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Abstract. These are the lecture notes to the author’s course “A relative version of
Geometric Invariant Theory” taught during the mini-school “Moduli spaces” at the
Banach Center in Warsaw which took place in April 2005.

We give an account of old and new results in Geometric Invariant Theory and
present recent progress in the construction of moduli spaces of vector bundles and prin-
cipal bundles with extra structure (called “augmented” or “decorated” vector/principal
bundles).
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Introduction
Suppose that X is a complex projective manifold, that G is a reductive linear algebraic
group, and that ρ : G −→ GL(V ) is a representation of G. Using ρ , we may associate
to any principal G-bundle P on X a vector bundle Pρ with fiber V . We would like to
study ρ-pairs, i.e., triples (P,L ,ϕ) which are composed of a principal G-bundle on X , a
line bundle L on X , and a non-trivial homomorphism ϕ : Pρ −→L . There is a natural
equivalence relation on the set of all ρ-pairs. The topological background data of a ρ-pair
are the element τ ∈ π1(G) that classifies the topological principal G-bundle underlying P
and the degree d of the line bundle L . The precise program that we would like to carry
out is the following:
• Define a (parameter dependent) notion of (semi)stability for ρ-pairs.
• Show that, for τ ∈ π1(G) and d ∈ Z, the equivalence classes of stable ρ-pairs

(P,L ,ϕ), such that P has the topological type τ and the degree of L is d, are
parameterized by a quasi-projective moduli scheme M .

• Show that M may be compactified by a scheme M whose points parameterize the
semistable ρ-pairs with the given topological background data with respect to some
coarser equivalence relation, usually called S-equivalence.

The above problem has a considerable history in the mathematical literature (which we
are not going to trace back). The motivation to study it ranges from such different fields
as:
• Classification of complex algebraic varieties.
• Investigation of the (real analytic) spaces of representations of the fundamental

group of X in a real form of G.
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• Differential topology of (real) 4-manifolds.
The third topic belongs to the larger field of gauge theory. If one uses that field as moti-
vation, one finds ρ-pairs which satisfy a canonical stability condition (see [25] for a state
of the art account of these questions). The reader may also consult [8] and [36] for more
examples and references.

So far, the program that we have formulated above has been worked out case by
case for many different representations, mostly of GLr(C) or GLr1(C)×·· ·×GLrt (C).
The construction of the moduli spaces in those examples follows a certain pattern which
generalizes the strategy applied in the construction of the moduli spaces of semistable
vector bundles and crucially uses Mumford’s Geometric Invariant Theory (GIT). Further-
more, gauge theory has suggested a notion of semistability for the above ρ-pairs. In view
of these achievements, one would expect that one may perform the program that we have
formulated in full generality, i.e., one should find a theory, such that, if the input data X ,
G, and ρ are given, it puts out the semistability condition and grants the existence of the
moduli spaces. For GLr(C), this is indeed possible, if one restricts to homogeneous rep-
resentations (see [36] and [11]). It has also been completed for GLr1(C)×·· ·×GLrt (C)
[39], although that case is already quite tricky. Before one may proceed to other structure
groups, one needs an efficient formalism to deal with the principal bundles themselves.
This has been conceived only recently in [35] and [37]. If one puts all these findings
together, one may foresee the general solution.

We finally point out that the case of X = {pt} as the base manifold is the investi-
gation of the G-action on the projective space P(V ) that results from the representation
ρ . Therefore, the above program is not only a sophisticated application of GIT but also a
formal generalization of it. This is why we have dared to speak about a “relative version”
(namely relative to X) of GIT.

The aim of the lectures and these notes was or is to introduce the reader to this kind
of questions. Since GIT plays such a crucial role both as the main technical tool which
will be applied in the proofs and as an important source of intuition, the first three lectures
focus on GIT. We not only discuss the fundamental results from Hilbert to Mumford but
also some more recent developments concerning the variation of GIT quotients (which
has its counterpart in the setting of moduli spaces). In the last two lectures, we pass to
the theory of ρ-pairs, mainly for the structure group GLr(C). The base manifold will be
a curve.

The notes are a slightly modified version of the slides that the author used during
the oral presentation, i.e., those slides were supplemented by additional comments and
references in order to fulfill the standards of publication in a proceedings volume. The
author’s original intent was to include new research results (namely for general structure
groups) with complete proofs. Unfortunately, that project has grown out of size and will
have to await another occasion for publication (see [40]).

Acknowledgments. The author would like to thank the organizers of the mini school,
Adrian Langer, Piotr Pragacz, and Halszka Tutaj-Gasińska, for the invitation to give the
talks and the hospitality during the visit to Warsaw. He is also very grateful to Adrian
Langer for his careful reading of the manuscript.
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1. Lecture I: Algebraic groups and their representations
As explained in the introduction, Geometric Invariant Theory deals with the actions of
certain algebraic groups on algebraic varieties and the possibility of forming appropriate
quotients. Thus, in a first step, we will have to introduce the necessary notions from the
theory of (linear) algebraic groups. This will be done in the first section of this chapter.
The most important class of actions one has to understand for studying Geometric Invari-
ant Theory are linear actions of affine algebraic groups on vector spaces. These actions
are representations of the corresponding algebraic groups and are presented in the sec-
ond section. In the final section, we begin the investigation of the problem of forming
quotients of vector spaces by linear actions of an algebraic group.

1.1. Basic definitions
The theory of algebraic groups is an important field of Algebraic Geometry in its own
right. Standard references which include proofs of all the claims made below are the
books [6], [19], and [45]. The more courageous reader may directly refer to SGA 3.

Definition 1.1.1. i) A linear or affine algebraic group is a tuple (G,e,µ, inv) with

• G an affine algebraic variety,
• e ∈ G, the neutral element,
• µ : G×G−→ G a regular map, the multiplication, and
• inv : G−→ G a regular map, the inversion,

such that the axioms of a group are satisfied, i.e., the following diagrams are commutative:

G×G×G
µ×idG //

(Ass) idG×µ
²²

G×G

µ ;

²²

G

(Id) (idG,eG)
²²

idG

$$IIIIIIIIIII
(eG,idG)

// G×G

µ ;
²²

G×G µ
// G G×G µ

// G

G

(Inv) (idG,inv)
²²

eG

$$IIIIIIIIIII
(inv,idG)

// G×G

µ .
²²

G×G µ
// G

In these diagrams, eG : G−→ G stands for the morphism g 7−→ e, g ∈ G.
ii) Let G and H be linear algebraic groups. A homomorphism from G to H is

a regular map h : G −→ H which is at the same time a group homomorphism, i.e., the
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following diagram is commutative:

G×G
h×h //

µG

²²

H×H

µH .
²²

G
h // H

iii) A (closed) subgroup H of an algebraic group G is a closed subvariety of G
which is also a subgroup.

Remark 1.1.2. A linear algebraic group G is non-singular as an algebraic variety.

Example 1.1.3. i) One checks that the kernel of a homomorphism h : G −→ H between
linear algebraic groups is an example for a subgroup of G.

ii) The general linear group GLn(C) is a linear algebraic group:
• GLn(C) is the open subvariety {det 6= 0} ⊂Mn(C). We have the morphism

α : GLn(C) −→ Mn(C)×A1
C

g 7−→ (g,det(g)−1) .

This yields the description

GLn(C) =
{

(g, t) ∈Mn(C)×A1
C

∣∣ det(g) · t = 1
}

,

so that we have realized GLn(C) as a closed subvariety of the affine variety Mn(C)×
A1
C;

• the neutral element is the identity matrix;
• multiplication is matrix multiplication, which is obviously regular;
• and the inversion is the formation of the inverse matrix. The regularity of that oper-

ation results from Cramer’s rule.
The group C? = GL1(C) is just the multiplicative group of the field C, viewed as an
algebraic group.

The special linear group SLn(C) is a closed subgroup of GLn(C). It is described
by the polynomial equation det = 1; SLn(C) is the kernel of the homomorphism det :
GL n(C)−→ C? between linear algebraic groups.

ii) A homomorphism χ : G−→ C? is called a character of G. The characters of G
form an abelian group which is denoted by X(G).

For G = GLn(C) and any r ∈ Z, the map g 7−→ det(g)r is a character of G. Con-
versely, one shows that any character of GLn(C) is of that shape. This may be deduced
from the fact that the coordinate algebra of GLn(C) is isomorphic to the ring C[xi j, i, j =
1, ...,n; det−1].

iii) A linear algebraic group T which is isomorphic to (C?)×n is called a(n) (alge-
braic) torus. For its character group, we find X(T )∼= X((C?)×n)∼=Zn. In the latter iden-
tification, a vector α = (α1, ...,αn) ∈ Zn yields the character (z1, ...,zn) 7−→ zα1

1 · ... · zαn
n

of (C?)×n.
iv) A one parameter subgroup of G is a homomorphism λ : C? −→ G. The one

parameter subgroups of a torus T also form a free abelian group X?(T ) of finite rank.
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Given a character χ and a one parameter subgroup λ of T , the composition χ ◦λ : C? −→
C? is given as z 7−→ zγ for a uniquely determined integer γ . We set 〈λ ,χ〉 := γ . In this way,
we obtain the perfect pairing 〈., .〉 : X?(T )×X(T )−→Z, i.e., the induced homomorphism
X?(T )−→ X(T )∨ is an isomorphism.

v) It can be shown that any linear algebraic group is isomorphic to a closed subgroup
of a general linear group.

1.2. Representations
The fundamental example of forming the quotient of a vector space by the linear action
of a reductive affine algebraic group forms the technical heart of Geometric Invariant
Theory. These linear actions are so-called representations of the affine algebraic group.
Thus, we discuss this notion in the following paragraphs. The reductivity of an affine
algebraic group can be characterized in terms of its representation theory. This motivates
the notion of a linearly reductive affine algebraic group which will also be highlighted in
this section.

A good introduction to the representation theory of general linear groups in charac-
teristic zero are the lecture notes [23]. In positive characteristic, the representation theory
of general linear groups becomes more involved [13]. More advanced topics in the repre-
sentation theory of linear algebraic groups are contained in [21].

Definition 1.2.1. i) Suppose V is a finite dimensional complex vector space and G is a
linear algebraic group. We consider V as an affine algebraic variety. A (left) action of G
on V is a regular map

σ : G×V −→V,

satisfying the axioms:
1. For any g ∈ G, the map σg : V −→ V, v 7−→ σ(g,v), is a linear isomorphism; σe =

idV .
2. For any two elements g1,g2 ∈ G, one has σg1g2 = σg1 ◦σg2 .

Giving the action σ is the same as giving the homomorphism

ρ : G −→ GL(V )
g 7−→ σg.

In this correspondence, one associates to a homomorphism ρ the action

σ : G×V −→ V
(g,v) 7−→ ρ(g)(v).

For an action σ : G×V −→ V , we will abbreviate σ(g,v) to g · v, g ∈ G, v ∈ V . In the
above situation, V is also said to be a (left) G-module and the homomorphism ρ to be a
(rational) representation.

ii) Let V and W be two G-modules. A linear map l : V −→ W is said to be G-
equivariant or a homomorphism of G-modules, if

l(g · v) = g · l(v), ∀g ∈ G, v ∈V.

Two representations ρi : G −→ GL(Vi), i = 1,2, are called equivalent or isomorphic, if
there is an isomorphism of G-modules between V1 and V2.
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Example 1.2.2. i) To a given family ρi : G −→ GL(Vi), i = 1,2, ...,n, of representations,
we may associate new representations, using constructions from Linear Algebra, e.g.,

ρ1⊗·· ·⊗ρn : G−→ GL(V1⊗·· ·⊗Vn),

by setting

(ρ1⊗·· ·⊗ρn)(g)(v1⊗·· ·⊗ vn) := ρ1(g)(v1)⊗·· ·⊗ρn(g)(vn),

for g ∈ G and vi ∈Vi, i = 1, ...,n.
Further representations are direct sums ρ1⊕·· ·⊕ρn, symmetric powers Symr(ρ),

or exterior powers
∧r ρ .

For any representation ρ : G−→GL(V ), its dual or contragredient representation
ρ∨ : G −→ GL(V∨) on the dual space V∨ is defined by ρ∨(g)(l) : v 7−→ l(ρ(g)−1 · (v)),
for g ∈ G, l ∈V∨, and v ∈V . We derive the representations

ρ∨d := Symd(ρ∨
)

: G−→ GL
(
Symd(V∨)

)
.

ii) For any representation ρ : C? −→ GL(V ) of C?, there are a basis v1, ...,vn of V
and integers γ1 ≤ ·· · ≤ γn, with

ρ(z)
( n

∑
i=1

αivi

)
=

n

∑
i=1

zγiαivi,

for all g ∈ G.
If we use this basis to identify GL(V ) with GLn(C), then the image of ρ lies in the

group of diagonal matrices. Thus, we say that the representation is diagonalizable.
iii) Let T = (C?)×n be a torus and ρ : T −→ GL(V ) a representation of T on the

vector space V . Then, ρ is diagonalizable. More precisely, the T -module V is isomorphic
to

⊕
χ∈X(T )Vχ with

Vχ :=
{

v ∈V
∣∣ρ(t)(v) = χ(t) · v ∀t ∈ T

}
, χ ∈ X(T ).

iv) In any course on Linear Algebra, one considers the following actions of linear
algebraic groups on vector spaces:

a) G = GLm(C)×GLn(C), V := Mm,n(C), and

σ :
(
GLm(C)×GLn(C)

)×Mm,n(C) −→ Mm,n(C)

(g,h; f ) 7−→ g · f ·h−1.

b) G = GLn(C), V := Mn(C), and

σ : GLn(C)×Mn(C) −→ Mn(C)

(g,m) 7−→ g ·m ·g−1.

c) G = GLn(C), V := {symmetric (n×n)-matrices}, and

σ : GLn(C)×V −→ V

(g,m) 7−→ g ·m ·gt .
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Definition 1.2.3. i) Let G be a linear algebraic group and V a G-module. A subspace
W ⊆V is G-invariant, if g ·w ∈W for every g ∈G and every w ∈W . We say that V is an
irreducible or simple G-module, if {0} and V are the only G-invariant subspaces. One
calls V a completely reducible or semisimple G-module, if it is isomorphic to a direct
sum of irreducible G-modules.

ii) A linear algebraic group is called linearly reductive, if every G-module is com-
pletely reducible.

