
acting on H,(X) (via the "N—" - map).

For a nonsingular variety X, we denote by T'X the tangent bundle of X; we
write ¢;(X) instead of ¢;(T'X) and assume ¢;(X) = 0 for ¢ < 0.

By a partition we mean a sequence of integers I = (iq,... i), where i; >
ig > ... > 14, > 0. We write [(I) for card{p|i, # 0} , [I] for > i, i.e. the
number that is partitioned by I, I~ = (ji,j2,...) for the conjugate partition with
jp = card {h|i, > p} and (4)* for (i,...,4) (k-times). More generally, if (1) < k
and [(J~) < then (i)*+1,J denotes the partition (i+iy,... 4+ ix,j1,52,---)-
For two partitions I, J, we write I D J if i, > ji for each k.

1. SOME PROPERTIES OF CHERN-SCHWARTZ-MACPHERSON CLASSES

In order to prove our main formulas we need some properties of Chern-Schwartz-
MacPherson classes. We were, however, unable to find convenient references and
shall therefore state and prove these simple but useful results below.

Let X be a possibly singular analytic variety. Recall that X admits always a
Whitney stratification (see, e.g., [G-M]).

The Chern-Schwartz-MacPherson class ¢,.(X) € H,(X), in the version used
in the present paper, was introduced (for an algebraic X) by R.D. MacPherson in
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[McP]. In fact, the approach of MacPherson defines a class ¢,(X) also in the Chow
group of cycles on X modulo rational equivalence (see [F, Ex.19.1.7]). It is known
that MacPherson’s c,(X) € H,(X) is equal, via the Alexander isomorphism, to the
M.H. Schwartz class (see [S], [B-S]) defined originally in a different way.

Let us first recall briefly MacPherson’s definition. Assume that an irreducible
variety X of dimension n is imbedded in a manifold M. Then the tangent bundle
to the smooth part X,., of X defines a section over X,., of the Grassmannian
bundle G, (TM). By the Nash blowing-up v: X — X of X we mean the closure
X of the image of this section together with a map v induced by the restriction
of the projection of G, (T M) on M. We denote by T (or Tx) the restriction to
X of the tautological bundle over G, (T'M). Note that f|,,71(Xmg) is isomorphic
to v*T'(X,eq). All the above data are analytically independent of the imbedding
chosen since near each point, X has a unique minimal local analytic imbedding.

The Chern-Mather class of X is defined in H,(X) by

ear(X) = v (e(T) N [X]).

where [)A(/ | is the fundamental class of X. We may define ¢y for any analytic cycle
> n;V; of X by

er(DniVi) =Y i (incli)wen (Vi)

where incl; is the inclusion of V; in X.

In [McP], MacPherson defined the local Euler obstruction Eux(x) of X at
x € X. The function Fuyx is constructable with integer values. Though the original
definition of MacPherson is transcendental, there exists an algebraic approach to
Eux due to Gonzalez-Sprinberg and Verdier. The interested reader is referred to
[Go], [L-T] or [F, Ex. 4.2.9]. We now record some well known properties of the local
Euler obstruction needed in the sequel.

Lemma 1.1.

(1) Eux(z) is constant on the strata of (any) Whitney stratification of X.

(2) Eux(z) =1 if v € Xyeq.

(3) Assume that X is locally imbedded in CN and a nonsingular subvariety W C
CN intersects a Whitney stratification of X transversely. Then, Euwnx(z) =
Eux(z) forx e WnN X.

(4) Euxxy(z,y) = Eux(x)-Euy(y) forz € X andy €Y.

In [McP] MacPherson defined an isomorphism T between the free abelian group
of analytic cycles on an analytic variety X and the space of constructable functions
with integer values on X by: T' (> n;V;) = > n;Fuy,(—). Here, given an irreducible
subvariety V' of X, we understand by Euy(—) the constructable function on X
which is equal to the above mentioned Euy on V, and zero otherwise. Let us
call T=Y(1x) the Schwartz-MacPherson cycle of X. Equivalently, this is the cycle
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> n;V; characterized by the property > n;Euy,(z) = 1 for every © € X. The
Chern-Schwartz-MacPherson class of X is defined in H,(X) by

(X)) = e (T (1x)),

and satisfies good functorial properties (see [McP] or [F, Ex.19.1.7]. Of course, for a
nonsingular X, we have c.(X) = ¢(T'X)N[X]. Moreover, the following generalization
of Hopf’s theorem or the Gauss-Bonnet formula for compact manifolds (that is
exposed e.g. in [H, pp. 70-71]) now holds for possibly singular compact analytic
variety X:

(L1) X(X) = /X e.(X).

Let us fix a Whitney stratification X of X. Let E be a holomorphic vector
bundle on X and let Z be the variety of zeros of a holomorphic section s of E.
Assume that s intersects, on each stratum of X, the zero section of E transversely.
Let ¢: Z — X be the inclusion.

We now record the following easy consequences of the properties of Whitney
stratifications, Lemma 1.1 and the definition of the Schwartz-MacPherson cycle.

Lemma 1.2. Let £, X, X and Z be as above. Then:

(1) X induces a Whitney stratification of Z whose strata are of the form SN Z for
Sek. B

(2) The Nash blowing-up of Z equals vz : Z = v=Y(Z) — Z where vy is the
restriction of v to Z:

uzl ul
z7 —— X
Moreover, on 7 we have an ezact sequence of vector bundles
(1.2) 0— Tz — Tx|z — vs(Elz) —0.

(3) If > n;V; is the Schwartz-MacPherson cycle for X, then > n;V; N Z is the one
for Z.

It follows from (1.2) that ¢(Tz) = &* (V*C(E)_l-c(fx)), and consequently we
have

teear(Z) = ta(vz2)e (e(T7) N [2]) = L*(VZ)*(Z* (v*e(E)~te(Tx)) N [Z])

= v,0, (z* (v*e(B) " -e(Tx)) N [2’]) = v, (v e(B) " e(Tx) N in[2])
= v (V' e(E) " 1 hop(E)-¢(Tx) N [X]) = c(E) ™ crop(E) N ear(X).
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Assume that Y is a subvariety of X given by a union of strata of X. Then,
since Z intersects X transversely, by the same argument as above for the inclusion
:ZNY —Y, we have

e (ZNY) = c(E)  ciop(E) Near(Y).

