
SOME APPLICATIONS OF ALGEBRAIC CYCLES TO AFFINE
ALGEBRAIC GEOMETRY

V. SRINIVAS

In this series of talks, I will discuss some applications of the theory of algebraic
cycles to affine algebraic geometry (i.e., to commutative algebra).

1. The Chow ring and Chern classes

First, we recall the definition of the graded Chow ring CH∗(X) =
⊕

p≥0 CH
p(X)

of a non-singular variety X over a field k (see [9] for more details; see also [3]).
We will usually (but not always) take k to be algebraically closed; X need not be
irreducible. The graded components CHp(X) generalize the more familiar notion
of the divisor class group, which is just the group CH1(X).

If Z ⊂ X is irreducible, let OZ,X be the local ring of Z on X (i.e., the local
ring of the generic point of Z, in the terminology of Hartshorne’s book [12]).
The codimension of Z in X, denoted codimXZ, is the dimension of the local ring
OZ,X . Now let

Zp(X) = Free abelian group on irreducible subvarieties of X of codimension p

= Group of algebraic cycles on X of codimension p.

For an irreducible subvariety Z ⊂ X, let [Z] denote its class in Zp(X) (where
p = codimXZ).

Let Y ⊂ X be irreducible of codimension p − 1, and let k(Y )∗ denote the
multiplicative group of non-zero rational functions on Y (k(Y ), which is the field
of rational functions on Y , is the residue field of OY,X). For each irreducible
divisor Z ⊂ Y , we have a homomorphism ordZ : k(Y )∗ → Z, given by

ordZ(f) = `(OZ,Y /aOZ,Y )− `(OZ,Y /bOZ,Y ),

for any expression of f as a ratio f = a/b with a, b ∈ OZ,Y \ {0}. Here `(M)
denotes the length of an Artinian module M .

For f ∈ k(Y )∗, let (f)Y denote the divisor of f on Y , defined by

(f)Y =
∑

Z⊂Y

ord Z(f) · [Z],

where Z runs over all irreducible divisors in Y ; the sum has only finitely many
non-zero terms, and is hence well-defined. Clearly we may also view (f)Y as an
element of Zp(X).

Let Rp(X) ⊂ Zp(X) be the subgroup generated by cycles (f)Y as (Y, f) ranges
over all irreducible subvarieties Y of X of codimension p− 1, and all f ∈ k(Y )∗.
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We refer to elements of Rp(X) as cycles rationally equivalent to 0 on X. The p-th
Chow group of X is defined to be

CHp(X) =
Zp(X)

Rp(X)

= group of rational equivalence classes of codimension p-cycles on X.

We will abuse notation and also use [Z] to denote the class of an irreducible
subvariety Z in CHp(X).

The graded abelian group

CH∗(X) =
⊕

0≤p≤dimX

CHp(X)

can be given the structure of a commutative (graded) ring via the intersection
product. This product is characterized by the following property — if Y ⊂ X,
Z ⊂ X are irreducible of codimensions p, q respectively, and Y ∩ Z = ∪iWi,
where each Wi ⊂ X is irreducible of codimension p + q (we then say Y and Z
intersect properly in X), then the intersection product of the classes [Y ] and [Z]
is

[Y ] · [Z] =
∑

i

I(Y, Z;Wi)[Wi]

where I(Y, Z;Wi) is the intersection multiplicity of Y and Z along Wi, defined
by Serre’s formula

I(Y, Z;Wi) =
∑

j≥0

(−1)j`
(
Tor

OWj,X

j (OWj ,Y ,OWj ,Z)
)
.

One of the important results proved in the book [9] is that the above procedure
does give rise to a well-defined ring structure on CH∗(X).