Remark 1.2.4. A representation V is completely reducible, if and only if every G-invariant
subspace W possesses a direct complement, i.e., there is a G-invariant subspace U , such
that

V = U⊕W
as G-module.

Example 1.2.5. i) The natural representation of GLn(C) on Cn is obviously irreducible.
ii) The representation of GLn(C) on Mn(C) is not irreducible. The vector space

M0
n(C) of matrices with trace zero is a submodule, and we may write Mn(C) ∼= 〈En〉⊕

M0
n(C) as GLn(C)-module.

iii) As we have seen before, a torus T is linearly reductive. The irreducible modules
are those of dimension zero and one.

iv) Every finite group is a reductive linear algebraic group (known as THEOREM OF

MASCHKE). To see this, let V be a G-module, W a G-invariant subspace, and Ũ a vector
space complement to W . Let π̃ : V −→ W be the projection (which is not necessarily
G-equivariant). Define

π : V −→ W

v 7−→ ∑
g∈G

g · (π̃(g−1 · v))

This is G-equivariant and surjective. Indeed, π(w) = #G ·w for w ∈W . Now, U :=
ker(π) is the G-invariant complement we have been looking for.

v) Special and general linear groups are linearly reductive. The product of linearly
reductive groups is linearly reductive, so that GLm(C)×GLn(C) is also linearly reductive.

vi) In positive characteristic, the only linearly reductive algebraic groups are finite
groups whose order is coprime to the characteristic and tori, or products of such groups.
There is a notion of reductivity which is defined intrinsically (see [6], [19], and [45]).
In characteristic zero, this notion is equivalent to “linear reductivity” (see [19], [22]).
In positive characteristic, it is equivalent to “geometric reductivity” (see [42]) which is
weaker than “linear reductivity”, but suffices to develop Geometric Invariant Theory. In
that weaker sense, special and general linear groups are reductive.

vii) The additive group Ga(C) of C is not linearly reductive. We have

Ga(C)∼=
{(

1 λ
0 1

) ∣∣∣λ ∈ C
}

.

Then,
〈(

1
0

)〉
is a Ga(C)-invariant subspace of C2 without direct complement.
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viii) For non-negative integers a and c, define the GL(V )-module

Va,c := V⊗a⊗
(dimV∧

V
)⊗−c

.

Theorem. Let W be an irreducible GL(V )-module. Then, there exist non-negative integers
a and c, such that W is a submodule (and thus a direct summand) of Va,c

ix) If the reductive group G is embedded into a general linear group GL(V ), then the
following result tells us that any representation of G may be extended to a representation
of GL(V ).

Proposition. Let ι : G⊆ GL(V ) be a closed subgroup and ρ : G−→ GL(U) a represen-
tation of G. Then, there exists a representation ρ̃ : GL(V ) −→ GL(W ), such that ρ is a
direct summand of the representation ρ̃ ◦ ι .

x) We introduce an important class of particular representations which are building
blocks for all representations.

Definition. i) A representation ρ : GL(V )−→ GL(W ) is called homogeneous of degree
α(∈Z), if

ρ
(
z · idV

)
= zα · idW , ∀z ∈ C?.

ii) For non-negative integers a, b, and c, set

Va,b,c :=
(
V⊗a)⊕b⊗

(dimV∧
V

)⊗−c
.

As an exercise, the reader may check—without using linear reductivity—that a rep-
resentation may always be decomposed into a direct sum of homogeneous representations.
This result, thus, holds in any characteristic.

Proposition. Let W be a homogeneous GL(V )-module. Then, there exist non-negative
integers a, b, and c, such that W is a direct summand of Va,b,c.

Proof. We find non-negative integers ai, and ci, i = 1, ...,b, such that W is a direct sum-
mand of

⊕b
i=1 Vai,ci . Note that ai− dim(V ) · ci = a j− dim(V ) · c j for all i, j ∈ {1, ...,b}.

Choose c so large that −ci + c > 0, i = 1, ...,b. Then,

Vai,bi = V⊗ai ⊗
(dimV∧

V
)⊗−ci+c

⊗
(dimV∧

V
)⊗−c

is a direct summand of

V⊗ai+dim(V )·(−ci+c)⊗
(dimV∧

V
)⊗−c

, i = 1, ...,b.

Since a1 +dim(V ) · (−c1 + c) = · · ·= ab +dim(V ) · (−cb + c), we are done. ¤

Proofs for the assertions in viii)-x) are contained in [23]. In positive characteristic,
the latter result fails in general. It remains, however, true for homogeneous polynomial
representations, provided the degree α is smaller than the characteristic of the base field.
The reader will check that the proof of Proposition 5.3 in [23] works in that setting.
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1.3. The problem of taking quotients
Let G be a linear algebraic group, ρ : G−→GL(V ) a representation, and σ : G×V −→V
the resulting action of G on V . We have the equivalence relation

v1 ∼ v2 ⇐⇒ ∃g ∈ G : ρ(g)(v1) = v2.

Denote by V/ρ G the set of equivalence classes. The fundamental question we would like
to consider is:

Problem. Does V/ρ G carry (in a natural way) the structure of an algebraic variety?

In particular, we expect a regular map

π : V −→V/ρ G.

This map would be continuous. For v ∈ V , the fiber π−1(π(v)) therefore would be a
G-invariant closed subset which contains the orbit G · v. This implies that π would be
constant not only on orbits but also on their closures. In other words, the answer to the
above problem is “no”, if there are non-closed orbits. But non-closed orbits easily do
occur:

Example 1.3.1. Look at the action

σ : C?×Cn −→ Cn

(z,v) 7−→ z · v
which is associated to the representation ρ : C? −→ GLn(C), z 7−→ z ·En. The orbits are
{0} and lines through the origin with the origin removed. Thus, {0} is the only closed
orbit, and 0 is contained in the closure of every orbit.

The notion of a quotient has, therefore, to be modified. The appropriate notion is
introduced in the following definition.

Definition 1.3.2. A categorical quotient for the variety V with respect to the action σ
is a pair (V//ρ G,π), consisting of an algebraic variety V//ρ G and a G-invariant morphism
π : V −→ V//ρ G, such that for every other variety Y and every G-invariant morphism
ϕ : V −→ Y , there exists a unique morphism ϕ : V//ρ G−→ Y with ϕ = ϕ ◦π:

V

π
²²

ϕ
// Y

V//ρ G
∃!ϕ .

<<z
z

z
z

The next task is to characterize V//ρ G through its functions. We have

C[V ] = Sym?(V∨) =
⊕

d≥0

Symd(V∨)

and the action

ρ? : G×Sym?(V∨) −→ Sym?(V∨)
(g, f ) 7−→ (

v ∈V 7−→ f (g−1 · v)).
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Remark 1.3.3. The action of G on Sym?(V∨) preserves the grading, i.e.,

ρ?
(
Symd(V∨)

)⊆ Symd(V∨), d ≥ 0,

and the restriction of ρ? to Symd(V∨) is the representation ρ∨d .

Set
C[V ]G :=

{
f ∈ C[V ]G

∣∣ρ?(g)( f ) = f , ∀g ∈ G
}
.

This ring is the potential coordinate algebra of the categorical quotient. In the next lecture,
we shall investigate under which circumstances this construction really does work.

2. Lecture II: The basic results of Geometric Invariant Theory and
examples

This section introduces the core results of Geometric Invariant Theory, namely the fun-
damental existence results on quotients and the Hilbert-Mumford criterion. The standard
reference is, of course, Mumford’s book [27]. Other, more user friendly treatises are the
books [9], [22], and [29].

2.1. Finite generation of the ring of invariants: The theorem of Hilbert and Nagata
Let G be a linear algebraic group, ρ : G−→GL(V ) a representation, and σ : G×V −→V
the action of G on V . In this set-up, we have defined the ring of invariants

C[V ]G :=
{

f ∈ C[V ]
∣∣ρ?(g)( f ) = f , ∀g ∈ G

}
.

This is exactly the ring of regular functions on V which are constant on all G-orbits.

Theorem 2.1.1 (Hilbert/Nagata). Suppose that, in the above setting, G is reductive.
Then, the ring C[V ]G is a finitely generated C-algebra.

The theorem implies that C[V ]G is the coordinate algebra of an affine algebraic
variety, i.e., we may define

V//ρ G := Specmax
(
C[V ]G

)
.

Note that the inclusion C[V ]G ⊂ C[V ] gives rise to a G-invariant morphism

π : V −→V//ρ G.

From now on, we will assume that G is reductive.

Theorem 2.1.2. i) The pair (V//ρ G,π) is the categorical quotient for the variety V with
respect to the action σ .

ii) If W1 and W2 are two disjoint non-empty G-invariant closed subsets of V , then
there is a G-invariant function f ∈ C[V ]G, such that f|W1 ≡ 1 and f|W2 ≡ 0. In particular,
the images of W1 and W2 under π are disjoint.

Recall that the quotient morphism V −→ V//ρ G will, in general, not separate the
G-orbits in V . The above theorem is therefore of great help in determining the fibers of
the quotient map. We put the result into the following more transparent form.
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Corollary 2.1.3. i) Let v ∈V . Then, the orbit closure G · v contains a unique closed orbit.
ii) The map π : V −→V//ρ G induces a bijection between the set of closed orbits in

V and the points of V//ρ G.

In view of the provisos that we had formulated before, this is the best result we
could have hoped for.

Example 2.1.4. For the action

σ : C?×Cn −→ Cn

(z,v) 7−→ z · v,
we clearly have

C[x1, ...,xn]C
?
= C,

so that Cn//C? = {pt}.

Remark 2.1.5. If G is not reductive, then C[V ]G need not be finitely generated. The first
counterexample was discovered by Nagata [28]. Nevertheless, C[V ]G is the algebra of
regular functions of a quasi-affine variety Y , but there is only a G-invariant rational map
π : V 99K Y , so that Y need not be the categorical quotient (Winkelmann [49]).

2.2. Closed subvarieties
Here, we will demonstrate that forming the quotient commutes with closed embeddings.
This property really requires linear reductivity, so that it is rarely available in positive
characteristic.

Suppose Y ⊆ V is a G-invariant closed subset. Then, its ideal I (Y ) ⊂ C[V ] is G-
invariant. We obtain the action

ρ? : G×C[Y ] −→ C[Y ](= C[V ]/I (V ))

(g, f ) 7−→ (
y 7−→ f (g−1 · y)),

and the surjection C[V ] −→ C[Y ] is G-equivariant. Note that ρ? and ρ? are actions of G
on infinite dimensional C-vector spaces. However, they are locally finite, i.e., every ele-
ment of, say, C[Y ] is contained in a finite dimensional G-invariant subspace W . Therefore,
C[Y ] may be decomposed into a direct sum of irreducible representations. In particular,
C[Y ]G is a G-invariant direct summand of C[Y ]. Thus, we obtain a G-invariant, C-linear
projection

R : C[Y ]−→ C[Y ]G

which is called the Reynolds operator.
Altogether, we find the commutative diagram

C[V ] // //

²²²²

C[Y ]

²²²²

C[V ]G // // C[Y ]G.
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Then, Y//G := Specmax(C[Y ]G) is the categorical quotient of Y with respect to the action
of G, and we have the commutative diagram

Y Â Ä //

²²²²

V

²²²²

Y//G Â Ä // V//ρ G.

2.3. Semistable, polystable, and stable points
We will now distinguish the points in V according to the structure of their G-orbits. This
will help to analyze the quotient morphism V −→V//ρ G even better.

Definition 2.3.1. i) A point v∈V is called nullform, if 0 lies in the closure of the G-orbit
of v. Otherwise, v ∈V is called semistable.

ii) A point v ∈V is said to be polystable, if v 6= 0 and G ·v is closed in V . (Note that
v is semistable.)

iii) A point v ∈ V is stable, if it is polystable, and dim(G · v) = dim(G) (i.e., the
stabilizer of v is finite).

Remark 2.3.2. i) The quotient V//ρ G parameterizes the orbits of 0 (= {0}) and of poly-
stable points.

ii) By the separation properties of the functions in C[V ]G, we have:
v ∈V is semistable ⇐⇒ ∃d > 0, ∃ f ∈ Symd(V∨)G : f (v) 6= 0.
v ∈V is a nullform ⇐⇒ ∀d > 0, ∀ f ∈ Symd(V∨)G : f (v) = 0.

In particular, the set V ss
ρ of semistable points is open.

iii) The set V ps
ρ of polystable points need not be open.

Proposition 2.3.3. The set V s
ρ of stable points is open, and so is its image V s/G in V//ρ G.

The pair (V s
ρ/G,π|V s

ρ ) is the categorical quotient for V s
ρ with respect to the induced G-

action and an orbit space, i.e., the points in V s
ρ/G are in one to one correspondence to the

G-orbits in V s
ρ .

Therefore, we have discovered the open subset V s
ρ of stable points (which might be

empty) for which we have the optimal results: In this case, the categorical quotient V s
ρ/G

of V s
ρ exists and its set of closed points does equal the set of G-orbits in V s

ρ .

2.4. Quotients of projective varieties
Let G be a linear algebraic group and ρ : G−→ GL(V ) a representation. Define P(V ) :=
(V∨ \ {0}/C?) (this is Grothendieck’s convention for projectivization) and write [l] ∈
P(V ) for the class of the element l ∈V∨ \{0}. We get the action

σ : G×P(V ) −→ P(V )(
g, [l]

) 7−→ [
ρ∨(g)(l)

]
.

As an algebraic variety, P(V ) = Projmax(Sym?(V )). Recall

Sym?(V )G =
⊕

d≥0

Symd(V )G,



14 A.H.W. Schmitt

i.e., Sym?(V )G inherits a grading from Sym?(V ). Since Sym0(V )G = C,

P(V )//ρ G := Projmax
(
Sym?(V )G)

is a projective variety and the inclusion Sym?(V )G ⊂ Sym?(V ) yields the G-invariant
rational map

π : P(V ) //___ P(V )//ρ G.