It is known (see [L-T]) that the Schwartz-MacPherson cycle on X is a Z-combination
of the closures of strata (which are the unions of strata) of a Whitney stratification
of X. Therefore, using this information, the above definition of the Chern-Schwartz-
MacPherson class and Lemma 1.2(3), we now infer the following formula.

Proposition 1.3. Let X, E and 1: Z — X be as above. Then
te(c(Z)) = e(B) " crop(E) Nen(X) -

In particular, for a compact analytic variety X,

xX(Z) = /X c(E)_l-ctop(E) Nee(X).

We pass now to another formula. For a given vector bundle £ on X, let
m: G, (E) — X denote the Grassmannian bundle parametrizing all rank r subbundles
of E. The variety G = G,.(E) is equipped with the tautological sequence

0—=R—Eqg—Q—0,

where rank R = r.

Observe that since m: G — X is a locally trivial fibration with a nonsingular
fiber, we have by Lemma 1.1:

Lemma 1.4.

(1) X induces a Whitney stratification of G whose strata are of the form w=1(S)
for S e X.

(2) The Nash blowing-up vg: G— G of G s equal to the fibre product of v and m:

G . X
(1.3) uGl Vl
G - X

(3) For any z € G, FEug(z) = Eux(m(z)) and if Y n;V; is the Schwartz-
-MacPherson cycle for X then Y n;w=1(V;) is the one for G.



It follows from Lemma 1.4(2) that [Tg] = [#*Tx] + [1/5(1'%v ® Q)] and conse-
quently we have

em(G) = ()« (e(Ta) N [G]) = (va)a (Vi (e(R” © Q)+ 7e(Tx)) N [G])
= C(R Q)N (Vg)*(ﬂ'*C(TX )N ])
= ¢(R" Q)N (va). (7 e(Tx) N7 [X])
= (R ® Q)N (va). 7 (c(Tx) N [X])
=c¢(R ®Q)Nr* v (e(Tx)N[X]) =c(R @ Q)Nr*em(X)

by the equality (vg).oT* = 7* o v, which is a consequence of the fibre square (1.3).

Let Y be a subvariety of X given by a union of strata of X. By the same
argument as above we get

ey (7Y = c(Rv RQ)N7T epm(Y),

where R and () denote now the restrictions of the tautological bundles on G to
7Y, for brevity.

Hence, arguing as in the proof of Proposition 1.3 and using Lemma 1.4(3), we
obtain the following formula.

Proposition 1.5. Let X, E, m:G — X, R and Q) be as above. Then

(@) =c(R ® Q)N e (X).

For a given analytic variety X, denote by F(X) the group of constructable
functions on X (with integer values). F(X) is a free abelian group generated by
characteristic functions associated with irreducible subvarieties of X; given such a
subvariety V' C X, we define its characteristic function 1y by 1y(z) =1ifz € V
and zero otherwise. With every proper morphism of analytic varieties f: X — Y, we
associate a homomorphism of groups fI': F(X) — F(Y) defined on the generators
of F(X) by

FE@v)(y) = x(fHy) N V),

where x denotes the Euler characteristic. This makes F' a covariant functor.

Let f: X — Y be a proper morphism of analytic varieties. Let S = {S,} be a
stratification of Y such that the function f¥(1x) is constant along each stratum S,.
In other words, for every a there exists an integer x, such that x(n~=!(z)) = xa for
every x € S,. (Note that all x, are finite because f is proper.) Moreover, assume
that there is a unique top dimensional stratum of S, denoted Sj.
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Proposition 1.6. In the above situation, there exists a unique family of integers

{dn} such that
1(1x) =) dals, -

Proof. We set dy = xo. Assume that dg has been defined for every 3 such that
codimy Sg < c. We then define, for every a such that codimy S, = c,

da ::Xa_zdﬁv

where the sum is over all 3 such that S, C Sg. It is easy to check that the so
defined family of integers {d,} satisfies the assertion. O

2. DEGENERACY LocI

Let X be an analytic variety. Let us fix a Whitney stratification X of X.
Let o: FF — E be a holomorphic morphism of vector bundles on X of respective
ranks m and n. In order to state our main result we need an appropriate notion of
the generality of the morphism. For a nonnegative integer k, let D, C Hom(F, F)
denote the k-th universal (tautological) degeneracy locus (the fiber of D, over z € X
is equal to {f € Hom(F(z), E(x))|rank f < k}). We say that ¢ is r-general if the
section s,: X — Hom(F,FE) induced by ¢ intersects, on each stratum of X, the
subset D, \ D,_, transversely for every k£ =0,1,...,r. For an pure-dimensional,
nonsingular X, this condition can be expressed in a more transparent way (see
Lemma 2.9(2)): a morphism ¢ is r-general iff for every k£ = 0,1, ...,r, the subset
Dy(¢) \ Dix—1(p) is nonsingular of pure dimension dimX — (m — k)(n — k) (here,
D_1(p) =0).

To state the main result of this paper we need some definitions.

Given two vector bundles E, F' (of fixed ranks n and m) on X and a partition

I = (iy,...,ix), we define in H2(X) the class

si(E — F):= Det [si,—p+q(E — F)]

1<p,q<k’
where i
B = F) i= Y (-1 P, (B)er_y(F)
p=0
In particular, if F' = 0 then s;(F) = Det [sip—P‘HI(E)]lgp,qgk ; if E = 0 then

si(—F) = (—1)s;~ (F).

Let m A n denote the minimum of m and n.
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We now define the following element in H,(X). We set
V(k) := Pp(E, F)Nc(X),

where
Py(E,F) := Z(—1)|I|+|J| DY j $m—tyn—ty1,5~(E — F).

Here, the sum is over all partitions I, J such that [(I) < m An—k, [(J) <mAn—k,

and ' ‘
D’f,J::Det{<2P+3qu+”;2k_p_q>] .
bt n—Rk=p 1<p,q<mAn—Fk

Observe that this determinant depends only on m — k, n — k and I, J. This
will be reflected in the notation DTJ_k’"_k for this determinant, used in Section 3.