The Chow ring is an algebraic analogue for the even cohomology ring
n⊕

i=0

H2i(X,Z)

defined in algebraic topology. To illustrate this, we note the following ‘cohomology-
like’ properties. Here, we follow the convention of [12], and use the term “vector
bundle on X” to mean “(coherent) locally free sheaf of OX -modules”, and use the
term “geometric vector bundle on X”, as in [12] II Ex. 5.18, to mean a Zariski
locally trivial algebraic fiber bundle V → X whose fibres are affine spaces, with
linear transition functions. With this convention, we can also identify vector bun-
dles on an affine variety X = SpecA with finitely generated projective A-modules;

as in [12], we use the notation M̃ to denote the coherent sheaf corresponding to
a finitely generated A-module M .
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Theorem 1.1. (Properties of the Chow ring and Chern classes)

(1) X 7→ ⊕
pCH

p(X) is a contravariant functor from the category of smooth

varieties over k to graded rings. If X =
∐

iXi, where Xi are the irre-
ducible (= connected) components, then CH∗(X) =

∏
i CH

∗(Xi).
(2) If X is irreducible and projective (or more generally, proper) over an

algebraically closed field k and d = dimX, there is a well defined degree
homomorphism

deg : CHd(X) → Z

given by deg(
∑

i ni[xi]) =
∑

i ni. This allows one to define intersection
numbers of cycles of complementary dimension, in a purely algebraic
way, which agree with those defined via topology when k = C (see (7)
below).

(3) If f : X → Y is a proper morphism of smooth varieties, there are “Gysin”
(or “push-forward”) maps f∗ : CHp(X) → CHp+r(Y ) for all p, where
r = dimY − dimX; here if p + r < 0, we define f∗ to be 0. The
induced map CH∗(X) → CH∗(Y ) is CH∗(Y )-linear (projection for-
mula), where CH∗(X) is regarded as a CH∗(Y )-module via the (con-
travariant) ring homomorphism f ∗ : CH∗(Y ) → CH∗(X). If f : X ↪→ Y
is the inclusion of a closed subvariety, then f∗ is induced by the natural
inclusions Zp(X) ↪→ Zp+r(Y ).

(4) f ∗ : CH∗(X)
∼=→ CH∗(V ) for any geometric vector bundle f : V → X

(homotopy invariance). In particular, CH∗(X × An) = CH∗(X), and
CH∗(An) = Z.

(5) If V is a vector bundle (i.e., locally free sheaf) of rank r on X, then there
are Chern classes cp(V ) ∈ CHp(X), such that
(a) c0(V ) = 1,
(b) cp(V ) = 0 for p > r, and
(c) for any exact sequence of vector bundles

0 → V1 → V2 → V3 → 0

we have c(V2) = c(V1)c(V3), where c(Vi) =
∑

p cp(Vi) are the corre-
sponding total Chern classes

(d) cp(V
∨) = (−1)pcp(V ), where V ∨ is the dual vector bundle.

Moreover, we also have the following properties.
(6) If f : P(V ) = ProjS(V ) → X is the projective bundle associated to

a vector bundle of rank r (where S(V ) is the symmetric algebra of the
sheaf V over OX), then CH∗(P(V )) is a CH∗(X)-algebra generated by
ξ = c1(OP(V )(1)), the first Chern class of the tautological line bundle,
which is subject to the relation

ξr − c1(V )ξr−1 + · · ·+ (−1)rcn(V ) = 0;

in particular, CH∗(P(V )) is a free CH∗(X)-module with basis 1, ξ, ξ2, . . . , ξr−1.
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(7) If k = C, there are cycle class homomorphisms CHp(X) → H2p(X,Z)
such that the intersection product corresponds to the cup product in coho-
mology, and for a vector bundle E, the cycle class of cp(E) is the topolog-
ical p-th Chern class of E.

(8) The first Chern class determines an isomorphism PicX → CH1(X) from
the Picard group of line bundles on X to the first Chow group (i.e., the
divisor class group) of X. For an arbitrary vector bundle V , of rank n,
we have c1(V ) = c1(detV ), where detV =

∧n V .
(9) If f : X → Y is a morphism between non-singular varieties, V a vector

bundle on Y , then the Chern classes of the pull-back vector bundle f ∗V
on X are given by c(f ∗V ) = f ∗c(V ), where on the right, f ∗ is the ring
homomorphism CH∗(Y ) → CH∗(X) (functoriality of Chern classes).
In particular, taking Y = point, we see that c(OX) = 1 ∈ CH∗(X).