Similarly, if Z ⊆ P(V ) is a closed G-invariant subvariety, it is defined by a G-invariant
homogeneous ideal I (Z)⊂ Sym?(V ), and C[Z] := Sym?(V )/I (Z) is the homogeneous
coordinate algebra of Z. We set

Z//G := Projmax
(
C[Z]G

)

and obtain the commutative diagram

Z Â Ä //

πZ

²²
Â
Â
Â P(V )

π
²²
Â
Â
Â

Z//G Â Ä // P(V )//ρ G.

Definition 2.4.1. Define

Zss/ps/s :=
{

[l] ∈ Z
∣∣ l ∈V∨ \{0} is semistable/polystable/stable

}

to be the set of semistable, polystable, and stable points in Z, respectively.

The central result on quotients of projective varieties is the following.

Proposition 2.4.2. i) The sets Zss and Zs are G-invariant open subsets of Z.
ii) The map πZ is defined in Zss, and (Z//G,πZ) is the categorical quotient for Zss

with respect to the induced G-action.
iii) The map πZ induces a bijection between the orbits of polystable points and the

points of Z//G.
iv) The image Zs/G of Zs under πZ is open, and (Zs/G,πZ|Zs) is the categorical

quotient for Zs with respect to the induced G-action and an orbit space.

The results for projective varieties are of a different nature: In general, it will not be
possible to form the categorical quotient of the whole variety Y or P(V ) by the G-action.
With the concept of a semistable point, we can only define a (possibly empty) G-invariant
open subset Zss, such that the categorical quotient with respect to the induced G-action
exists. If non-empty, this open subset is, however, large in the sense that it possesses a
projective categorical quotient. As before, we also have the G-invariant open subset Zs

for which the best possible result can be achieved. One can view the results also in the
following way: If we want to parameterize orbits by an algebraic variety, we have to
restrict to the G-invariant open subset Zs and obtain Zs/G. This variety is only quasi-
projective, and the space Z//G provides a natural compactification.

The results of the last two sections, in particular the above proposition, motivate the
following question.
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Problem. How to find the semistable and stable points?

The answer will be discussed in the next section.

2.5. The Hilbert-Mumford criterion
The idea to find points in the closure of the orbit of, say, v ∈ V is to find them via one
parameter subgroups. Recall that a one parameter subgroup is a homomorphism

λ : C? −→ G.

Together with the representation ρ , we find the one parameter subgroup

C? λ // G
ρ

// GL(V ).

Since this representation of C? is diagonalizable, we find integers γ1 < · · · < γt and a
decomposition of V into non-trivial eigenspaces

V = V1⊕·· ·⊕Vt , Vi :=
{

v ∈V
∣∣ρ

(
λ (z)

)
(v) = zγi · v ∀z ∈ C?

}
, i = 1, ..., t.

Definition 2.5.1. For v ∈V \{0}, set

µ(λ ,v) := max
{

γi
∣∣v has a non-trivial component in Vi, i = 1, ..., t

}
.

We note the following evident property.

Lemma 2.5.2. Suppose v = (v1, ...,vi 6= 0,0, ...,0). Then,
i)

µ(λ ,v)≤ 0 ⇐⇒ lim
z→∞

ρ
(
λ (z)

)
(v) exists.

(Note that this limit equals vi, if “= 0” holds, and 0 otherwise.)
ii)

µ(λ ,v) < 0 ⇐⇒ lim
z→∞

ρ
(
λ (z)

)
(v) = 0.

We infer the following consequence of (semi)stability.

Corollary 2.5.3. Let v ∈V \{0} be a point.
i) If v is semistable, then

µ(λ ,v)≥ 0
for every one parameter subgroup λ of G.

ii) If v is stable, then
µ(λ ,v) > 0

for every non-trivial one parameter subgroup λ of G.

Proof. i) is clear. For ii), we look at a one parameter subgroup λ with µ(λ ,v) = 0. Set
v′ := limz→∞ λ (z) · v. Since the orbit of v is closed, there exists an element g ∈ G with
v′ = g · v, so that v′ is also stable. Now, the image of λ lies in the G-stabilizer Gv′ of v′.
Since Gv′ is finite, λ must be the trivial one parameter subgroup. ¤

Hilbert discovered (in a specific setting) that any degeneration among orbits can be
detected by one parameter subgroups. Mumford extended Hilbert’s result to the general
setting in which we are working. Their theorem is the converse to Corollary 2.5.3:



16 A.H.W. Schmitt

Theorem 2.5.4 (Hilbert-Mumford criterion). A point v ∈V \{0} is (semi)stable, if and
only if

µ(λ ,v)(≥)0

holds for every non-trivial one parameter subgroup λ of G.

Richardson’s idea of proof [5]. If G = T is a torus, one may believe this (and it can be, in
fact, proved by methods of Linear Algebra). For an arbitrary reductive group, one uses:

Theorem 2.5.5 (Cartan decomposition). Let G be a reductive linear algebraic group
and T ⊆G a maximal torus, i.e., a subgroup which is isomorphic to a torus and maximal
with respect to inclusion among all subgroups with this property. Then, there is a compact
real subgroup H, such that

G = H ·T ·H.

E.g.,
GLn(C) = Un(C) ·{Diagonal matrices

} ·Un(C).

Roughly speaking, the compact group H does not contribute anything to orbit de-
generations, because the orbits of a compact group action are always closed. Therefore,
the maximal tori are responsible for the orbit degenerations and they do contain all the
one parameter subgroups of G, so that the result for tori may be applied. ¤

Remark 2.5.6. i) The formalism we have discussed so far goes back to Hilbert (in the case
of the SLn(C)-action on algebraic forms) and Mumford [27]. It is the rough version of
Geometric Invariant Theory (GIT).

ii) The Hilbert-Mumford criterion is crucial for applications.
iii) There are other theories and results which grant the existence of (Rosenlicht

[33]) or define (Białynicki-Birula [3], Hausen [17], ...) G-invariant open subsets in V
or P(V ) or, more generally, in any quasi-projective G-variety, such that the categorical
quotients of these open subsets do exist. However, there does not seem to be a numerical
criterion such as the Hilbert-Mumford criterion.

2.6. Hypersurfaces in projective space (classical invariant theory)
We now come to one of the classical topics of invariant theory which is also the most
basic example for the application of GIT to the classification of algebraic varieties.

Definition 2.6.1. An algebraic form of degree d on Cn is a symmetric d-multi-linear
form

Cn×·· ·×Cn
︸ ︷︷ ︸

d times

−→ C.

Remark 2.6.2. i) An algebraic form of degree d is the same as a linear map

ϕ : Symd(Cn)−→ C.

The algebraic forms of degree d on Cn are the elements of the vector space Symd(Cn)∨.
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ii) Denote by (e1, ...,en) the standard basis of Cn and by (x1, ...,xn) the dual basis of
Cn∨. This yields the GLn(C)-module isomorphism

Symd(Cn)
∨ −→ Symd(Cn∨) (1)

ϕ 7−→ ∑
ν=(ν1,...,νd)∈{1,...,n}×d

ϕ(eν1 ⊗·· ·⊗ eνd ) · [xν1 ⊗·· ·⊗ xνd ].

We view Symd(Cn∨) as the vector space of homogeneous polynomials of degree d in the
variables x1, ...,xn, by identifying [xν1 ⊗ ·· ·⊗ xνd ] with xν1 · ... · xνd . Let C[x1, ...,xn]d be
the vector space of homogeneous polynomials of degree d. For an algebraic form ϕ of
degree d on Cn, its corresponding polynomial f , and α := (α1, ...,αn)t ∈ Cn, we find:

f (α1, ...,αn) = ϕ(α⊗·· ·⊗α).

We would like to study the action vd of SLn(C) on C[x1, ...,xn]d by substitution of
variables, i.e.,

vd : SLn(C)×C[x1, ...,xn]d −→ C[x1, ...,xn]d
(g, f ) 7−→ (

g · f : α 7−→ f (gt ·α)
)
.

In the notation of Lecture I, Example 1.2.2, i), we have vd = ι∨d ◦ .−1t
, ι : SLn(C) ⊂

GLn(C) being the inclusion and .−1t : SLn(C)−→ SLn(C) being the automorphism that
sends a matrix to the transpose of its inverse.

This is the topic of classical invariant theory. Famous representatives of that branch
were Gordan and later Hilbert. See [9] and [46] for historical comments, including the
symbolic method, and Hilbert’s lecture notes [18] for an authentic reference. Here is a list
of tasks related to the above group action.

Problems. 1. Describe the set C[x1, ...,xn]d/vd SLn(C), i.e., find a “nice” representa-
tive in each orbit, a so-called normal form.

2. Describe C[x1, ...,xn]d//vd SLn(C). E.g., find generators and relations for the ring of
invariants.

3. Find the (semi)stable forms and the nullforms.

Remark 2.6.3. The above problems concern the classification of certain algebraic va-
rieties: Let H ⊂ Pn−1 be a hypersurface of degree d. We may find a polynomial f ∈
C[x1, ...,xn]d with H = V ( f ) := { f = 0}. Note that

V ( f ) = V ( f ′), f , f ′ ∈ C[x1, ...,xn]d ⇐⇒ ∃λ ∈ C? : f ′ = λ · f .

Two hypersurfaces H1 = V ( f1) and H2 = V ( f2) are said to be projectively equivalent,
if there is a matrix g ∈ SLn(C), such that [ f1] = [g · f2], i.e., there is an automorphism
of Pn−1, carrying H2 into H1. Thus, P(C[x1, ...,xn]∨d )/vd SLn(C) is the set of projective
equivalence classes of hypersurfaces of degree d.

Projectively equivalent hypersurfaces are certainly isomorphic. On the other hand,
two isomorphic smooth hypersurfaces of dimension at least three are projectively equiv-
alent. In P3, the same holds for hypersurfaces of degree d 6= 4 (see [14], p. 178 (The
condition d 6= n+1 in the first assertion can be removed for n≥ 4.)). Finally, the case of
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degree four surfaces in P3 belongs to the realm of K3-surfaces. Here, the notions of “iso-
morphy” and “projective equivalence” are still equivalent on the complement of countably
many Zariski closed subsets [26].

One can show that non-singular hypersurfaces are stable ([27], Chapter 4, Propo-
sition 4.2). Thus, the moduli space of smooth hypersurfaces exists as a quasi-projective
variety and comes with a natural compactification via semistable hypersurfaces. Detailed
examples for specific dimensions and degrees may be found below and in [22], [27], and
[34].

2.7. Examples
We now present several mostly classical examples which illustrate the abstract formalism
that we have introduced up to now.
Quadratic forms. To a homogeneous polynomial q of degree 2 corresponds the symmet-
ric (n×n)-matrix Sq with

q(α1, ...,αn) = α tSqα, ∀α = (α1, ...,αn)t ∈ Cn.

One checks
Sg·q = g ·Sq ·gt ∀g ∈ GL n(C).

Recall that, for a symmetric matrix S ∈ Mn(C), there is a matrix m ∈ GLn(C), such that
gSgt is a diagonal matrix with ones and zeroes on the diagonal. In other words, we have
the following classification.

Lemma 2.7.1. For q∈C[x1, ...,xn]2, there are a matrix g∈GLn(C) and a natural number
m ∈ {0, ...,n} with

g ·q = x2
1 + · · ·+ x2

m.

Next, we look at the action of SLn(C) on C[x1, ...,xn]2.

Definition 2.7.2. The discriminant of the quadratic form q is

∆(q) := det(Sq).

Lemma 2.7.1 implies the following classification result for the SLn(C)-action.

Corollary 2.7.3. Let q ∈C[x1, ...,xn]2 and δ := ∆(q). If δ 6= 0, then q is equivalent to the
form qδ := δx2

1 + x2
2 + · · ·+ x2

n. Otherwise, there is an m ∈ {0, ...,n− 1}, such that q is
equivalent to x2

1 + · · ·+ x2
m.

The corollary enables us to compute the ring of invariant functions and the categor-
ical quotient.

Theorem 2.7.4. W := C[x1, ...,xn]2//v2 SL n(C) = Specmax
(
C[∆]

)
.

Proof. Suppose I ∈ C[W ]. Write the “general” quadratic polynomial as ∑1≤i≤ j≤n κi jxix j.
The coordinate algebra of C[x1, ...,xn]2 is thus C[κi j; 1≤ i≤ j≤ n], and I is a polynomial
in the κi j. Define I∆ ∈ C[∆], by replacing κ11 with ∆, κii, i = 2, ...,n, with 1 and the
remaining variables by 0. The polynomial I− I∆ vanishes in qδ for all δ . Since I− I∆ ∈
C[W ], Corollary 2.7.3 implies I− I∆ ≡ 0. ¤
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Binary forms. We look at forms of degree ≥ 3. Write a binary form f of degree d as

f = a0xd
1 +a1xd−1

1 x2 + · · ·+ad−1x1xd−1
2 +adxd

2 .

Then, under the action of SL2(C), it may be brought into one of the following shapes:

λxd−i
1 xi

2, 2i≤ d, λ ∈ C?, or

λxµ1
1 xµ2

2 (x1− x2)µ3 ∏d
i=µ1+µ2+µ3+1(x1−βix2), λ ∈ C?,βi ∈ C\{0,1}.

Let us determine the stable and semistable points and the nullforms. The property
of being stable or semistable is invariant under the action of SL2(C), and, by Lecture
I, Example 1.2.2, ii), a one parameter subgroup may be diagonalized. By the Hilbert-
Mumford criterion, we have to determine the forms f = a0xd

1 + · · · for which

lim
z→∞

(
z

z−1

)
· f = lim

z→∞

(
zda0xd

1 + zd−2a1xd−1
1 x2 + · · ·+ z2−dad−1x1xd−1

2 + z−dadxd
2
)

exists or equals zero. We find out the following.

Lemma 2.7.5. i) The limit exists, if and only if a0 = · · ·= ab d
2 c = 0.

ii) The limit is zero, if and only if a0 = · · ·= ab d+1
2 c = 0.

This leads to the following intrinsic characterization of stable and semistable forms.

Corollary 2.7.6. i) A binary form of degree d is stable, if and only if it doesn’t have a
zero of multiplicity ≥ d

2 .

ii) A binary form of degree d is semistable, if and only if it doesn’t have a zero of
multiplicity > d

2 .