The following formula gives an explicit expression for the image of the Chern-
Schwartz-MacPherson class of D,(y) in the homology of X. Let ¢: D,(¢) — X
denote the inclusion.

Theorem 2.1. If ¢ is r-general then one has in H,(X)

e @i = 3 0 (T e

k=0

We refer the reader to the end of this Section for some examples illustrating
the theorem.

The proof of Theorem 2.1 requires several preliminary definitions and results.
Following [Prl] we say that a polynomial P(cy,... ,cn, ¢, ..., cy,), where {c;}, {c}}
are independent variables, s universally supported on the r-th degeneracy locus if
for every variety X and every morphism ¢: F' — FE of vector bundles on X with
rank F = m, rank E = n and every o € H,(X), we have

P(ci(E),...,co(E)yci(F),...,cm(F)) Na € Im(ey) .

Here, v, : Hi(D,(p)) — H.(X) denotes the induced morphism of the homology
groups. The set of polynomials universally supported on the r-th degeneracy locus
forms an ideal which was originally described with generators and a Z-basis in [Prl]
for Chow homology replacing in the above definition the Borel-Moore homology. It
was then shown in [P-R] that for Borel-Moore homology the analogous ideal admits
exactly the same description. Let us recall a coarse description of this ideal.

Given ¢y, ... ,c, as above, we define inductively (¢; = 0 for i > n),

o i—1
Si 1= 8j—1C; — Si—aCa + -+ (=1)"" "¢
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Then, we define s;(c., ¢’.) by the formula
si(c., ) = Z(—l)i_pspc;_p.
Finally, for a given partition I = (iy,... i) we set
sr(c.,c'.) = Det [si, —pyq(c., )] L <pg<h °

In particular, the class s;(E — F') defined above is sy(c.,c’.) with ¢; = ¢;(E),
c; =1 ¢;(F).

Then the ideal in question is generated by the polynomials sy(c.,c’.) where
I D (m —r)™". Observe that, in particular, P,.(E, F') is a polynomial universally

supported on the r-th degeneracy locus , specialized with ¢; := ¢;(F), c;- =:¢;(F).

We now record:

Proposition 2.2. (i) No nonzero Zlcy,... ,cy]|-combination of the sy(c.,c.) with
I 2% (m—7r)""" is universally supported on the r-th degeneracy locus.
(ii) There exist nonsingular varieties X, .,, vector bundles E, .,, F, ., and vector
bundle homomorphisms ¢, ,, depending on a pair of positive integers such that:
1. The Chern classes of E, , and F, ,, are algebraically independent if v, w — oo.
2. Setting Dy (v, w) = Dy (Qp.w), to,w : Dr(v,w) — Xy for the inclusion and let-
ting v,w — 00, the image Im(ty )« of Hi(Dy(v,w)) considered in H* (X, )
15 equal to the ideal of polynomials universally supported on the r-th degeneracy
locus, specialized by setting c; = ¢;(Ey w), c} = ¢j(Fyw).

Proof. (i) This assertion is a consequence of [Pr2, Theorem 5.3(i)] and its proof
combined with the Borel-Moore homology version of the main Theorem 3.4 of [Prl],
given in [P-R].

(ii) We use here the construction given before Lemma 2.5 in [P-R]. We now
recall briefly this construction (and refer the reader to [P-R] for details). Let V, W be
complex vector spaces of dimension v = dim V and w = dim W. Let G™ = G™ (W)
be the Grassmannian parametrizing m-quotients of W and G,, = G, (V) be the
Grassmannian parametrizing n-subspaces of V. Denote by Q the tautological rank
m quotient bundle on G™ and by R the tautological rank n (sub)bundle on G,,. We
define X, ,, to be the total space of the Grassmannian bundle

Gm(Qcmxa, ® Ramxa,)

over G™ x Gy,. The variety X,, is endowed with the tautological rank m
(sub)bundle S C (Q® R)x, .- Weput Fyy =S, Eyw = Rx and define ¢,
as the composite:

v,w’?

Fvw =85 — (Q@R)Xv,w ﬁg Ev,w - RXv,w-

)
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Finally, we set D, (v, w) = D,(¢y,). It is proved in loc.cit. that properties 1 and 2
hold true. [

Fix now ¢ and write D, = D,(¢) for brevity. We will need, in the sequel, the
following property of U(r) which stems implicitly from [Prl]|. Let 7g: G, (E) — X
(resp. mp:G"(F) — X) be the Grassmannian bundle parametrizing r-subbundles
of E (resp. r-quotients of F'). Moreover, let

0— Rg) — EGT(E) — ng—r) — 0

0— R%m_T) — Fgrpy — Qg) — 0

be the tautological sequences on G,(F) and G"(F'). Consider the following fibre
product of Grassmannian bundles

GG = G"(F) x G.(B) =24 G.(B) =% X .

The morphism ¢ induces the section s, of Hom(F, E) and thus the section s, of
H = Hom(F,E)ga/Hom(Qr, Rg). Let Y be the variety of zeros of 5,. Denote by
p the restriction of 7 to Y. It factorizes through D,: 7ol =10p, wherel:Y — GG
is the inclusion. Let k: D, \ D,_; — D, be the inclusion and let K (resp. C) be
the kernel (resp. cokernel) bundle of ¢ restricted to D, \ D,_;.

Lemma 2.3. (i) Assume that X is pure-dimensional nonsingular and'Y is nonsin-
gular of pure codimension mn — 1% in GG. We set in H,(D,):

@ = pe(e(~(Bp © Qu)ly) N (r1)"e,(X)).

Then t,(a) = U(r) and k*(a) = ¢(—K "~ & C) N (1k)*cs(X).
(i7) The variety Y associated with the morphism ¢, 4, from Proposition 2.2 satisfies
the assumptions of (i).

Proof. (i) Note that (71)* makes sense because X and Y are nonsingular. Also, since
D, \ D,_; is isomorphic to p~1(D, \ D,_1) which is an open subset of a nonsingular
Y,k :D,\D,_; — X is a morphism of nonsingular varieties, so (¢k)* makes sense.