(10) If i : Y ↪→ X is the inclusion of an irreducible smooth subvariety of
codimension r in a smooth variety, with normal bundle N = (IY /I2

Y )∨

(where IY ⊂ OX is the ideal sheaf of Y in X), then N is a vector bundle
on Y of rank r with top Chern class

cr(N ) = i∗ ◦ i∗[Y ],

where [Y ] ∈ CH0(Y ) = Z is the generator (self-intersection formula).

Remark 1.2. If X = SpecA is affine, we will also sometimes write CH∗(A) in
place of CH∗(X); similarly, by the Chern classes ci(P ) of a finitely generated

projective A-module P , we mean ci(P̃ ) where P̃ is the associated vector bundle
on X.

We remark that the total Chern class of a vector bundle on a smooth variety X
is a unit in the Chow ring CH∗(X), since it is of the form 1+(nilpotent element).
Thus the assignment V 7→ c(V ) gives a homomorphism of groups from the
Grothendieck group K0(X) of vector bundles (locally free sheaves) on X to the
multiplicative group of those units in the graded ring CH∗(X), which are ex-
pressible as 1 + (higher degree terms).

On a non-singular variety X, every coherent sheaf has a resolution by locally
free sheaves (vector bundles) of finite rank, and the Grothendieck group K0(X) of
vector bundles coincides with the Grothendieck group of coherent sheaves. There
is a finite decreasing filtration {F pK0(X)}p≥0 on K0(X), where F pK0(X) is the
subgroup generated by classes of sheaves supported in codimension ≥ p. Further,
F pK0(X)/F p+1K0(X) is generated, as an abelian group, by the classes OZ for
irreducible subvarieties Z ⊂ X of codimension p – for example, if X = SpecA
is affine, we can see this using the fact that any finitely generated A-module M
has a finite filtration whose quotients are of the form A/℘ for prime ideals ℘,
such that the minimal primes in supp (M) all occur, and their multiplicities in
the filtration are independent of the choice of filtration. Thus, we have a natural
surjection Zp(X) → F pK0(X)/F p+1K0(X).

If F is any coherent sheaf on X whose support is of codimension p, recall that
we can associate to it a codimension p cycle

|F| ∈ Zp(X),
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by

|F| =
∑

W⊂X

`(FηW
),

where W ranges over the irreducible, codimension p subvarieties of X in the
support of F , and ηW is the generic point of W , so that the stalk FηW

is a
module of finite length over the local ring OW,X = OηW ,X . If V is a vector bundle
of rank p, and s a section, then s induces a map of sheaves V ∨ → OX , whose
image is an ideal sheaf IY , where Y is the zero scheme of s. Since the ideal sheaf
of Y is locally generated by p elements, each irreducible component of Yred has
codimension ≤ p. If Y is purely of codimension p, there is thus an associated
cycle |Y | = |OY | ∈ Zp(X).

Now we can state the following result, part (d) of which is sometimes called
the Riemann-Roch theorem without denominators (see the book [9] for a proof).
Note that (c) is consistent with the self-intersection formula, in the case when Y
is nonsingular, since in this case, V ⊗OY is identified with the normal bundle.

Theorem 1.3. Let X be a non-singular variety.

(a) If x ∈ F pK0(X), then ci(x) = 0 for i < p, and cp : F pK0(X) → CHp(X)
is a group homomorphism. Let cp : F pK0(X)/F p+1K0(X) → CHp(X) be
the induced homomorphism.

(b) The natural surjection Zp(X) � F pK0(X)/F p+1K0(X) factors through
rational equivalence, yielding a map ψp : CHp(X) � F pK0(X)/F p+1K0(X).