In particular, if d is odd, then the notions “stable” and “semistable” agree.

Note that the last property is quite interesting, because in that case we have categor-
ical quotients which are both projective and orbit spaces.
The invariant theory of matrices. We finally discuss some basic results related to the
action of GLn(C) on tuples of (n× n)-matrices by simultaneous conjugation. We first
interpret the results on the Jordan normal form in terms of Geometric Invariant Theory.

The group GLn(C) acts on Mn(C) by conjugation, i.e., g ·m := g ·m · g−1, g ∈
GLn(C), m ∈ Mn(C). Under this action, any matrix may be transformed into a matrix
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of the shape 


λ1 1
. . . . . .

. . . 1
λ1

. . .
λk 1

. . . . . .
. . . 1

λk




.

The invariants of an (n×n)-matrix m with eigenvalues λ1,...,λn are

σ1(λ1, ...,λn) = λ1 + · · ·+λn, ...,σn(λ1, ...,λn) = λ1 · ... ·λn.

Instead of the elementary symmetric functions σ1, ...,σn, one may also work with the
symmetric Newton functions

s1, ...,sn with si(λ1, ...,λn) := λ i
1 + · · ·+λ i

n, i = 1, ...,n.

As do the elementary symmetric functions, the Newton functions serve the purpose of
generating the ring of symmetric functions:

Theorem 2.7.7.
C[s1, ...,sn] = C[σ1, ...,σn] = C[λ1, ...,λn]Sn .

Proof. [46], Proposition 1.1.2, p. 4. ¤

In terms of matrices, this result reads as follows.

Corollary 2.7.8. Let xi j, i, j = 1, ...,n, be the coordinate functions on Mn(C) and x :=
(xi j)i, j. Then,

C
[
Mn(C)

]GLn(C) = C[xi j, i, j = 1, ...,n]GLn(C) = C
[
Trace(x), ...,Trace(xn)

]
.

Next, we consider the action of GLn(C) on Mn(C)⊕s which is given as

g · (m1, ...,ms) :=
(
g ·m1 ·g−1, ...,g ·ms ·g−1), g ∈ GLn(C), (m1, ...,ms) ∈Mn(C)⊕s.

Theorem 2.7.9 (Gurevich, Procesi, and Sibirskiı̆). Let xi
jk, i = 1, ...,s, j,k = 1, ...,n, be

the coordinate functions on Mn(C)⊕s, and set xi := (xi
jk) j,k, i = 1, ...,s. Then, the invariant

ring C[Mn(C)⊕s]GLn(C) is generated by the invariants

Trace
(
xi1 · ... ·xil

)
.

It suffices to take the invariants with l ≤ n2 +1.

Proof. See [16], [31], and [43]. ¤
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Example 2.7.10. i) For n = s = 2, one finds

C[M2(C)⊕2]GL2(C) = C[T̃1, ..., T̃5].

Here, we use the following (algebraically independent) invariants:

T̃1(m1,m2) := Trace(m1), T̃2(m1,m2) := Det(m1),

T̃3(m1,m2) := Trace(m2), T̃4(m1,m2) := Det(m2),

and T̃5(m1,m2) := Trace(m1m2), (m1,m2) ∈M2(C)⊕M2(C).

ii) In general, one uses the Hilbert-Mumford criterion to prove that (m1, ...,ms) ∈
Mn(C)⊕s is a nullform, if and only if m1, ...,ms may be simultaneously brought into upper
triangular form, such that the diagonal entries are zero.

3. Lecture III: Some advanced results of Geometric Invariant Theory
We now take a more general viewpoint: We look at an action of a reductive linear algebraic
group on a projective algebraic variety. By means of linearizations, we can use our former
results to find open subsets of the projective variety of which we may take the quotients
as projective varieties. The concept of a linearization was introduced by Mumford in [27].
The choice of a linearization is a parameter in the theory, and its significance has been
investigated only recently by Dolgachev/Hu [10], Ressayre [32], and Thaddeus [48]. We
will present these new findings in a quite elementary fashion.

3.1. Linearizations
In many applications to moduli problems (see Lecture IV), one faces the problem of taking
the quotient of a projective variety by the action of a reductive linear algebraic group. The
concept of a linearization reduces this problem to the results of Lecture II.

Definition 3.1.1. Let X be a projective variety and G a linear algebraic group.
i) An action of G on X is a regular map

α : G×X −→ X ,

such that

1. αg : X −→ X , x 7−→ g · x := α(g,x) is a regular map; αe = idX ;
2. For g1 and g2 ∈ G, one has αg1g2 = αg1 ◦αg2 .

ii) A linearization of the action α is a pair l = (ρ , ι) which consists of a represen-
tation ρ : G−→ GL(V ) and a G-equivariant closed embedding ι : X ↪→ P(V ).

Remark 3.1.2. i) Recall that we assume G to be reductive. Thus, a linearization l = (ρ , ι)
of α provides the open subset X s

l ⊆ X of l-stable points, such that the orbit space X s
l /G

carries in a natural way the structure of a quasi-projective variety, and the open subset
X ss

l ⊆ X of l-semistable points, such that the categorical quotient X//lG := X ss
l //G exists

as a projective variety and compactifies X s
l /G.
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ii) In the above situation, we may associate to a linearization l = (ρ, ι) its k-th
symmetric power lk := Symk(l) = (Symk(ρ), ιk) where

ιk : X Â Ä ι // P(V ) Â Ä vk // P
(
Symk(V )

)
, vk being the k-fold Veronese embedding.

One verifies
X (s)s

lk
= X (s)s

l , ∀k > 0.

iii) Let l = (ρ, ι) be a linearization of the G-action α , and χ : G−→ C? a character
of G. Then, lχ := (ρ ⊗ χ, ι) is another linearization of the G-action α . Finally, we let
lχ
k = (Symk(ρ)⊗ χ , ιk) be the symmetric power of the linearization l modified by the

character χ .
iv) Suppose Sym?(V )G is generated by homogeneous elements f1,..., ft of degree

d1,...,dt and let k be a common multiple of d1,...,dt . Then, we find the closed embedding

ι(l,k) : X//lG
Â Ä // P(V )//ρ G Â Ä vk // P

(
Symk(V )G

)

and the line bundle Lk := ι(l,k)?(OP(Symk(V ))(1)). For any other set of generators and
any other common multiple m of the degrees of these generators, one verifies

L ⊗m
k

∼= L ⊗k
m .

Thus, we obtain the polarized quotient (X//lG, [Ll ]) 1. We see that, in ii), l and lk supply
the “same” polarized quotient.

Let G and H be two reductive linear algebraic groups. Suppose we are given an
action

α : (G×H)×X −→ X

and a linearization l = (ρ , ι) of this action. Let m := (ρ|G×{e}, ι) be the induced lineariza-
tion of the G-action. For any k > 0, we get an induced representation

ρk : H −→ GL
(
Symk(V )G)

,

an induced action α on X//lG, and ι(l,k) is an equivariant embedding. We view nk :=
(ρk, ι(l,k)) as a linearization of α .

Proposition 3.1.3. In the above setting, let

πm : X 99K X//mG

be the quotient map. Then, for any k > 0,

X ss
l = π−1

m
(
X ss

nk

)(⊆ X ss
m

)
.

In particular,
X//l(G×H) =

(
X//mG

)
//nk H.

Proof. This is fairly easy to verify. The reader may consult [30], Proposition 1.3.1. ¤

1Here, the convention is that [L ] = [M ], if there are positive integers p, q with L ⊗p ∼= M⊗q; we set Ll := Lk
for some k > 0.
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Remark 3.1.4. It is a good trick to use this procedure also the “other way round”, i.e., first
take the H-quotient and then the G-quotient.

Apparently, we have, in general, infinitely many possibilities of linearizing a given
action on a projective variety. Thus, we formulate the following question.

Problem. Do there exist infinitely many different GIT quotients?

In the rest of this lecture, we will demonstrate that the answer to this question is
“no” and analyze the relationships between different quotients.

3.2. Polarized C?-quotients
This is the easiest framework in which one may study the above problem. Yet, it is also
of importance for the general case as we shall see. We first note the following result.

Proposition 3.2.1. Let ρ : G −→ GL(V ) be a representation of the reductive group G,
α : G×P(V )−→P(V ) the induced G-action, and l = (ρ , idP(V )) the canonical lineariza-
tion of this G-action. Then, up to isomorphy, all polarized GIT quotients are given by(

P(V )//lχ
k

G, [Llχ
k
]
)
, k > 0, χ ∈ X(G).

Now, we may investigate the case of an action λ : C? ×P(V ) −→ P(V ) more
closely. Suppose λ comes from an action λ : C?×V∨ −→V∨, and let l be the canonical
linearization as above. Using the above proposition, we will determine all GIT quotients
of P(V ) by the C?-action λ .

Recall from Lecture I, Example 1.2.2, ii), that V∨ decomposes as

V∨ =
m⊕

i=1

V∨
i .

Here, V∨
i denotes the non-trivial eigenspace of the character χdi : C? −→ C?, z 7−→ zdi ,

and we assume d1 < · · ·< dm. Suppose x = [l] ∈ P(V ) for l ∈V∨ \{0}. Set

dl
min(x) := min

{
di | l has a non trivial component in V∨

i
}

dl
max(x) := max

{
di | l has a non trivial component in V∨

i
}
.

With these quantities, we may characterize the semistable and polystable points as fol-
lows:

Proposition 3.2.2. i) The point x ∈ P(V ) is l-semistable, if and only if

dl
min(x)≤ 0≤ dl

max(x).

ii) The point x ∈ P(V ) is l-polystable, if and only if

either dl
min(x) = 0 = dl

max(x) or dl
min(x) < 0 < dl

max(x).

Proof. Suppose l has the coordinates (l1, ..., ln) with respect to a basis of eigenvectors for
V∨, such that the corresponding weights are non-decreasing. For z ∈ C?, we find

z · (l1, ..., ln) = (0, ...,0,zdl
min(x) · li0 , ...,zdl

max(x) · lir ,0, ...,0).

This formula clearly implies our claim. ¤
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Set ld
k := lχ−d

k , d ∈Z, k > 0. For a point x ∈ P(V ), it is obvious that

d
ld
k

min

(
vk(x)

)
= k ·dl

min(x)−d, d
ld
k

max
(
vk(x)

)
= k ·dl

max(x)−d.

Together with Proposition 3.2.2, this implies the following.

Proposition 3.2.3. i) A point x ∈ P(V ) is ld
k -semistable, if and only if

dl
min(x)≤

d
k
≤ dl

max(x).

ii) A point x ∈ P(V ) is ld
k -polystable, if and only if

either dl
min(x) =

d
k

= dl
max(x) or dl

min(x) <
d
k

< dl
max(x).

Note that for any x ∈ P(V ), there are d ∈Z and k ∈Z>0, such that x is ld
k -polystable.

To an integer i with 1≤ i≤ 2m, we assign the following subset of Q:

Ii :=





Q\ [d1,dm] if i = 2m
{d i+1

2
} if i is odd

(d i
2
,d i

2 +1) if i 6= 2m is even.

These subsets parameterize the different notions of semistability:

Corollary 3.2.4. i) We have
P(V )ss

ld
k

= P(V )ss
ld′
k′

,

if and only if there is an index i ∈ {1, ...,2m}, such that Ii contains both d/k and d′/k′.
ii) For i even, d, k with d/k ∈ Ii and d±i , k±i with d−i /k−i = di/2 and d+

i /k+
i = di/2+1

P(V )ss
ld
k
⊂ P(V )ss

ld−
k−

and P(V )ss
ld
k
⊂ P(V )ss

ld+
k+

.

There are, thus, 2m notions of semistability for the given action λ . (Note that, for the
notion corresponding to I2m, there a no semistable points at all, whereas the other notions
do yield semistable points.) These yield the unpolarized quotients, and, by the second
statement in the corollary, there is the “flip” diagram

Q2

~~}}
}}

}}
}}

ÃÃA
AA

AA
AA

A Q2m−2

zzuuuuuuuuu

$$IIIIIIIII

Q1 Q3 Q2m−3 Q2m−1.

Remark 3.2.5. i) For i = 1, ...,2m, there exists d, such that Qi = Qd
2 , Qd

k := P(V )//ld
k
C?.

ii) Let i ∈ {3, ...,2m−3} be an odd index, and set Q±
i := Qi±1. Note that the maps

π±i : Q±
i −→ Qi are isomorphisms outside the closed subset P(Vi)⊂ Qi. The exceptional

loci of π+
i and π−i are

P+
i :=

{
v ∈ P(V ) | lim

z→0
z · v ∈ P(Vi)

}
//C?

=
{

v = [li, ..., lm] ∈ P(Vi⊕·· ·⊕Vm) | li 6= 0
}
//C?
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and

P−i :=
{

v ∈ P(V ) | lim
z→∞

z · v ∈ P(Vi)
}
//C?

=
{

v = [l1, ..., li] ∈ P(V1⊕·· ·⊕Vi) | li 6= 0
}
//C?.

Observe that P+
i and P−i are weighted projective bundles over P(Vi). The quotients Q−

i
and Q+

i are birationally equivalent, and the birational transformation Q−
i 99K Q+

i is a
weighted blow down followed by a weighted blow up.

iii) One may give an intrinsic description of the sets of semistable points in terms of
the fixed point locus of the C?-action (Białynicki-Birula/Sommese [4], Gross [15]): The
connected components of the fixed point locus are Fi := P(Vi), i = 1, ...,m. Define, for
i = 1, ...,m,

X+
i :=

{
v ∈ P(V ) | lim

z→0
z · v ∈ Fi

}

= P(Vi⊕·· ·⊕Vm)\P(Vi+1⊕·· ·⊕Vm)
X−i :=

{
v ∈ P(V ) | lim

z→∞
z · v ∈ Fi

}

= P(V1⊕·· ·⊕Vi)\P(V1⊕·· ·⊕Vi−1)

and, for i < j,

Ci j := (X+
i \Fi)∩ (X−j \Fj)

= P(Vi⊕·· ·⊕Vj)\
(
P(Vi+1⊕·· ·⊕Vj)∪P(Vi⊕·· ·⊕Vj−1)

)
.