We now prove the first assertion. It follows from the assumptions that [,[Y] =
ctop(H)N[GG]. This equation combined with ¢, p, = 7./, and the projection formula
yields:

1e(@) = () (e(~ (R © @i)ly) 0 (71)*eu(X)
= Ty (c(—R;ﬂ ® QE) - ctop(H) N T*C*(X)).

The assertion now follows from a calculation analogous to the one in [Prl, Propo-
sition 5.7]; the only difference being the use of Lemma 3.1 from loc.cit. instead of
Lemma 5.1 from loc.cit..
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The second assertion is immediate as Rp|y restricts (via k) to K and Qgly -
to C.
(ii) We must check that Y associated with ¢, , is a nonsingular variety of pure
codimension mn — r2 in GG. Consider the standard coordinate bundle of Xow:

U= Hom(QGmen7RGmXGn)7

in the notation of Proposition 2.2(ii). We can identify GGy with the total space of
the vector bundle:

Hom(Qpim.rxFi,. ., RFimoxFi,., )5
where FI™" (resp. Fl, ;) is the Flag variety parametrizing the (rank m, rank r)-

flags of quotients of W (resp. (rank r, rank n)-flags of subspaces of V'). Under this
identification Yy C GGy becomes the subbundle

/ !/
M(QFV"J’ XFly oy Ripim.r XFlyp ),

where Q' (resp. R’) is the tautological rank r bundle on FI™" (resp. on Fl, ).
This implies easily that Y satisfies the assumptions of (i). O

At the end of the list of preliminary results we record the following consequence
of the Littlewood-Richardson rule for the multiplication of the s;(F)’s.

Lemma 2.4. Let I,J be two partitions such that I(I~) < a, I(J) < b. Then the
nonzero coefficients vx occuring in the decomposition:

si(F)-s;(F) =Y vk sx(F) (yx € Z),
are indexed by partitions K 2 (a + 1)1

Proof. We use the terminology and formulation of the quoted rule as in [M, 1.9].
Recall that the diagrams of K for which vx # 0 are obtained by adding to the
diagram of I the boxes coming from the diagram of J according to certain rules.
One of these rules implies that the number of new boxes added in a single column
cannot be greater than I(J). Our assertion now follows from the observation that
the (a 4+ 1)-th column of the diagram of K, for which vx # 0, cannot contain b + 1
boxes because i1 < a+ 1 and [(J) <b. O

Assume now that m > n (we can assume this without loss of generality through
replacing ¢ by its dual, if necessary).

Consider the following geometric construction. Fix a morphism ¢ and consider
the variety Z, = Z,(¢) (r =0,1,...,n) defined by:

Zy = Zy(p) =Zeros(Fg 29 Bg — Q) 2, G= G, (F)

(2.1) ln ln

D, _t X
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where G, (F) is the Grassmannian bundle of r-subbundles of £ and Q is (n — r)-
bundle appearing in the exact (tautological) sequence 0 — R — Eg — @ — 0
on G. In particular, for the construction given in Proposition 2.2(ii), we define

Zv,w - Z(‘Pv,w)

The key information for the purposes of this Section is contained in:

Proposition 2.5. Assume that ¢ : F' — E is a holomorphic homomorphism of vec-
tor bundles over an analytic variety such that the section of Hom(Fg, Q) associated

with the morphism Fg AN Q intersects the zero section transversely. Then
TaJs(Ce(Zr)) = V(7).

Proof. Our proof is rather conceptual than computational, is divided into several
steps and relies heavily on several formulas that were used in [Prl]. We refer the
reader to loc.cit. for the precise source-references.

Step 1 We claim that the following identity holds:
(2.2) mge(cs(Zy)) = <s(m)n7T(Q —Fg)c(R @Q —Fz®Q)N W*C*(X)> :
By Propositon 1.3 we get

Ge(cx(Z,) = c(Fg ® Q) ewop(Fg ® Q) N eu(G)
= s(myn—+(Q — F)e(Fg © Q)™ neu(@),

where the last equality follows from the well-known decomposition of the resultant
into Schur polynomials (loc.cit., Lemma 1.2). Combining this with the formula for
¢+(G) from Proposition 1.5, the identity (2.2) follows.

It follows from the formula for Gysin push-forward in a Grassmannian bundle
(loc.cit., Proposition 2.2) that Equation (2.2) can be rewritten in the form

(2.3) Toju(ce(Zy)) = Po(E, F) N ey (X),

where P,(E,F) is a certain universal polynomial expression (with integer coeffi-
cients) in the Chern classes of F' and E. Moreover, it is clear from its definition
that ]BT(E , F) is a polynomial universally supported on the r-th degeneracy locus,
specialized by setting ¢; 1= ¢;(E), ¢; =: ¢;(F).

Step 2 We claim that it is sufficient to work with ¢ = ¢, ,, in the notation of
Proposition 2.2. Indeed, ¢ = ¢, ., satisfies the assumptions of Proposition 2.5.
This follows, e.g., from the fact that Z, (v, w) is of pure dimension dimG —m(n —r)
and nonsingular (see [P-R, Lemma 2.6]).

Moreover, if we write

PE.F)=Y o si(E)-s5(F),



15

then for v, w > 0 the coeflicients ay; € Z, computed in the above situation for
E=F,,, I'=1F,,, are the same as the wanted universal ones. This follows from
the property that the Chern classes of F, ,, and F, ,, are algebraically independent
if v,w — o0.

Express P.(E, F) as

(2.4) Po(E,F) =Y or(E)si(E-F),

where the sum is taken over partitions, and a;(E) depend only on c.(E) and do not
depend on c.(F) ( This is possible by the linearity formula ([Prl, Formula 4] ).

Step 83 We claim that I 4 (m —r+1)"""!if a;(E) # 0. To prove it, let us look
at (2.2) and analyse for which partitions L the following property holds: if

PAE,F) = Y Bu(B)sL(F),

where O1(E) € Zlc.(E)], then SL(E) # 0.