(c) Let V be a vector bundle of rank p on X, and s a section with zero scheme
Y , which has codimension p. Then |Y | ∈ Zp(X) is a cycle representing
the p-th Chern class cp(V ) ∈ CHp(X).

(d) The compositions cp◦ψp and ψp◦cp both equal multiplication by the integer
(−1)p−1(p− 1)!. In particular, both cp and ψp are isomorphisms ⊗Q.

In particular, if Z ⊂ X is an irreducible subvariety of codimension p, then
ci([OZ ]) = 0 for i < p, and cp([OZ ]) = (−1)p−1(p− 1)![Z] ∈ CHp(X).

Remark 1.4. If X = SpecA is affine, any element α ∈ K0(X) can be expressed
as a difference α = [P ]− [A⊕m] for some finitely generated projective A-module
P and some positive integer m. Hence the total Chern class c(α) coincides with
c(P ). The above theorem now implies that for any element a ∈ CHp(X), there
is a finitely generated projective A module P with cp(P ) = (p − 1)!a. By the
Bass stability theorem, which implies that any projective A-module of rank >
d = dimA has a free direct summand of positive rank, we can find a projective
A-module P with rankP ≤ d and cp(P ) = (p− 1)!a.

Incidentally, this statement cannot be improved, in general: for any p > 2,
there are examples of affine non-singular varieties X and elements a ∈ CHp(X)
such that ma ∈ image cp for some integer m ⇐⇒ (p− 1)!|m.
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2. An example of a graded ring

We now discuss our first application of these constructions, due to N. Mohan
Kumar (unpublished). It is a counterexample to the “principle”: if a commuta-
tive algebra problem with graded data has a solution, then it also has a graded
solution.

Let k = k. We give an example of a 3-dimensional, regular, graded integral
domain A =

⊕
n≥0An, with the following properties:

(1) A is generated by A1 as an A0-algebra, where A0 is a regular affine k-
algebra of dimension 1

(2) the “irrelevant graded prime ideal” P =
⊕

n>0An is the radical of an ideal
generated by 2 elements (i.e., the subvariety of Z = SpecA defined by P
is a set-theoretic complete intersection in Z)

(3) P cannot be expressed as the radical of an ideal generated by 2 homoge-
neous elements (i.e., the subvariety is not a “homogeneous” set-theoretic
complete intersection).

For the example, take A0 to be affine coordinate ring of a non-singular curve
C ⊂ A3

k such that the canonical module ωA0
= ΩA0/k is a non-torsion element of

the divisor class group of A0 (this implies k is not the algebraic closure of a finite
field). In fact, if we choose A0 to be a non-singular affine k-algebra of dimension 1
such that ωA0

is non-torsion in the class group, then C = SpecA0 can be realized
as a curve embedded in A3

k, by more or less standard arguments (see [12], IV, or
[26], for example).

Let R = k[x, y, z] denote the polynomial algebra, and let ϕ : R → A0 be the
surjection corresponding to C ↪→ A3

k. Let I = kerϕ be the ideal of C. Then I/I2

is a projective A0-module of rank 2; we let

A = S(I/I2) =
⊕

n≥0

Sn(I/I2)

be its symmetric algebra over A0. We claim this graded ring A has the properties
stated above.

Consider the exact sequence of projective A0-modules

(2.1) 0 → I/I2 ψ→ ΩR/k ⊗ A0
ϕ→ ωA0

→ 0

with ϕ induced by ϕ, and ψ by the derivation d : R→ ΩR/k. Let

h : ΩR/k ⊗ A0 → I/I2

be a splitting of ψ. Use h to define a homomorphism of k-algebras

Φ : R→ A,

by setting
Φ(t) = φ(t) + h(dt) ∈ A0 ⊕ A1 = A0 ⊕ I/I2

for t = x, y, z; this uniquely specifies a k-algebra homomorphism Φ defined on
the polynomial algebra R.

Clearly Φ(I) ⊂ P =
⊕

n>0An, the irrelevant graded ideal, and one verifies
that Φ induces isomorphisms R/I → A/P and I/I2 → P/P 2, and in fact an
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isomorphism between the I-adic completion of R and the P -adic completion of
A.