Corollary. i) If k ·di−d 6= 0 for i = 1, ...,m, and i0 := max{k ·di−d < 0}, then

P(V )ss
ld
k

=
⋃

1≤i≤i0
i0+1≤ j≤m

Ci j.

ii) If k ·di0 −d = 0, then

P(V )ss
ld
k

= X−i0 ∪X+
i0 ∪

⋃

1≤i≤i0−1
i0+1≤ j≤m

Ci j.

Example 3.2.6 (Induced polarizations). Let V be a finite dimensional C-vector space, and
let λ be an action of C? on V∨, such that

V∨ = V∨
1 ⊕V∨

2 ,

V∨
i being the eigenspace to the weight z 7−→ zdi , i = 1,2, and d1 < d2. For d/k = di, i = 1

or i = 2, the polarized quotient is (P(Vi), [OP(Vi)(1)]). For d1 < d/k < d2, the unpolarized
quotient is P(V1)×P(V2), and the projection map

πk
d : P(V )\ (

P(V1)∪P(V2)
)−→ P(V1)×P(V2)

is the obvious one.

Claim. The induced polarization [L k
d ] on P(V1)×P(V2) is given as

[
L k

d
]
=

[
OP(V1)×P(V2)(kd2−d,−kd1 +d)

]
.



26 A.H.W. Schmitt

For given positive integers m,n, there are integers d ∈Z and k ∈Z>0, such that
[
L k

d
]
=

[
OP(V1)×P(V2)(m,n)

]
.

Proof. For a representative L = OP(V1)×P(V2)(m,n) of the polarization, we find

πk
d
?(

H0(L )
)

= Symm(V1)⊗Symn(V2).

This is an eigenspace to the character χ−(md1+nd2)+((m+n)/k)d . This character must be triv-
ial, so that −(md1 +nd2)+((m+n)/k)d = 0, that is,

m(kd1−d)+n(kd2−d) = 0.

For the second assertion, we have to find positive integers k and r and an integer d with

kd2−d = rm

−kd1 +d = rn,

but this is easy. ¤

3.3. There are only finitely many GIT quotients
Let X be a projective algebraic variety and α : G×X −→ X an action of the reductive
group G on X . We may now answer the question raised in Section 3.1 in general:

Theorem 3.3.1 (Białynicki-Birula, Dolgachev/Hu). For fixed α , there are only finitely
many open subsets U ⊆ X of the form X ss

l , for l a linearization of α as above.

Proof. This theorem was proved by Białynicki-Birula [2] in a setting which is far more
general than the GIT which we are considering here and, independently and in the same
framework as ours, by Dolgachev and Hu. The proof of the latter authors also builds on
techniques developed by Białynicki-Birula but is quite involved. Adapting the strategy in
[2] to GIT yields the following elementary proof.

Step 1. For G = C?, we know the result: Let F1,...,Fm be the connected compo-
nents of the fixed point locus of the C?-action. Then, any set of semistable points may be
described in terms of a decomposition

{1, ...,m}= P1t·· ·tPs.

(Indeed, we have just seen this for X = Pn and, by Definition 2.4.1, it is also clear in
general.) Since there are only finitely many possibilities for such a decomposition, we are
done.

Step 2. For a torus T ∼=C?×n, the assertion follows by induction: Write T =C?×T ′
and use the fact that the quotient may be taken in two steps (Proposition 3.1.3).

Step 3. Fix a maximal torus T ⊂ G, and let lT be the induced linearization of the
resulting T -action. By the Hilbert-Mumford criterion, x ∈ X is l-semistable, if, for any
one parameter subgroup λ : C? −→ G, one finds µ(λ ,x) ≥ 0. The image of λ lies in a
maximal torus T ′ of G. From the theory of algebraic groups, one knows that there is a
g ∈ G, such that g ·T ′ ·g−1 = T , i.e., g ·λ ·g−1 is a one parameter subgroup of T . We see

x ∈ X ss
l ⇐⇒ µ(g ·λ ·g−1,x)≥ 0 for all λ : C? −→ T and all g ∈ G.
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One easily checks µ(g ·λ ·g−1,x) = µ(λ ,g · x), so that

x ∈ X ss
l ⇐⇒ µ(λ ,g · x)≥ 0 for all λ : C? −→ T and all g ∈ G,

i.e.,
X ss

l =
⋂

g∈G

(
g ·X ss

lT

)
.

Since there are only finitely many options for X ss
lT

, by Step 2, we are done. ¤

3.4. The master space construction
Here, we will discuss how GIT quotients to different linearizations are related. These
results have not been included into text books, so far.

Let ρ1 : G−→ GL(V1) and ρ2 : G−→ GL(V2) be two representations of the reduc-
tive group G, providing an action of G on P(V1)×P(V2). For every pair (m,n) of pos-
itive integers, we find the linearization lm,n = (ρm,n, ιm,n) of this action. Here, ρm,n :=
Symm(ρ1)⊗ Symn(ρ2), and ιm,n : P(V1)×P(V2) ↪→ P(Symm(V1)⊗ Symn(V2)) is the
product of the m-th Veronese emdedding of P(V1) with the n-th Veronese embedding
of P(V2) followed by the Segre embedding.

On the other hand, we may form the representation τ := ρ1⊕ρ2 : G −→ GL(V1⊕
V2). This representation gives an action τ of G on P(V1⊕V2) and a linearization lτ of this
action.

Furthermore, we introduce the “auxiliary” representation λ : C? −→ GL(V1⊕V2),
z 7→ z−1 idV1⊕z idV2 . This representation yields a C?-action λ on P(V1⊕V2) which com-
mutes with τ , so that we find the action

λ × τ : (C?×G)×P(V1⊕V2) −→ P(V1⊕V2)
(z,g,x) 7−→ z · (g · x).

For k > 0 and d ∈Z, there is the linearization Ld
k = ld

k ⊗Symk(lτ). By Example 3.2.6 and
Proposition 3.1.3,

(
P(V1)×P(V2)

)
//lm,nG =

(
P(V1⊕V2)//ld

k
C?

)
//lm,n G

= P(V1⊕V2)//Ld
k
(C?×G)

with m = k− d and n = k + d. Another application of Proposition 3.1.3 (see Remark
3.1.4) shows that all the quotients

(
P(V1)×P(V2)

)
//lm,nG, m,n ∈ Z>0, are C?-quotients

of P(V1⊕V2)//lτ G, the C?-action coming from λ . All the possible linearizations of this
C?-action are of the form l′dk , k > 0, d ∈ Z, with l′ the linearization induced by l. Thus,
we may derive structural results for the quotients

(
P(V1)×P(V2)

)
//lm,n G from those for

C?-quotients
More generally, let σ : G×X −→ X be an action of G on the projective variety

X , and suppose we are given two linearizations li = (ρi, ιi), i = 1,2, of σ with the rep-
resentations ρ1 : G −→ GL(V1) and ρ2 : G −→ GL(V2) and the equivariant embeddings
ι1 : X ↪→P(V1) and ι2 : X ↪→P(V2). Define Li := ι?

i (OP(Vi)(1)), i = 1,2. Finally, we ob-
tain the equivariant embedding ι : X ↪→ P(V1)×P(V2), x 7→ (ι1(x), ι2(x)). We find the
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linearizations lm,n := l⊗m
1 ⊗ l⊗n

2 . For m > 0 and n > 0, we set η := m/n. Then,

X (s)s
lm,n

= X (s)s
lm′,n′

, if m/n = m′/n′,

so that we may write X (s)s
η for X (s)s

lm,n
. We also define X (s)s

0 := X (s)s
l1

and X (s)s
∞ := X (s)s

l2
.

Define M := P(L1⊕L2). The given linearizations l1 and l2 yield a G-action on M and
an equivariant embedding κ : M ↪→ P(V1⊕V2). As above, there is a linearized C?-action
on M, and we conclude that all the quotients X//lm,nG, η := m/n∈ [0,∞], areC?-quotients
of M//G.

Remark 3.4.1. The construction of M//G goes back to Thaddeus [48]. One refers to M//G
as the master space.

Together with the results on C?-action, we derive the following statement:

Theorem 3.4.2. There are finitely many critical values η1, ...,ηm ∈ (0,∞)∩Q, such that,
with η0 := 0 and ηm+1 := ∞, the following properties hold true:

i) For i = 0, ...,m and η ,η ′ ∈ (ηi,ηi+1):

X (s)s
η = X (s)s

η ′ .

ii) For i = 0, ...,m and η ∈ (ηi,ηi+1):

X s
η ⊃ X s

ηi
∪X s

ηi+1

X ss
η ⊂ X ss

ηi
∩X ss

ηi+1
.

Set Qi := X ss
ηi

//G, i = 0, ...,m + 1, and Q̃i := X ss
η //G for η ∈ (ηi,ηi+1), i = 0, ...,m.

These quotients fit into the diagram

Q̃0

ÄÄ~~
~~

~~
~~

ÂÂ@
@@

@@
@@

@ Q̃m

~~}}
}}

}}
}}

""E
EEEEEEE

Q0 Q1 Qm Qm+1.

Here, the maps Q̃i 99K Q̃i+1 are birational blow downs of a weighted projective bundle
followed by a birational weighted projective blow up, i = 0, ...,m−1.

4. Lecture IV: Decorated principal bundles, semistable vector
bundles

In this section, we work relative to a fixed smooth projective curve X over C. If you prefer
the language of complex analytic geometry, you may think of X as a compact Riemann
surface.
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4.1. The moduli problem of decorated principal bundles
In this section, we introduce the objects that we wish to classify. The resulting classifica-
tion problem formally takes the place of the problem of forming the quotient of a variety
by a group action in GIT.

Let P be a principal G-bundle2 over X . Then, we may trivialize P in both the
strong and the étale topology (the former may be more appealing to the intuition). Let
F be an algebraic variety together with a G-action α : G×F −→ F . Then, we find the
G-action

(
P×F

)×G −→ P×F(
(p, f ),g

) 7−→ (p ·g,g−1 · f )

from the right, and the quotient

P(F) :=
(
P×F

)
/G−→ X

exists and is a fiber bundle over X with fiber F which is locally trivial in the strong and
the étale topology.

The objects we would like to consider are pairs (P,σ) which consist of a principal
G-bundle P and a section σ : X −→P(F). Two such pairs (P1,σ1) and (P2,σ2) are
said to be equivalent, if there is an isomorphism ψ : P1 −→P2 with

σ2 = ψ(F)◦σ1, ψ(F) : P1(F)−→P2(F) being the induced isomorphism.

In this and the next lecture, we will start with a representation ρ : G−→ GL(V ) and look
at the induced action α : G×P(V )−→ P(V ). Abbreviate Pρ := P(V ).

Remark 4.1.1. A pair (P,σ : X −→ P(Pρ)) is a relative version of a point x in the
G-variety P(V ): Note that G acts on itself by conjugation, and G := P(G) −→ X is a
group scheme over X (indeed, it can easily be seen to be the bundle of local G-bundle
automorphisms of P). The projective bundle P(Pρ) comes with the action

αX : G ×X P
(
Pρ

)−→ P
(
Pρ

)
.

The section σ : X −→ P(Pρ) is then a family of points in the G|{x}-varieties P(Pρ |{x}),
x ∈ X . More generally, we could allow any projective algebraic manifold X to be the
base variety. The case X = {pt} corresponds to GIT on a projective space which we have
outlined in Lecture II.

Note that, in the above definition, we cannot replace a principal G-bundle over X by
a group scheme G −→ X with fiber G: G is an Aut(G)-bundle, and G −→ Aut(G) is, in
general, neither injective nor surjective.

To give a section
σ : X −→P

(
P(V )

)
= P

(
Pρ

)
,

one has to give a line bundle L on X and a surjection

ϕ : Pρ −→L ,

2The reader who is not familiar with principal bundles may consult the references [1], [41], and [44].
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and two pairs (L ,ϕ) and (L ′,ϕ ′) give the same section, if and only if there is an iso-
morphism χ : L −→L ′, such that

ϕ ′ = χ ◦ϕ.

Surjectivity is an open condition on parameter spaces. Hence, in order to find compact
(projective) moduli spaces, we introduce more general objects:

Definition 4.1.2. i) A ρ-pair is a triple (P,L ,ϕ), consisting of a principal G-bundle
P , a line bundle L , and a non-zero homomorphism ϕ : Pρ −→L .

ii) The type of the ρ-pair (P,L ,ϕ) is the pair (τ,deg(L )), where τ ∈ π1(G)
classifies P as a topological G-bundle.

iii) Two ρ-pairs (P1,L1,ϕ1) and (P2,L2,ϕ2) are said to be equivalent, if there
are isomorphisms ψ : P1 −→P2 and χ : L1 −→L2, such that

ϕ2 = χ ◦ϕ1 ◦ψ−1
ρ , ψρ : P1,ρ −→P2,ρ being the induced isomorphism.

The Classification Problem. Fix the type (τ,d), τ ∈ π1(G), d ∈ Z, and classify ρ-pairs
of type (τ,d) up to equivalence.

The basic difficulty in attacking this problem is that, even if we fix the type of the
ρ-pairs under consideration, they cannot be parameterized in a reasonable way by an
algebraic variety (see Section 4.3). Thus, we will have to define a priori a concept of
semistability which meets the following requirements:

• There exist a projective variety P and an open subset U ⊆P which (over-)parameter-
izes the semistable ρ-pairs of given type.

• There are a vector space Y and a GL(Y )-action on P which leaves U invariant, such
that two points p1, p2 ∈U lie in the same orbit, if and only if they correspond to
equivalent ρ-pairs.

• There is a linearization l of the GL(Y )-action on P, such that the set of l-semistable
points is U .

If we can achieve this, the projective variety

M (ρ)τ/d := P//l GL(Y )

will be the moduli space for semistable ρ-pairs of type (τ,d).

4.2. Examples
The following two examples of specific groups and specific representations illustrate how
the above abstract classification problem plays a role in the classification of certain pro-
jective algebraic varieties.
Families of hypersurfaces. We take G = GLn(C) and ρ : G−→ GL(Symd(Cn)). Here,
we will work with vector bundles of rank n rather than with principal G-bundles.