Note first that every s7(F¢) appearing in the decomposition of sy (Q—Fg),
as a Z-combination of the products of the form sk (Q) - s;(Fg), satisfies

(I7)<rkQ=n-—r

(loc.cit., Formula (2)). Moreover, every s;(Fg) appearing in the decomposition of
ci(—F(v; Q) = (—1)is,~(F(V; ®Q), as a Z-combination of the the products of the form
sp(Q)-sy(Fg), satisfies [(J) < n — r (loc.cit., Lemma 5.6). But, by Lemma 2.4, if

Iy <n—7r and I(J)<n—r<m-—r,

then the nonzero yx occuring in

si(F)-s;(F) =Y vksk(F) (vk € ),

are indexed by partitions K 2 (n —r + 1)™~"T1, Consequently, using the property
that sg(—F) = £sg~(F) and the linearity formula decomposing s;(E — F) as a
Z-combination of the products of the form sp/(E) - sy (F'), we infer that if in (2.4)
ar(E)#0 then I % (m—r+1)"""t1 as claimed.

Step 4 We claim that m,.j.(cs(Z,)) = P.(E,F) N ci(X). It is enough to show
that P.(E,F) = P.(E,F). We know that it is sufficient to prove this assertion for
the variety X, , equipped with the morphism ¢, ., : F o, — E, . (see Proposition
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2.2(i1)) by letting v, w — oo. We write X = X, , D, = D, (v,w), Z, = Z,(v,w),
E=F, ., and F = F, ,, for brevity.

We have the following commutative diagram

H.(Z) —2 H.(Z\ 7Y (Dy_1))

L ‘-

H,D,) ——  H.(D,\D,_1)

- !

H(X) . H.(X\D,_,)

where ¢/, k, k1, ko are the inclusions and 7’ is the restriction of 7.

We now record:

Claim: k}(P.(E,F) — P,(E,F)) = 0.

To prove the claim let K (resp. C) be the kernel (resp. cokernel) bundle of ¢
restricted to D, \ D,_;. We have

Ena(en(2)) = ks (e(B © Q)z, — (Fo © Q)z,) N (1) en(X))
= ¢(—K ®C)n (th)*cu(X) .

On the other hand, it follows from Lemma 2.3 that ¥(r) € H,(X) is the image by
L« of an element a € H,(D,) satisfying the property

k*(a) = o(—K ®C) N (k) cu(X).
Since T.j« = t«7)«, these two equalities give

k1 (\II(T) - W*j*(c*(zr))) =0.

Interpreting k7 as the ring homomorphism of the corresponding cohomology
rings, we then infer

k(U(r) = meje(ea(Z0))) = ki (Pr(B, F) = Po(BE, F)) - ki (ex(X)) = 0.
Since
kY (ci(X)) = 1+ (elements of higher degree in H*(X \ Dy_1))

is a non-zero-divisor in H*(X \ D,_;), our Claim follows.
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By [F, Chap.19] and Proposition 2.2(ii) we have exact sequences:

T kT
Hi(D,_1) = Hoy(X) — H2(X \ Dy_1),

where ¢ > 0 and 7 : D,_; — X is the inclusion. Hence, we infer by Claim that
P,(E,F) — P,(E, F) is contained in I'm(z,). We thus conclude, using Proposition
2.2(ii), that P,.(E, F)—P,(E, F) is a polynomial universally supported on the (r—1)-
th degeneracy locus, specialized by setting ¢; = ¢;(£) and ¢ = ¢;(F).

By Step 3 we know that P,(E,F) — P.(E, F) is a Z[c.(E)]-combination of the
s;(E — F), where I 2 (m —r + 1)"~"t!. In virtue of Proposition 2.2(i) with r

replaced by r — 1, this forces the equality: P.(E,F) = P.(E, F), as desired.
The proposition has been proved.

Remark: The above proof is given in the Borel-Moore homology framework which is
the original setup for the Chern-Schwartz-MacPherson classes. A similar proof can
be given for the Chern-Schwartz-MacPherson classes defined in the Chow groups
A, (=) of cycles modulo rational equivalence (see [F, Ex.19.1.7]). In fact, all for-
mulas from Section 1 that were used in the above proof hold in the Chow groups
setup. Then the above proof goes through mutatis mutandis (with the Chow groups
replacing the Borel-Moore homology groups and the Chow rings replacing the coho-
mology rings). The specialization construction from Proposition 2.2(ii) works well;
however, it can be replaced by the construction (13) from [Prl] which also makes
the job. [0

In the next lemma, ! will denote the group homomorphism from F(Z,) to
F(D,) defined in Section 1, where F'(Z,) (resp. F(D,)) stands for the free abelian
group of constructable functions on Z, (resp. D,).

Lemma 2.6. We have in F(D,)

m—r+k-1
oz =3 ("7 o

k=0

Proof. The family {Dy \ Di—1}o<k<r (Where D_; = () provides a stratification
of D, such that nf’(1z ) is constant on strata. The fiber of 5 over any point of
Dy \ Di_1 is the Grassmannian G,_;(C*~*). Since its Euler characteristic is (Z:Z),
the proof of Lemma 1.6 shows that

T
nf(lZT) = delDrfk ?
k=0

where dy = 1 and, by induction on k, we have:
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Corollary 2.7. Denoting by v: Dy, — X the inclusion, we have in H,(X),

(m7)+(ce(Zr)) = Z <n - _]: b 1> (tr—k)x(ca(Dr_p)) -

k=0
Lemma 2.8. For every positive integers a, k, the following equality holds:

(1) (06

p=1

Proof. The assertion is a consequence of the following two equalities:

(29 () |-

(6= (5165

where p =1,... ,k, a verification of the latter being straightforward. 0O

and

In order to prove our main Theorem 2.1 we need some properties of D, and
Z,.. We were, however, unable to find convenient references and shall therefore state
and prove these simple but useful results in the next lemma. In this lemma and in
a forthcoming proof of Theorem 2.1 we write DY = Dy \ Dy_1, Gy := Gp(E); m
denotes the projection Gy, — X and (Qx means the tautological quotient bundle on

Gj. Moreover, sy : G, — Hy := Hom(Fg,, Q) is the section associated with the

morphism F; ﬂE — .
p G G k
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Lemma 2.9. (1) The following two conditions are equivalent:

(i) The section s, intersects Dy, \ D,,_; transversely.

(ii) The section sy, intersects the zero section of Hy transversely on m; *(DY).