Since C ⊂ A3
k is a non-singular curve, it is a set-theoretic complete intersection,

from a theorem of Ferrand and Szpiro (see [32], for example). If a, b ∈ I with√
(a, b) = I, then clearly we have

√
(Φ(a),Φ(b)) = P ∩Q, for some (radical) ideal

Q with P + Q = A. We can correspondingly write (Φ(a),Φ(b)) = J ∩ J ′ with√
J = P ,

√
J ′ = Q. Then J/J2 ∼= (A/J)⊕2. This implies (by an old argument

of Serre) that Ext 1
A(J,A) ∼= Ext 2

A(A/J,A) ∼= A/J is free of rank 1, and any
generator determines an extension

0 → A→ V → J → 0

where V is a projective A-module of rank 2, and such that the induced surjection
V ⊗ A/J → J/J2 ∼= (A/J)⊕2 is an isomorphism.

We claim the projective module V is necessarily of the form V = V0⊗A0
A; this

implies V0 = V ⊗AA/P ∼= J/PJ ∼= (A/P )⊕2 is free, so that V is a free A-module,
and J is generated by 2 elements. To prove the claim, note that I/I2 is a direct
summand of a free A/I = A0-module of finite rank; hence there is an affine A-
algebra A′ ∼= A0[x1, . . . , xn], which is a polynomial algebra over A0, such that A
is an algebra retract of A′. Now it suffices to observe that any finitely generated
projective A′-module is of the form M ⊗A0

A′, for some projective A0-module M ;
this is the main result of [13], the solution of the so-called Bass-Quillen Conjecture
(see also [14]).

On the other hand, we claim that it is impossible to find two homogeneous
elements x, y ∈ P with

√
(x, y) = P . Indeed, let X = ProjA, and π : X →

C = SpecA0 be the natural morphism. Then X = P(V ) is the P1-bundle over

C associated to the locally free sheaf V = Ĩ/I2 (the sheaf determined by the
projective A0-module I/I2). Let ξ = c1(OX(1)) ∈ CH1(X) be the 1st Chern class
of the tautological line bundle OX(1). Then by Theorem 1.1(6) above, CH∗(X)
is a free CH∗(C)-module with basis 1, ξ, and ξ satisfies the monic relation

ξ2 − c1(V )ξ + c2(V ) = 0.

Since dimC = 1, CH i(C) = 0 for i > 1, and so this relation reduces to

ξ2 = c1(V )ξ.

From the exact sequence (2.1), we have a relation in CH∗(C)

1 = c(OC)3 = c(O⊕3
C ) = c(ΩA3/k ⊗OC) = c(V ) · c(ωC).

Hence c1(V ) = −c1(ωC), which by the choice of C is a non-torsion element of
CH1(C) (which is the divisor class group of A0). Thus ξ2 ∈ CH2(X) is a non-
torsion element of CH2(X).

If homogeneous elements x, y ∈ P exist, say of degrees r and s respectively,
such that

√
(x, y) = P , then we may regard x, y as determining global sections

of the sheaves OX(r) and OX(s) respectively, which have no common zeroes on
X. Let Dx ⊂ X, Dy ⊂ X be the divisors of zeroes of x ∈ Γ(X,OX(r)) and
y ∈ Γ(X,OX(s)) respectively. Then we have equations in CH1(X)

[Dx] = c1(OX(r)) = rc1(OX(1)) = rξ, [Dy] = c1(OX(s)) = sc1(OX(1)) = sξ.
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But Dx ∩Dy = ∅. Hence in CH2(X), we have a relation

0 = [Dx] · [Dy] = rsξ2,

contradicting that ξ2 ∈ CH2(X) is a non-torsion element.