Let (E ,L ,ϕ) be a ρ-pair. This defines a geometric object: For this, let

P(E ) := P(E ∨) = Pro j
(
S ym?(E ∨)

) π−→ X
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be the projectivization of E ∨ in Grothendieck’s sense. Let D⊆ P(E ) be an effective divi-
sor. Its associated line bundle is of the form

OP(E )(D) = OP(E )(d)⊗π?(L )

for a unique positive integer d and a unique line bundle L on X . Thus, D is the zero
divisor of a section

s : OP(E ) −→ OP(E )(d)⊗π?(L ).

We project this homomorphism to X in order to obtain

π?(s) : OX −→S ymd(E ∨)⊗L .

Now, as representations,

Symd(Cn∨)∼= Symd(Cn)∨ (see (1) in Remark 2.6.2).

Thus, s corresponds to a non-trivial homomorphism

ϕ : S ymd(E )−→L .

We also have a map πD : D−→ X , and its fibers are

π−1
D

({x}) =
{

hypersurface of degree d, if ϕ is surjective in x
P(E 〈x〉∨), else .

Hence, a ρ-pair (E ,L ,ϕ) basically describes a family of hypersurfaces of degree d (in-
side P(E )), and equivalence is a relative version of projective equivalence.

Figure 1 is an illustration of the real part of the affine part of a surface which is
fibered over P1 in plane cubic curves. It was generated with Polyray 3.
Dimensional reduction. Here, we choose G = GLn1(C)×GLn2(C) as the group and
ρ : G−→ GL(Hom(Cn2 ,Cn1)) as the representation.

Let E and F be two vector bundles on X of rank n1 and n2, respectively. Suppose
that, on X ×P1, we are given an extension

ε : 0 −−−−→ π?
X (F ) −−−−→ A −−−−→ π?

X (E )⊗π?
P1

(
OP1(2)

) −−−−→ 0.

Then,

ε ∈ Ext1
(
π?

X (E )⊗π?
P1

(OP1(2)),π?
X (F )

)
= H0(E ∨⊗F

)
= Hom(E ,F ).

Thus, a ρ-pair ((E ,F ),OX ,ϕ) describes extensions and vector bundles on the smooth
projective surface X ×P1. Since the ρ-pair lives in one dimension lower, namely on the
curve X , one speaks of dimensional reduction.

The corresponding projective algebraic manifolds are the projective bundles P(A )
over X×P1.

3http://wims.unice.fr/wims/en−tool∼geometry∼polyray.en.html
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FIGURE 1. The surface {(t−1)(x2y− xy2)+ t = 0}

4.3. Bounded families of vector bundles
The main difficulty in parameterizing decorated vector bundles with certain properties
consists in parameterizing the occurring vector bundles themselves. In this section, we
will work out the corresponding conditions which permit to do so.

Definition 4.3.1. Fix integers r > 0 and d (the topological invariants). Let S be a set of
isomorphism classes of vector bundles E on X of rank r and degree d. We say that S is
bounded, if there exist an algebraic variety S and a vector bundle ES on S×X , such that
for every class [E ] ∈S, there is a point s ∈ S with

E ∼= ES|{s}×X .

The (relative) Serre vanishing theorem and the base change theorem for cohomology
imply:

Proposition 4.3.2. Let x0 be a point in X and OX (1) := OX (x0). If S is bounded, then
there is a natural number n0, such that, for every vector bundle E with [E ] ∈S and for
every n≥ n0:

• E (n) := E ⊗OX (1)⊗n is globally generated.
• H1(E (n)) = {0}.
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Remark 4.3.3. For r ≥ 2, the set of isomorphy classes of vector bundles of rank r and
degree d is not(!) bounded. Indeed, in the set of vector bundles

Es := OX (−s)⊕OX (d + s)⊕O
⊕(r−2)
X , s ∈N,

the bundle En+1(n) is not globally generated, n≥ 0.

By the Riemann-Roch theorem,

h0(E (n))−h1(E (n)) = rn+d + r(1−g).

Fix n≥ n0 and a complex vector space Y of dimension rn+d +r(1−g). Our observations
yield the following necessary condition for boundedness:

Corollary 4.3.4. If S is bounded, then every vector bundle E with [E ]∈S may be written
as a quotient

q : Y ⊗OX (−n)−→ E ,

such that H0(q(n)) : Y −→ H0(E (n)) is an isomorphism.

The following theorem introduces the most fundamental of all parameter spaces for
vector bundles.

Theorem 4.3.5 (Grothendieck’s quot scheme). Fix r > 0 and d, and let A be a coherent
OX -module. Then, there are a projective scheme Q and a flat family

qQ : π?
X (A )−→FQ

on Q×X, such that for every sheaf F of rank r and degree d and every quotient

q : A −→F ,

there is a point t ∈Q with4

q∼ qQ|{t}×X .

In particular, the condition obtained in Proposition 4.3.2 is equivalent to the bound-
edness of S. After these preparations, we may formulate the necessary and sufficient
criterion for boundedness which we are going to use in our applications:

Proposition 4.3.6. The family S is bounded, if and only if there exists a constant C, such
that

µmax(E ) := max
{

µ(F ) :=
deg(F )
rk(F )

∣∣0(F ⊆ E a subbundle
}
≤ µ(E )+C.

Proof. We start with the direction “=⇒”. Fix an n0, such that h1(E (n0)) = 0 for every E
with [E ] ∈S. If there were no bound on µmax(E ), then we would find an extension

0 −−−−→ F −−−−→ E −−−−→ Q −−−−→ 0

with [E ] ∈S and µ(Q) <−n0 +g−1. We compute

h1(E (n0))
rk(Q)

=
h0(E ∨(−n0)⊗ωX )

rk(Q)
≥ h0(Q∨(−n0)⊗ωX )

rk(Q)
≥−µ(Q)−n0 +g−1 > 0,

4The equivalence relation used in the following line is: q : A −→F ∼ q′ : A −→F ′, if there is an isomorphism
ψ : F −→F ′ with q′ = ψ ◦q, i.e., if ker(q) = ker(q′).



34 A.H.W. Schmitt

a contradiction.
Next, we prove the direction “⇐=”. Let n be such that

H1(E (n)) = H0(E ∨(−n)⊗ωX )∨ = Hom(E (n),ωX )∨ 6= {0},
and let ϕ : E (n)−→ ωX be a non-trivial homomorphism. Then, we get the extension

0 // F := ker(ϕ) // E (n) // L := ϕ(E (n)) // 0

and

rn+d = deg(E (n)) = deg(F )+deg(L ) = (r−1)µ(F )+deg(L ) ≤
≤ (r−1)

d
r

+(r−1)n+(r−1)C +2g−2.

So, if n > n0 :=−(d/r)+(r−1)C +2g−2, this inequality will be violated and we must
have H1(E(n)) = {0}.

Similarly, one finds an n0, such that, for every [E ] ∈ S, every n ≥ n0, and every
x ∈ X , one has

H1(E (n)(−x)) = {0}.
Thus, we arrive at the exact sequence

H0(E (n)(−x)) // H0(E (n)) // E (n)〈x〉 // 0 .

This shows that E (n) is globally generated at x∈ X . Since x can be any point on the curve,
the proof is now complete. ¤

4.4. The moduli space of semistable vector bundles
In this section, we sketch one of the best known constructions of a moduli space with
GIT, namely, of the moduli space of semistable vector bundles on X , originally due to Se-
shadri. On the one hand, this serves as a nice illustration of the techniques which we have
presented up to now. On the other hand, it will help to build our intuition how the semi-
stability concept for decorated vector bundles may look like. More details are contained
in the books [20] and [24].

Definition 4.4.1. A vector bundle E on X is called (semi)stable, if for every non-trivial
proper subbundle 0(F ( E , the inequality

µ(F )(≤)µ(E )

is satisfied.

By Proposition 4.3.6, the family of isomorphism classes of semistable vector bun-
dles of fixed rank and degree is bounded. Given r > 0 and d ∈Z, we may therefore choose
an n, such that every semistable vector bundle E of rank r and degree d has the following
properties:

• E (n) is globally generated.
• H1(E (n)) = {0}.
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Fix a complex vector space Y of dimension p = rn + d + r(1−g), and let Q be the quot
scheme parameterizing the quotients of Y ⊗OX (−n) of rank r and degree d . One can
then show the following.

Proposition 4.4.2. There are open subsets U (s)s ⊂ Q, such that [q : Y ⊗OX (−n) −→
F ] ∈U (s)s, if and only if
• F is a (semi)stable vector bundle.
• H0(q(n)) : Y −→ H0(F (n)) is an isomorphism.

Next, we have the action

α : GL(Y )×Q−→Q

g · [q : Y ⊗OX (−n)−→ E ] :=
[
Y ⊗OX (−n)

g−1⊗id−→ Y ⊗OX (−n)
q−→ E

]
.

Clearly, U ss and U s are GL(Y )-invariant. One easily checks the following:

Lemma 4.4.3. Two points [q1,2 : Y ⊗Ox(−n) −→ E1,2] from U ss lie in the same GL(Y )-
orbit, if and only if E1 and E2 are isomorphic.

Remark 4.4.4. Since the action of the center C? · idY ⊂ GL(Y ) is trivial, we may restrict
to the induced action of SL(Y ).

Theorem 4.4.5 (Simpson). There is a linearization l of the SL(Y )-action on Q, such that

Q
(s)s
l ∩U ss = U (s)s.

Thus, we may define

M (s)s(r,d) := U (s)s//SL(Y ).

The moduli space M s(r,d) is a (smooth) subvariety of the projective variety M ss(r,d)
which parameterizes isomorphy classes of stable vector bundles of rank r and degree d on
X . The moduli space M ss(r,d) parameterizes S-equivalence classes of semistable vector
bundles of rank r and degree d on X . We have to explain the concept of S-equivalence.

Proposition 4.4.6 (Jordan-Hölder filtration). Every semistable vector bundle possesses
a filtration

{0}=: E0 ( E1 ( · · ·( Es ( Es+1 := E

by subbundles with µ(Ei) = µ(E ), i = 1, ...,s, such that Ei+1/Ei is stable, i = 0, ....,s.
The associated graded object

gr(E ) :=
s⊕

i=0

Ei+1/Ei

is—up to isomorphy—independent of the filtration.

This result motivates the next definition.

Definition 4.4.7. Two semistable vector bundles E1 and E2 are said to be S-equivalent, if

gr(E1)∼= gr(E2).
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So, as in the abstract GIT setting, we have the class of stable vector bundles whose
set of isomorphism classes can be parameterized nicely by an algebraic variety, the moduli
space. But, in general (precisely when r and d are not coprime), it is only quasi-projective.
We compactify it with semistable vector bundles. In order to do so, we have to alter the
equivalence relation on semistable but not stable bundles. The resulting relation of S-
equivalence reflects the possible degenerations among the SL(Y )-orbits in U ss.
Illustration. In order to illustrate the relationship between the notion of a semistable
vector bundle and the Hilbert-Mumford criterion, we give a sample computation, using
an older approach by Gieseker.

To simplify matters even further, we choose a line bundle N on X and look at vector
bundles E with det(E ) ∼= N . There is a closed subscheme U ss

N ⊂U ss which parameter-
izes those semistable vector bundles with determinant N . To a point

q : Y ⊗OX (−n)−→ E

in U ss
N , we associate

r∧(
q(n)

)
:

r∧
Y ⊗OX −→ det(E (n))∼= N (rn)

and

f := H0
( r∧(

q(n)
)) ∈H := Hom

( r∧
Y,H0(N (rn)

))
.

The assignment q 7→ [ f ] induces an injective and SL(Y )-equivariant morphism

F : U ss
N −→ P

(
H∨

)
.

On the right hand space, we have a natural notion of semistability which we might test
with the Hilbert-Mumford criterion.
One parameter subgroups of a special linear group. Before we can seriously evalu-
ate the Hilbert-Mumford criterion, we have to pause a moment in order to discuss the
structure of one parameter subgroups of SL(Y ).

Let λ : C? −→ SL(Y ) be a one parameter subgroup of SL(Y ). Then, we know from
Lecture I, Example 1.2.2, ii), that there are a basis y = (y1, ...,yp) for Y and an integral
weight vector γ = (γ1, ...,γp) with

• γ1 ≤ ·· · ≤ γp, ∑p
i=1 γi = 0, and

• λ (z) ·∑p
i=1 ciyi = ∑p

i=1 zγi ciyi, ∀z ∈ C?.
Conversely, the datum of a basis y for Y and of a weight vector as above determine a one
parameter subgroup λ (y,γ) of SL(Y ).

Finally, we define the basic weight vectors

γ(i) :=
(

i− p, ..., i− p︸ ︷︷ ︸
i×

, i, ..., i︸ ︷︷ ︸
(p−i)×

)
, i = 1, ..., p−1.

Lemma 4.4.8. For a weight vector γ = (γ1, ...,γp) with γ1 ≤ ·· · ≤ γp and ∑p
i=1 γi = 0, one

finds

γ =
p−1

∑
i=1

γi+1− γi

p
· γ(i).
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Back to our problem. Let λ = λ (y,γ) be a one parameter subgroup of SL(Y ). Set

I :=
{

i = (i1, ..., ir) ∈ {1, ..., p}×r ∣∣ i1 < · · ·< ir
}
.

Then, the elements
yi = yi1 ∧·· ·∧ yir , i ∈ I,

form a basis for
∧r Y which consists of eigenvectors for the one parameter subgroup

λ (y,γ). For a point [ f ] ∈ P(H∨), one checks

µ
(
λ (y,γ), [ f ]

)
=−min

{
γi1 + · · ·+ γir

∣∣ f (yi) 6= 0, i ∈ I
}
.

A closer inspection of this formula gives the following result.

Lemma 4.4.9. For a point q ∈U ss and a basis y of Y , define i0 = (i01, ..., i
0
r ) with

i0j := min
{

k = 1, ..., p
∣∣ rk

(
q(〈y1, ...,yk 〉⊗OX (−n))

)
= j

}
,

j = 1, ...,r. Then, for any weight vector γ as above,

µ
(
λ (y,γ),F(q)

)
=−γi01

−·· ·− γi0r
.

In particular, for γ = ∑p−1
i=1 αiγ(i),

µ
(
λ (y,γ),F(q)

)
=

p−1

∑
i=1

αi ·µ
(
λ (y,γ(i)),F(q)

)
.