(2) Assume that X is pure-dimensional and nonsingular. Then the section s, in-
tersects Dy, \ Dj,_; transversely iff DY is nonsingular of pure dimension dimX —
(m—k)(n—Fk). In particular, ¢ is r-general iff DY) is nonsingular of pure dimension

dimX — (m —k)(n—k) for all k =0,1,...,r (D_1=10).

Proof. (1) Let us examine when s, intersects D \ D, _, transversely at z € DY.
The problem being local, we can proceed in an open neighbourhood U of z and
assume that: F' = F| @ Fy, £ = E1 @& Ey are trivial with rank Fy = rank E1 = k,
say; ¢ is given by an isomorphism between F} and E; (we can choose such bases in
Fy and FE; that this isomorphism is given by the identity matrix over U); the maps
between F} and Fy, Fy and E; are zero; finally, assume that the value of the map
¢ between Fy and Ejy is given by a matrix A of order (n — k) x (m — k). Then s,
intersects Dy, \ D;_; transversely at z iff the section of Hom(Fs, Fs) determined
by A, intersects its zero section transversely at . The latter condition is expressed,
equivalently, by the property that the entries of A form a part of a regular system
of parameters in the local ring of z.

On the other hand, we now calculate the value of the composition morphism:

(A

Fg, — Eqg, — Q

k

over the open subset of the form U X (standard Grassmannian chart), where U is
the above neighbourhood of 2 € DY. It suffices to examine when the section s
of Hj, intersects its zero section transversely at the point (x,y) where y belongs to
the Grassmannian chart such that over the above open subset, the map Eg, —
Qr is given as follows. The entries of the (n — k) x k-matrix of Fy — Fy are
the indeterminates {z,} (”Grassmannian chart coordinates”) and Fy — Es is the
identity morphism. As the result of performing the above composition we get a
(n — k) x m-matrix whose (n — k) x k-submatrix corresponding to F; — Fy has
entries {z,} and (n — k) x (m — k)- submatrix corresponding to Fy — FEs equals A.
Then the section si of Hy intersects its zero section transversely at (z,y) ift {z,}
and the entries of A form a part of a regular system of parameters in the local ring
of (x,y). The latter condition is expressed, equivalently, by the property that the
entries of A form a part of a regular system of parameters in the local ring of x.

Comparison of the results of these two reasonings yields assertion (1).

(2) Pick the open neighbourhood U of a given point z in D} and the matrix A as
in the proof of (1) above. Then, by a well known property of commutative algebra,
D? is nonsingular of pure dimension dimX — (m — k)(n — k) iff, for every point x
of DE, the entries of A form a part of a regular system of parameters in the local
ring of x. But the latter condition is also equivalent to the fact that s, intersects
D, \ D,._, transversely (see the proof of (1) above). This proves assertion (2). O
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Proof of Theorem 2.1. We want to prove that for an r-general morphism ¢, where
r=0,1,...,n, the folowing equality holds (recall that we have assumed m > n):

te(ce(Dy)) = Z (—1)* (n - -]I; b= 1>\IJ(T — k).

k=0
At first, for r = 0 the formula reads: ¢.(ci(Dg)) = ¥(0). We mimic the proof
of [Prl, Proposition 5.7]. In virtue of Proposition 1.3 it suffices to show that

(FY @ B) vy (FY @ B) = 3 (~DMHIDY | sy g (B~ F),

the sum over partitions I, .J of length < n.

The above equality is a direct consequence of the following three formulas: the
well-known decomposition of the resultant into Schur polynomials, a factorization
formula:

SIE SJ(FV)S(m)n(E — F) = S(m)n+I,J~ (E — F) N and

(FY @ B) = Y (1)is(FY @ B) = S (~)IHIDY s(E) s5(FY),

i
the sum over partitions I, .J of length < n.

These formulas were used in similar calculations in [Prl] (see Lemmas 1.2, 1.1
and 5.6 in loc.cit.) where we refer the reader for the precise source-references.

Suppose now that the formula is correct for every & < r — 1. We have by
Corollary 2.7

te(en(Dy) = (mod)ulen(Z0) = 3 )

. <n—r+p—1
p=1

)Grmplen(Dema)

Since @ is r-general, ¢ is also k-general for k¥ < r. We can thus use the induction as-
sumption with respect to (¢,—p)«(cx(Dr—p)), p = 1,...,7. Moreover, the assumption
of Proposition 2.5 is satisfied. Indeed, it suffices to show that the section s, inter-
sects the zero section of H, transversely on 7 (DY) where k = 0,1, ...,r. For k = r,
this follows from Lemma 2.9(1). For k < r, let Flj ,(E) denote the Flag variety
parametrizing all (rank &, rank r)-flags of subbundles of E. Let p : Fli ,(E) — G,
and ¢ : Fly,(F) — G, denote the projections. By the assumption and Lemma
2.9(1), sy intersects the zero section of Hj transversely on m; '(DY). Hence the
composition s of p*s; with the surjection p*Hy — ¢*H, intersects the zero section
of ¢*H, transversely on p~ta, (DY) = ¢~ 7 1(DY). Since s = ¢*s,, the section s,
intersects transversely the zero section of H, on 7, 1(DY), as desired.

Finally, using Proposition 2.5 and the induction assumption, we can rewrite the
above expression for ¢, (c.(D,)) in the form
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ﬁf(r)—fj(”_”p_l) [i—l)‘l(”_”“q‘1)w<r—p—q)]

p=1 P q=0 q

- i(—l)k\lf(r — k) [ Zk:(—l)p—l (n —r+p- 1) <n —r+k- 1) ]

ot p k—p

where the last equality follows from Lemma 2.8 with a =n —r — 1.

Thus the proof of Theorem 2.1 is complete. [

In particular the degree of the 0-dimensional component of the so obtained
expression for ¢, (c.(D,)) gives an explicit answer to the problem posed by Harris
and Tu [H-T].

Theorem 2.10. If X is a compact analytic variety and ¢ s r-general, then
: g(mAn—r+k—1
XD, = [ 3 ) ! Wi~ k).
k=0

Recall that
V(k) => (~D)HIDY ; sn_pyniirg~ (B = F)ne.(X),

where the sum runs over all partitions I, J such that [(I) < mAn—k, [(J) < mAn—k
and D’f,J is the binomial determinant defined before Theorem 2.1.