As a consequence of this lemma, we have to work only with the basic weight vectors.
For q : Y ⊗OX (−n)−→ E and i ∈ {1, ..., p−1}, let Fi be the subbundle generated by

q
(〈y1, ...,yi 〉⊗OX (−n)

)
.

Then,
µ
(
λ (y,γ(i)),F(q)

)
= rk(Fi) · p− r · i.

Since i≤ h0(Fi), we see:

Proposition 4.4.10. The point F(q) ∈ P(H∨) is (semi)stable, if and only if

h0(F (n))
rk(F )

(≤)
h0(E (n))

rk(E )
for every non-trivial subbundle 0(F ( E .

A difficult argument shows that one may restrict to subbundles with h1(F (n)) = 0.
Then, the condition from the proposition becomes

h0(F (n))
rk(F )

= µ(F )+n+1−g(≤)µ(E )+n+1−g =
h0(E (n))

rk(F )
.

Corollary 4.4.11. For q ∈U (s)s
N , the point F(q) is (semi)stable.

In the final step, one has to show the following:

Proposition 4.4.12. The morphism F : U ss
N −→ P(H∨)ss is proper.
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5. Lecture V: Semistable decorated principal bundles
In this lecture, we will first introduce the concept of semistability for ρ-pairs with the
structure group GLr(C) and then discuss elements of the construction of their moduli
spaces from our paper [36] (which also contains additional information on the subject).
At the end of the lecture, we define the notion of semistability for ρ-pairs with semisimple
structure group.

5.1. Decorated vector bundles
Before we come to the definition of semistability for decorated vector bundles, we will
rewrite the Hilbert-Mumford criterion for SLr(C).

We fix a representation ρ : GLr(C) −→ GL(V ) which we assume to be homoge-
neous, i.e., we assume that there is an integer α , such that

ρ
(
z ·En

)
= zα · idV , ∀z ∈ C?.

A one parameter subgroup λ : C? −→ SLr(C) leads to a decomposition

Cr =: W = Wγ1 ⊕·· ·⊕Wγs+1

where Wγi is the eigenspace to the character z 7−→ zγi , i = 1, ...,s+1, and γ1 < · · ·< γs+1.
Set Wi := Wγ1 ⊕·· ·⊕Wγi , i = 1, ...,s, in order to find the (partial) flag

W •(λ ) : 0(W1 ( · · ·(Ws (W.

Furthermore, we set

αi :=
γi+1− γi

r
∈Q>0, i = 1, ...,s,

and α(λ ) := (α1, ...,αs).

Definition 5.1.1. The pair (W •(λ ),α(λ )) is called the weighted flag of λ .

Weighted flags are the true test objects for the Hilbert-Mumford criterion for actions
of the group SLr(C):

Proposition 5.1.2. Suppose λ and λ ′ are two one parameter subgroups of SLr(C) which
define the same weighted flag in Cr. Then, for any point x ∈ P(V ),

µ(λ ,x) = µ(λ ′,x).

The concept of a weighted flag may be easily generalized to the setting of vector
bundles:

Definition 5.1.3. i) Let E be a vector bundle on X . Then, a weighted filtration of E is a
pair (E •,α) which consists of a filtration

E • : {0}( E1 ( · · ·( Es ( E

of E by subbundles and a vector α = (α1, ...,αs) with αi ∈Q>0, i = 1, ...,s.
ii) For a weighted filtration (E •,α) of E , we set

M(E •,α) :=
s

∑
i=1

αi
(
deg(E ) · rk(Ei)−deg(Ei) · rk(E )

)
.
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The weighted filtrations of vector bundles will be the test objects for the semistabil-
ity concept for decorated vector bundles. Next, we will define the quantity µ(E •,α;ϕ).
We proceed as follows: Choose a basis w = (w1, ...,wr) for W :=Cr, define Wi := 〈w1, ...,
wrk(Ei) 〉, i = 1, ...,s, and choose an open subset ∅(U ⊂ X , such that

• ϕ|U : Eρ |U −→L|U is surjective,
• there is a trivialization ψ : E|U −→W ⊗OU with ψ(Ei|U ) = Wi⊗OU , i = 1, ...,s.

Then, we get the morphism

σ : U
ϕ|U−→ P

(
Eρ |U

) “ψ”∼= P(V )×U −→ P(V ).

Finally, define

γ :=
s

∑
i=1

αiγ(rk(Ei)).

Definition 5.1.4.

µ(E •,α;ϕ) := max
{

µ
(
λ (w,γ),σ(x)

)∣∣x ∈U
}
.

One verifies:

Proposition 5.1.5. The quantity µ(E •,α;ϕ) is well-defined.

Example 5.1.6. Assume that V = Wa,b,c for W = Cr and appropriate integers a, b, and c
(see Example 1.2.5, x). We may give other expressions of the number µ(E •,α;ϕ). We
first define the associated weight vector (of the weighted filtration (E •,α) of E ) as

(
γ1, . . . ,γ1︸ ︷︷ ︸
(rkE1)×

, γ2, . . . ,γ2︸ ︷︷ ︸
(rkE2−rkE1)×

, . . . ,γs+1, . . . ,γs+1︸ ︷︷ ︸
(rkE−rkEs)×

)
:=

s

∑
j=1

α j · γ(rkE j).

(Note that we recover α j = (γ j+1− γ j)/r, j = 1, ...,s.)
Then,

µ
(
E •,α;ϕ

)
=−min

{
γι1 + · · ·+γιa

∣∣(ι1, ..., ιa)∈ {1, ...,s+1}×a : ϕ|(Eι1⊗···⊗Eιa )⊗b 6≡ 0
}
.

For ι = (ι1, ..., ιa) ∈ {1, ...,s+1}×a, we may also write

−(
γι1 + · · ·+ γιa

)
=

s

∑
j=1

α j
(
ν j(ι) · r−a · rk(E j)

)
, ν j(ι) := #

{
ιk ≤ j |k = 1, ...,a

}
. (2)

Definition 5.1.7. Let δ be a positive rational number. A ρ-pair (E ,L ,ϕ) is said to be
δ -(semi)stable, if

M
(
E •,α

)
+δ ·µ(

E •,α,ϕ
)
(≥)0

holds for every weighted filtration (E •,α) of E .

This semistability concept is so to speak the Hilbert-Mumford criterion for deco-
rated vector bundles. It mixes the semistability concept for vector bundles with GIT along
the fibers of P(Eρ)−→ X .
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Main Theorem 5.1.8. Let ρ : GLr(C)−→GL(V ) be a homogeneous representation. Fix
integers d, l, and a positive rational number δ .

i) There exists a projective moduli space M (ρ)δ-ss
d/l which parameterizes (S-equiv-

alence classes) of δ -semistable ρ-pairs (E ,L ,ϕ) where deg(E ) = d, and deg(L ) = l.
ii) There is an open subspace M (ρ)δ-s

d/l ⊆M (ρ)δ-ss
d/l which parameterizes the equiv-

alence classes of stable ρ-pairs.

This result should be viewed as the analog of the GIT theorem that the set of semi-
stable points in a projective space admits a projective categorical quotient and that the set
of stable points a (quasi-projective) categorical quotient which is also an orbit space. It is
a general existence theorem and the beginning of investigations in concrete examples.

5.2. Examples
There are several devices to simplify the concept of δ -semistability in terms of the rep-
resentation ρ (see Section 3.1 of [36]). Here, we give two examples of semistability con-
cepts for decorated vector bundles in the simplified form.
Bradlow pairs. Set ρ = idGLr(C). Thus, a ρ-pair is a triple (E ,L ,ϕ) where E is a vector
bundle of rank r, L is a line bundle, and ϕ : E −→L is a non-trivial homomorphism.

The simplified semistability concept takes the following form: A ρ-pair (E ,L ,ϕ)
is δ -(semi)stable, if and only

µ(F ) (≤) µ(E )− δ
rk(E )

, if F ⊆ ker(ϕ)

µ(F )− δ
rk(F )

(≤) µ(E )− δ
rk(E )

, if F 6⊆ ker(ϕ).

This stability concept was formulated by Bradlow [7]. It is the first example of a notion
of semistability which depends on a parameter.
Conic bundles. This time, we work with ρ : GL3(C)−→ GL(Sym2(C3)), i.e., a ρ-pair
consists of a vector bundle E of rank 3, a line bundle L , and a non-zero homomorphism
ϕ : S ym2(E )−→L . If ϕ is everywhere surjective, then such a ρ-pair describes a conic
bundle π : C −→ X , i.e., a surface which is fibered over X in plane conics (see also
Example 2.7).

In order to explain semistability for a ρ-pair (E ,L ,ϕ : S ym2(E )−→L ), we need
the following:

Definition 5.2.1. i) For a subbundle 0(F ( E , we set

cϕ(F ) :=





2 if ϕ|F⊗F 6≡ 0
1 if ϕ|F⊗F ≡ 0 and ϕF⊗E 6≡ 0
0 if ϕ|F⊗E ≡ 0

.

ii) A filtration E • : {0}( E1 ( E2 ( E is called critical, if

ϕ|E1⊗E2 ≡ 0, ϕ|E1⊗E 6≡ 0, and ϕ|E2⊗E2 6≡ 0.
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Then, a ρ-pair is δ -(semi)stable, if and only if

µ(F )−δ · cϕ(F )
rk(F )

(≤)µ(E )−δ · 2
3
,

for every subbundle {0}(F ( E , and

deg(E1)+deg(E2)(≤)deg(E ),

for every critical filtration E • : {0}( E1 ( E2 ( E .
The stability of conic bundles was investigated by Gómez and Sols [12]. It is the first

and probably easiest example where filtrations of higher length are necessary in order to
define semistability.

5.3. Boundedness
By Lecture I, Example 1.2.5, x), Proposition, the homogeneous representation ρ is a direct
summand of the representation ρa,b,c of GLr(C) on the vector space

Wa,b,c =
(
(Cr)⊗a)⊕b⊗ ( r∧

Cr)⊗−c
,

for suitable non-negative integers a, b, and c.
According to Lecture IV, Proposition 4.3.6, the following result shows that the set

of isomorphism classes of vector bundles which occur in δ -semistable ρ-pairs with fixed
numerical data form a bounded family in the sense of Definition 4.3.1.

Proposition 5.3.1. There is a non-negative constant C1, depending only on r, a, and δ ,
such that for every δ -semistable ρa,b,c-pair (E ,L ,ϕ) with deg(E ) = d and every non-
trivial proper subbundle F of E

µ(F )≤ d
r

+C1.

Proof. Let E • : {0} (F ( E be any subbundle. Using Example 5.1.6, one easily esti-
mates

µρa,b,c(E
•,(1);ϕ)≤ a(r−1).

Hence, δ -semistability gives

d rk(F )−deg(F )r +δa(r−1)≥ d rk(F )−deg(F )r +δ µρa,b,c(E
•,(1);ϕ)≥ 0,

i.e.,

µ(F )≤ d
r

+
δ ·a · (r−1)

r · rk(F )
≤ d

r
+

δ ·a · (r−1)
r

,

so that the theorem holds for C1 := δ ·a · (r−1)/r. ¤
In fact, a much stronger boundedness result is true:

Theorem 5.3.2 (Langer/Schmitt). There is a non-negative constant C2, depending only
on r, a, b, c, d, and l, such that for every δ ∈ Q>0 and every δ -semistable ρa,b,c-pair
(E ,L ,ϕ) with deg(E ) = d and deg(L ) = l and every non-trivial proper subbundle F
of E

µ(F )≤ d
r

+C2.
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Proof. This result was first published in [38]. Later, the author learned a much easier
argument from Adrian Langer. It is given in [11]. ¤

5.4. The parameter space
To simplify matters, we fix a line bundle L0 on X and look only at ρ-pairs of the form
(E ,L0,ϕ).

By Proposition 5.3.1, the occurring vector bundles can be parameterized by some
quot scheme Q. Recall that we have the universal quotient

qQ : Y ⊗π?
X
(
OX (−n)

)−→ EQ

on Q×X .
For mÀ 0,

Fm := πQ?

(
(Y⊗a)⊕b⊗π?

X
(
OX (a(m−n))

))

will be a vector bundle on Q, and so will be

Gm := πQ?

(
det(EQ)⊗c⊗π?

X
(
L0(am)

))
.

We form the projective bundle

π : P := P
(
H om(Fm,Gm)∨

)−→Q.

On P×X , we have the universal quotient

qP := (π× id X )?(qQ) : Y ⊗π?
X
(
OX (−n)

)−→ EP

and the tautological homomorphism

f̃P : (Y⊗a)⊕b⊗π?
X
(
OX (a(m−n))

)−→ det(EP)⊗c⊗π?
X
(
L0(am)

)⊗π?
P

(
OP(1)

)
.

Set fP := f̃P⊗ idOX (−am).
There is a closed subscheme T⊆P where fP factorizes over

(
(ET)⊗a)⊕b

, ET := EP|T×X .

Thus, on T×X , we have the universal quotient

qT : Y ⊗π?
X
(
OX (−n)

)−→ ET

and the universal homomorphism

ϕP :
(
(ET)⊗a)⊕b −→ det(ET)⊗c⊗π?

X (L0)⊗NT, NT := π?
P

(
OP(1)

)
|T×X .

We call (ET,π?
X (L0)⊗NT,ϕT) the universal family.

There is an open subset U ⊂ T consisting of those points ([q : Y ⊗OX (−n) −→
E ],L0,ϕ), such that E is a vector bundle and H0(q(n)) is an isomorphism. There is also
a natural GL(Y )-action on T which leaves U invariant and induces equivalence of ρ-pairs
on U . Moreover, C? · idY acts trivially, so that we have to investigate the SL(Y )-action.
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To further simplify matters, we fix a line bundle N on X and look only at those
ρ-pairs (E ,L0,ϕ) with det(E )∼= N . Again, the ρ-pairs with this condition on the deter-
minant belong to a closed subscheme UN ⊂U . We set

H := Hom
( r∧

Y,H0(N (rn)
))∨

and
K := Hom

((
Y⊗a)⊕b

,H0(N ⊗c⊗L0(an)
))∨

.