Remark 2.11. Under the assumption D,_1(¢) = 0, the above formula reads
x(Dr(¢)) = [y ¥(r). This result was established in [Prl, Proposition 5.7] as a
particular case of an algorithm for computation the Chern numbers of nonsingular
degeneracy loci.

As a by-product of the proof of Theorem 2.1 we get the following formula for
the Intersection Homology-Euler characteristic, shortly x;g(—), of D,(¢p).
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Theorem 2.12. If X is nonsingular compact analytic variety and ¢ is r-general,
then

xia (D () = /X w(r).

Proof. We can assume without loss of generality that m > n. Since, e.g., by Lemma
2.9 we have dim(Dg(¢)\ Di—1(¢)) = dimX —(m—k)(n—k) for every k = 0,1, ..., 7,
we easily show that Z, is a small desingularization of D,.(¢). The theorem now
follows from a general result asserting that for every small desingularization Z — D
we have xrg (D) = x(Z) (see, e.g., Goresky and MacPherson’s paper " Problems and
bibliography on intersection homology” in [B&al.]). O

Example 2.13. We collect here several examples illustrating Theorems 2.1 and
2.10. If ¢ is r-general then

codimp, (o) Dr—1(p) = (m —7) +(n =) + 1;

in particular this codimension is at least 3. Therefore, for dimD,(¢) = 0,1,2,
the formula of Theorem 2.1 reduces to a single summand corresponding to k = 0:

L (s (Dr())) = ¥(r).
If dimD,(¢) = 0 then

U(r) = $(m_ryr—r (E = F) 0 ca(X) = $(mepyn—r(E — F) N [X].
If dimD, (p) =1 then
U(r) = (s(m_r)n,r(E — F) = (= 1)$(m—pyr—r 1) (E — F)
— (= )8y (1) (B — F)) A e (X).
If dimD, (p) = 2 then ¥(r) equals

<8(m—r)nr(E —F) = (n=r)sgn_ryn—r )(E = F) = (m = 1)s(m_ryn—ri)(E — F)

n—r+1 m—r+1
( 9 )S(m—r)"—r,(l,l)(E - F) + < 9 )S(m—r)"_r-I-(Z)(E - F)

n—r m —rT
+ ( 5 >8(m—r)nr,(2)(E —F)+ ( 5 >8(m—r)nr+(1,1)(E —F)

+ ((m ) (n—7) + 1)8(m_r)n—r+(1),(1)(E - F)) M e (X)

Of course, the degree of the 0-dimensional components of these expressions
evaluates the Euler characteristic of D,(¢) (see [Prl, Example 5.8]).
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Let us look now at the "next simplest” case when, for a general ¢, dim D, (¢) =
3 and the formula of Theorem 2.1 has more then one summand. Then D,_1(p) # 0.
It follows from the above that the unique possibility for that is: m =n =2, r = 1.
Consequently, dim X = 4, and D,(p) = D;i(y) is a hypersurface in X. Then the
formula of Theorem 2.1 reads

te(cx (Di(p))) = ¥(1) = ¥(0),

where the first term

v = (3 0% (s - 0) e

1+j5<3
would give ¢y (cx(D1(p))) if Do(¢p) were empty. The ”correction term” equals
U(0) = s99(E — F) N [X] = ctop(F @ E)N[X].

In case X is nonsingular and compact, the formula

x(Dip) = [ (w(1) - 90))

admits the following interpretation. Let L be the line bundle A?FY ® A%2E. Then
D1 () is the variety of zeros of the section of L given by the determinant of ¢. It it
easy to see that

/X\Il(l):/Xcl(L)-c(L)_lﬁc*(X),

where ¢1 (L) = ¢1(E—F). The expression on the right hand side is known to evaluate
the Euler characteristic of the (smooth) variety of zeros associated with a general
section of L. Observe D1 (¢p) is a hypersurface in X with isolated singularities Dy ().
Near each singular point of D;(g), there exist local coordinates (x1, 3, x3, z4) such
that D1(¢p) is given (locally) by the equation zixy — z3z4 = 0. Hence the Milnor
numbers of all the points in Dy(p) are equal to 1. Since [, ¥(0) evaluates the
cardinality of Do(y), we conclude that the above formula for x(D1(¢)) expresses
the following known property: the ”true” Euler characteristic of a hypersurface
with isolated singularities differs (up to a sign) from the one ”expected” for the
nonsingular case by the sum of the Milnor numbers of the singularities. We refer
the reader to [P-P1,2] for a precise statement of the latter property as well as its
generalization.
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3. SPECIAL DIVISORS

Let C be a nonsingular curve (over C) of genus g. Consider the subvariety
W7 (C) of Pict(C) parametrizing complete linear series on C of degree d and di-
mension at least r :

Wj(C) = {L € Pic*(C)| h°(C,L) > r + 1}.

These varieties play a crucial role in the Brill-Noether theory of special divisors in
Jacobians (we refer the interested reader to [A-C-G-H] for a fairly complete account
to the theory of special divisors including a detailed treatment of the varieties W}).
We will assume throughout this section that d and r are integers such that d > 1,
r>0and g —d+r > 0. As a matter of fact, it is shown in loc.cit, p. 204, that we
can limit ourselves even to the cases 7 > 0, g > d > 2r. (Note that ”7” and also
”m” below will have here a different meaning from that in the previous section. We
intend to follow, in this section, the classical notation of [A-C-G-H]).

Recall (see e.g. [A-C-G-H, p.309]) that the varieties Wj(C) admit a presen-
tation as degeneracy loci due to Kempf [K] and Kleiman-Laksov [K-L|. Picking an
integer m >> 0, W7 (C) can be presented as the locus where a certain morphism
¢ : F — E of bundles of respective ranks m — g +d + 1 and m, over Pic™t%(C) ,
has the rank not greater than m — g + d — r. In other words,

Wi(C) = Din—gia—r(pc)-

We refer the interested reader for details of this construction to [A-C-G-H, pp. 176-
179 and pp. 308-309]. Furthemore, ¢;(E) = 0 for i > 0 (loc.cit. p. 309) and

1 1
C(—F):69:1+9+§92+§93+...

(loc.cit. p.319) where @ is the class of the theta divisor in Pic™T%(C) i.e. the trans-
late of the theta divisor on the Jacobian of C canonically isomorphic to Pic®(C).
Recall that 6 defines the principal polarization of the Jacobian of C and [ 69 = g!
(here and in the sequel, we identify the top-dimensional cohomology class with its
dual 0-dimensional homology class).

We now invoke the following results due to Griffiths-Harris [G-H|, Fulton-
Lazarsfeld [F-L] and Gieseker [Gi] (which should be compared with [A-C]); see also
[A-C-G-H, Chap.V]). Let p := p(r) := p(g,d,r) :== g — (r + 1)(g — d + r) be the
Brill-Noether number.

Theorem 3.1. Let C' be a general curve of genus g. Let d and r be integers as
above. Then, for p > 0, W7 (C) is irreducible and, for any p, the dimension of
W} (C) equals p. Moreover, SingW?(C) = W;tH(0).

The above theorem implies that for a general curve C', the morphism ¢ is
(m — g +d — r)-general. We can thus apply Theorem 2.10 to compute the Euler
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characteristic of W} (C) for a general curve C. We will write in the sequel D}*; %" "

instead of D’}’, ; for the binomial determinants defined before Theorem 2.1 (with m,n
as in Section 2).

We first record (in the next lemma m is >> 0, like in Kempf’s and Kleiman-
Laksov’s construction):

Lemma 3.2. Let E, F be the above vector bundles over Pic™ % (C) and ¥(k) the
element defined in Section 2. If p(r) > 0 then one has:

/ U(m—g+d—r)=(=1)""yg! ZD;j;l’g—d”/h(Ig,d,r +1,J7),
X

where X = Pic™T4(C), I, 4, is the partition (r+1)9=%F" the sum is over partitions
I,.J with length < (r+1)A (g —d+r) and such that |I|+ |J| = p(r). Moreover, for
a partition I, h(I) denotes the product of all hook lengths associated with the boxes
in the Ferrers’ diagram of I (see [M, Chap.I]).

Proof. Recall (see Section 2 and its notation) that for an irreducible nonsingular
variety X, the cohomology dual to the 0-dimensional component of ¥ (k) equals

Z(—1)|I|+|J| DTJ_k’n_k Stm—kyr—k 41,0~ (B — F)cagy—11-17/(X),

where d(k) = dimX — (m — k)(n — k) and the sum is over all partitions I, J such
that (1) <mAn—k, I(J) <mAn—k.

By substituting our data we get:
Jx¥(m—g+d—r)=

1,9—d
Jx SN Db e g g~ (—F) ey 111101 (X).
Since X = Pic™T?(C) is an abelian variety, the above summation runs over I, .J of

length < (r +1) A (g —d + ) and |I| + |J| = p(r). Moreover, ¢(—F) = € implies
si(—F) = 0*/i! for every i > 0. This gives

/ Sra1ys—ttrig g~ (—F) = / h(lgra+1,07)710 = g/ h(Ig,a, + 1, J7)
X X

(for the assertions in the latter two sentences see [M, Ex.1.3.5]).

Putting this together,

/ U(m—g+d—r)=(-1)""g> D~ (I, 4 +1,77),
b'e
the sum over I, J with length < (r + 1) A (¢ —d + ), as asserted. O

For p(r) > 0, let ®(g,d,r) denote the R.H.S. of the formula of Lemma 3.2. We
set ®(g,d,r)=0if p(r) < 0.
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Corollary 3.3. For p(r) > 0 one has ®(g,d,r) > 0 (resp. ®(g,d,r) <0 ) iff p(r)
is even (resp. p(r) is odd).
The fact that we have here strict inequalities is a consequence of [G-V, Corollary

2]. Indeed, this result implies the inequalities D;j}l’g T 5 0 (recall that the D’s
are determinants of binomial coefficients defined before Theorem 2.1).

Combining Theorems 2.10, 3.1 and Lemma 3.2 we get:

Theorem 3.4. Assume that a curve C of genus g is general. Let d, r be integers
as above and such that p(r) > 0. Then one has

NUACIED DVt (R !

k>r

From this formula, one deduces the following corollary. If we fix ¢, d,r such
that p(r) > 0 and the nonnegative numbers p(r), p(r + 1),... change successively
the parity, then x(Wj(C)) > 0 (resp. x(Wj(C)) < 0) iff p(r) is even (resp. p(r) is
odd). Observe that the above numbers change successively the parity if r + 1 and
r + g — d are of the same parity. This latter condition holds iff ¢ Z d(mod 2). Thus
we get, in the situation of Theorem 3.4, the following result.

Corollary 3.5. Assume g # d(mod2). Then x(W}(C)) <0 (resp. x(W}(C)) >0)
iff g=r(mod?2) (resp. g % r(mod?2) ).

Example 3.6. We give here formulas for ®(g,d,r) when p = 0,1,2. We set
a:=r+1,b:=g—d+rand h:= h((a)’). We then have using Example 2.13:

-for p=20,
(g, d,r) = card(Wy(C)) = g!/h ;
-forp=1,
‘1>(g,dar)=%;
-forp=2,

glab(2ab+ 1)
(a+b—1)(a+b+1)h

d(g,d,r) =

Since for p = 0, 1, 2 the first sum in Theorem 3.4 is reduced to a single summand
corresponding to k = r, the above expressions give x(W7(C)) for a general curve
C. The case p = 0 is the Castelnuovo formula.

The last formula of Example 2.13, applied to a general curve C' of genus 4 gives

Finally, we record the following two consequences of the above calculations.
Combining Lemma 3.2 and Theorem 2.12 we get:
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Theorem 3.7. For a general curve and p(r) > 0,

xia (Wi (C)) = (g, d,r).

Let G%(C) = { g%'s on C } be the variety parametrizing linear series of degree d
and dimension r on C' (i.e. all series and not only the complete ones). This variety,
ultimately related to Wj(C'), was widely studied in [A-C| and [A-C-G-H, Chap.IV
and V). It is known (loc.cit.) that in notation of Section 2, G(C) = Zp—gra—r(pc)-
Therefore, combining Proposition 2.5 and Lemma 3.2 we thus get:

Theorem 3.8. For a general curve and p(r) > 0,

x(G5(C)) = @(g,d, ).
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