This time, we obtain a Gieseker morphism

F : UN −→ P
(
H

)×P(
K

)
.

Let ρ1 : SL(Y ) −→ GL(H) and ρ2 : SL(Y ) −→ GL(K) be the obvious representations
which give the SL(Y )-action on the right hand space. For positive integers m and n, we
have the linearization lm,n = (ρm,n, ιm,n) of that action with ρm,n := Symm(ρ1)⊗Symn(ρ2)
and the Veronese embeddings combined with the Segre embedding

ιm,n : P
(
H

)×P(
K

)
↪→ P

(
Symm(H)⊗Symn(K)

)
.

We choose the linearization parameters m and n in such a way that

ε :=
m
n

:=
p−aδ

rδ
.

Below, we will illustrate the relationship between the notion of δ -semistability of a ρ-pair
and the Hilbert-Mumford criterion for the linearization lm,n.

5.5. Evaluation of the Hilbert-Mumford criterion
The linearization of the group action determines a notion of (semi)stability which we test
with the Hilbert-Mumford criterion. In this section, we want to discuss some elements
of the proof that this notion of semistability on the Gieseker space equals the notion of
δ -(semi)stability for decorated vector bundles. More precisely, we want to illustrate the
implication:

The Gieseker point F(t) of t = ([q : Y ⊗OX (−n)−→ E ],L0,ϕ) ∈U is (semi)stable
=⇒ (E ,L0,ϕ) is δ -(semi)stable.

We will check the condition of δ -(semi)stability for a weighted filtration (E •,α),
such that E j(n) is globally generated and H1(E j(n)) = {0}, j = 1, ...,s. As in the case
of vector bundles without extra structure, one may show that this suffices to establish
δ -(semi)stability of (E ,L0,ϕ).

First, we have to cook up the correct one parameter subgroup to put into the Hilbert-
Mumford criterion. To this end, let y = (y1, ...,yp) be a basis of Y , such that there are

indices l1, ..., ls with Y
(l j)
y = H0(E j(n)) (under the isomorphism H0(q(n))), j = 1, ...,s,

and define

γ̃ :=
s

∑
j=1

α jγ(l j).

We also set

gr j(Y,y) := Y
(l j)
y /Y

(l j−1)
y = H0(E j/E j−1(n)), j = 1, ...,s+1, l0 := 0, ls+1 := p.
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The fixed basis y for Y provides us with the isomorphism Y ∼= ⊕s+1
j=1 gr j(Y,y). For every

index ι ∈ J := {1, ...,s}×a, we set

Yι ,y := grι1
(Y,y)⊗·· ·⊗grιa

(Y,y).

Moreover, for k ∈ {1, ...,b} and ι ∈ J, we let Y k
ι ,w be the subspace of Ya,b := (Y⊗a)⊕b

which is Yι ,w living in the k-th copy of Y⊗a in Ya,b. The spaces Y k
ι ,y, k ∈ {1, ...,b}, ι ∈ J,

are eigenspaces for the action of the one parameter subgroups λ (y,γ(l j)
p ), j = 1, ...,s.

Define

ν j(ι) := #
{

ιi ≤ j | ι = (ι1, ..., ιa), i = 1, ...,a
}
. (3)

Then, λ (y,γ(l j)
p ) acts on Y k

ι ,y with weight ν j(ι) · p−a · l j.
Suppose the second component of F(t) is represented by the homomorphism

L : (Y⊗a)⊕b −→ H0(N ⊗c⊗L0(an)
)
.

With (3), one readily verifies

µ
(
λ (y, γ̃), [L]

)
=−min

{ s

∑
j=1

α j
(
ν j(ι)p−al j

)∣∣k ∈ {1, ...,b}, ι ∈ J : Y k
ι ,y 6⊆ ker(L)

}
. (4)

We observe that for every k ∈ {1, ...,b} and every ι ∈ J:

Y k
ι ,y 6⊆ ker(L) =⇒ ϕ|(Eι1⊗···⊗Eιa )⊕b 6≡ 0. (5)

This is because (Y
(lι1 )
y ⊗·· ·⊗Y (lιa )

y )⊕b generates the bundle (Eι1(n)⊗·· ·⊗Eιa(n))⊕b.
Now, let k0 ∈ {1, ...,b} and ι0 ∈ J be such that the minimum in (4) is achieved by

∑s
j=1 α j(ν j(ι0) · p−a · l j) and Y k0

ι0,y 6⊆ ker(L). The (semi)stability of t gives:

0 (≤)
1
n

µlm,n

(
λ (y, γ̃),F(t)

)

= εµ
(
λ (y, γ̃),F1(t)

)
+ µ

(
λ (y, γ̃),F2(t)

)

= ε
s

∑
j=1

α j
(

p rkE j−h0(E j(n))r
)
+

s

∑
j=1

α j
(
ν j(ι0)p−al j

)

=
p−aδ

rδ

s

∑
j=1

α j
(

p rkE j−h0(E j(n))r
)
+

s

∑
j=1

α j
(
ν j(ι0)p−ah0(E j(n))

)

=
s

∑
j=1

α j

(
p2 rkE j

rδ
− pa rkE j

r
− ph0(E j(n))

δ

)
+

s

∑
j=1

α jν j(ι0)p.

We multiply this inequality by rδ/p and find

0(≤)
s

∑
j=1

α j
(

p rkE j− rh0(E j(n))
)
+δ

s

∑
j=1

α j
(
ν j(ι0)r−a rkE j

)
.
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Since h1(E j(n)) = 0, j = 1, ...,s, we have p rkE j − rh0(E j(n)) = d rkE j − deg(E j)r, j =
1, ...,s. Moreover, rkE j = i j, by definition. Therefore, (5) and Example 5.1.6—observing
Equation (2)—imply that

µρa,b,c(E
•,α ;ϕ)≥

s

∑
j=1

α j(ν j(ι0)r−ai j).

Hence, we finally see

M
(
E •,α

)
+δ ·µρa,b,c

(
E •,α;ϕ

)
(≥)0.

To complete the GIT construction, one also has to prove that a δ -(semi)stable deco-
rated vector bundle gives rise to a (semi)stable Gieseker point and that the Gieseker map
between the corresponding semistable loci in U and P(H)×P(K) is proper. The argu-
ments ascertaining these facts are similar in nature but technically slightly more involved
(see [36]). ¤
5.6. The chain of moduli spaces
Theorem 5.3.2 and our discussions in Lecture III yield the following result:

Theorem 5.6.1. Fix the input data a, b, c, d, and l. Then, there is a finite set { δ̂1, ..., δ̂m }
of rational numbers

0 =: δ̂0 < δ̂1 < · · ·< δ̂m < δ̂m+1 := ∞,

such that, for a ρ-pair (E ,L ,ϕ) with deg(E ) = d and deg(L ) = l, the following prop-
erties hold true:

i) Suppose there is an index i∈ {0, ...,m} with δ̂i < δ1 < δ2 < δ̂i+1. Then, (E ,L ,ϕ)
is δ1-(semi)stable, if and only if it is δ2-(semi)stable. In particular, there is a canonical
isomorphism

M (ρ)δ1-ss
d/l

∼= M (ρ)δ2-ss
d/l .

ii) Assume δ̂i < δ < δ̂i+1 for some index i ∈ {1, ...,m− 1}. If (E ,L ,ϕ) is δ -
semistable, then (E ,L ,ϕ) is also δ̂i- and δ̂i+1-semistable, so that there are canonical
morphisms

M (ρ)δ-ss
d/l −→M (ρ)δ̂i-ss

d/l and M (ρ)δ-ss
d/l −→M (ρ)δ̂i+1-ss

d/l .

Conversely, if (E ,L ,ϕ) is δ̂i- or δ̂i+1-stable, then (E ,L ,ϕ) is also δ -stable.
iii) Suppose δ > δ̂m. If (E ,L ,ϕ) is δ -semistable, it is also δ̂m-semistable, so that

there is a natural morphism

M (ρ)δ-ss
d/l −→M (ρ)δ̂m-ss

d/l .

Conversely, if (E ,L ,ϕ) is δ̂m-stable, then (E ,L ,ϕ) is also δ -stable.
iv) Suppose 0 < δ < δ̂1. If (E ,L ,ϕ) is δ -semistable, then E is a semistable vector

bundle. Letting M̂0 be the moduli space of semistable vector bundles of rank r and degree
d, we find a canonical morphism

M (ρ)δ-ss
d/l −→ M̂0.
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If E is a stable vector bundle, then (E ,L ,ϕ) is δ -stable.

We set M̂i := M (ρ)δ̂i-ss
d/l , i = 1, ...,m, Mi := M (ρ)δ-ss

d/l for some δ with δ̂i−1 <

δ < δ̂i, i = 1, ...,m, and M∞ := M (ρ)δ-ss
d/l for some δ with δ > δ̂m. Our theorem is then

summarized by the following picture

M1

}}||
||

||
||

!!B
BB

BB
BB

B Mm

||xxxxxxxx

!!C
CC

CC
CC

C M∞

}}{{
{{

{{
{{

M̂0 M̂1 M̂m−1 M̂m
.

Remark 5.6.2. This “chain of flips” has first figured in the setting of Bradlow pairs (see
Example 4.2) of the kind (E ,OX ,ϕ) with rk(E ) = 2 and det(E ) a fixed line bundle N
of odd degree in the work of Thaddeus [47]. In that important application of decorated
vector bundles, the moduli space M∞ is empty, and M̂m is a projective space. The moduli
space M1 is a projective bundle over the moduli space M (2,N ) of stable vector bundles
of rank 2 with determinant N (note that “stable” = “semistable”, because rk(E ) = 2 and
deg(E ) is odd). Furthermore, it is possible to explicitly analyze all the maps in the above
flip diagram. This enables Thaddeus to transfer the simple information on a projective
space to important information on the moduli space of stable vector bundles. For example,
one easily concludes that the Picard group of M (2,N ) is isomorphic to the group of
integers.

5.7. Decorated principal bundles
In this final section, we begin the discussion of decorated principal G-bundles. We as-
sume that the structure group G is a semisimple linear algebraic group, i.e., a connected
reductive linear algebraic group with finite center (such as SLn(C), SOn(C), or Sp2n(C)).
To begin with, we sketch how principal G-bundles may be treated as decorated vector
bundles.

To do so, we fix a faithful representation ι : G ↪→ GL(V ). By means of the repre-
sentation ι , any principal G-bundle P on X gives rise to a principal GL(V )-bundle which
we denote by ι?(P). To a principal G-bundle P on X , we now associate:

• the vector bundle E := P(V ) with fiber V (compare with the introduction). Then,
we may view ι?(P) as the frame bundle of E , i.e., ι?(P) = I som(V ⊗OX ,E );

• a section σ : X −→I som(V⊗OX ,E )/G. In fact, we have the commutative diagram

P

ÂÂ@
@@

@@
@@

@
Â Ä G-equivariant

// ι?(P)

||yyyyyyyy

X

.

If we take the G-quotient on both sides in the top line, we find σ .
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Conversely, to a pair (E ,σ) as above, we associate the fiber product

P

²²

// I som(V ⊗OX ,E )

G- bundle
²²

X
σ // I som(V ⊗OX ,E )/G.

Note that P is a principal G-bundle on X . There is an obvious equivalence relation on
the set of pairs (E ,σ). The upshot is the following.

Proposition 5.7.1. The above constructions give rise to a bijection{
Isomorphism classes of

principal G-bundles

}
←→

{
Equivalence classes of

pairs (E ,σ)

}
.

Remark 5.7.2. The reader may consult reference [35] for a precise account on how pairs
(E ,σ) may be interpreted as decorated vector bundles in the sense which we have used,
so far.

Now, let ρ : G −→ GL(W ) be a representation of G. By Lecture I, Example 1.2.5,
ix), Proposition, we may—after possibly adding a direct summand—assume that ρ is
the restriction of a representation ρ̃ : GL(V ) −→ GL(W ). A similar reasoning as above
shows that we can identify ρ-pairs (P,L ,ϕ) with tuples (E ,σ ,L , ϕ̃) where (E ,L , ϕ̃)
is a ρ̃-pair.

Definition 5.7.3. i) Let λ : C? −→ G be a one parameter subgroup of G. Define the
subgroup

QG(λ ) :=
{

g ∈ G
∣∣ lim

z→∞
λ (z) ·g ·λ (z)−1 exists in G

}
.

ii) A reduction of the principal G-bundle P to λ consists of a section β : X −→
P/QG(λ ). The composed section

β ′ : X −→P/QG(λ ) ↪→I som(V ⊗OX ,E )/QGL(V )(λ )

yields a weighted filtration

(E •
β ,αβ ) =

(
0( E1 ( · · ·( Es ( E ,(α1, ...,αs)

)

of E .
iii) Fix a positive rational number δ . A ρ-pair (P,L ,ϕ) is said to be δ -(semi)stable,

if
M(E •

β ,αβ )+δ ·µ(
E •

β ,αβ ;ϕ
)
(≥)0

holds for every non-trivial one parameter subgroup λ : C? −→ G and every reduction β
of P to λ .

Remark 5.7.4. i) The subgroup QG(λ ) is a parabolic subgroup of G, and any parabolic
subgroup of G is of the form QG(λ ) for an appropriate one parameter subgroup λ : C?−→
G (see [45]).

ii) Let (V •(λ ) : 0(V1 ( · · ·(Vs (V,α(λ )) be the weighted flag of λ (see Defini-
tion 5.1.1). The bundle I som(V ⊗OX ,E )/QGL(V )(λ ) is the bundle of flags in the fibers
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of E of the same type as V •(λ ), i.e., the bundle whose sections over a subset Y (V cor-
respond to filtrations E • : {0}( E1 ( · · ·( Es ( E|Y where rk(Ei) = dim(Vi), i = 1, ...,s.
This explains that β ′ gives a filtration E •

β . The tuple αβ is simply α(λ ).

We haven’t written down the existence of moduli spaces for δ -(semi)stable deco-
rated principal G-bundles as a theorem, because the complete proofs haven’t been finished
up to now. The author intends to supply them and extensions of the theory in [40]. The
idea is, of course, to use our description of decorated principal G-bundles as decorated
vector bundles in order to reduce everything to the theory of decorated vector bundles
which we have already developed.
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