Remark 2.1. The construction of the homomorphism from the polynomial ring
R to the graded ring A is an algebraic analogue of the exponential map in Rie-
mannian geometry, which identifies a tubular neighbourhood of a smooth sub-
manifold of a Riemannian manifold with the normal bundle of the submanifold
(see [15, Theorem 11.1], for example). The exponential map is usually constructed
using geodesics on the ambient manifold; here we use the global structure of affine
space, where “geodesics” are lines, to make a similar construction algebraically.
This idea appears in a paper[6] of Boratynski, who uses it to argue that a smooth
subvariety of An is a set-theoretic complete intersection if and only if the zero
section of its normal bundle is a set-theoretic complete intersection in the total
space of the normal bundle.

3. Zero cycles on non-singular proper and affine varieties

In this section, we discuss results of Mumford and Roitman, which give criteria
for the non-triviality of CHd(X) where X is a non-singular variety over C of
dimension d ≥ 2, which is either proper, or affine.

If X is non-singular and irreducible, and dimX = d, then Zd(X) is just the
free abelian group on the (closed) points of X. Elements of Zd(X) are called
zero cycles on X (since they are linear combinations of irreducible subvarieties of
dimension 0). In the presentation CHd(X) = Zd(X)/Rd(X), the group Rd(X)
of relations is generated by divisors of rational functions on irreducible curves in
X.

The main non-triviality result for zero cycles is the following result, called the
infinite dimensionality theorem for 0-cycles. It was originally proved (without
⊗Q) by Mumford [17], for surfaces, and extended to higher dimensions by Roit-
man [22]; the statement with ⊗Q follows from [23].

Theorem 3.1. (Mumford, Roitman) Let X be an irreducible, proper, non-
singular variety of dimension d over C. Suppose X supports a non-zero regular
q-form (i.e., Γ(X,Ωq

X/C) 6= 0), for some q > 0. Then for any closed algebraic

subvariety Y ⊂ X with dimY < q, we have CHd(X − Y )⊗Q 6= 0.

Corollary 3.2. Let X be an irreducible, proper, non-singular variety of dimen-
sion d over C, such that Γ(X,ωX) 6= 0. Then for any affine open subset V ⊂ X,
we have CHd(V )⊗Q 6= 0.

The corollary results from the identification of ωX with the sheaf Ωd
X/C of d-

forms.
Bloch [3] gave another proof of the above result, using the action of algebraic

correspondences on the étale cohomology, and generalized the result to arbitrary
characteristics. In [27] and [28], Bloch’s argument (for the case of characteris-
tic 0) is recast in the language of differentials, extending it as well to certain
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singular varieties. One way of stating the infinite dimensionality results of [27]
and [28], in the smooth case, is the following. The statement is technical, but it
will be needed below when discussing M. Nori’s construction of indecomposable
projective modules.

We recall the notion of a k-generic point of an irreducible variety; we do this
in a generality sufficient for our purposes. If X0 is an irreducible k-variety, where
k ⊂ C is a countable algebraically closed subfield, a point x ∈ X = (X0)C

determines an irreducible subvariety Z ⊂ X, called the k-closure of X, which is
the smallest subvariety of X which is defined over k (i.e., of the form (Z0)C for
some subvariety Z0 ⊂ X0) and contains the chosen point x. We call x a k-generic
point if its k-closure is X itself.

In the case X0 (and thus also X) is affine, say X0 = SpecA, and X = SpecAC

with AC = A⊗k C, then a point x ∈ X corresponds to a maximal ideal mx ⊂ AC.
Let ℘x = A ∩ mx, which is a prime ideal of A, not necessarily maximal. Then,
in the earlier notation, ℘x determines an irreducible subvariety Z0 ⊂ X0. The k-
closure Z ⊂ X of x is the subvariety determined by the prime ideal ℘xAC (since k
is algebraically closed, ℘xAC is a prime ideal). In particular, x is a k-generic point
⇐⇒ ℘x = 0. In this case, x determines an inclusion A ↪→ AC/mx = C(x) ∼= C.
This in turn gives an inclusion ix : K ↪→ C of the quotient field K of A (i.e., of
the function field k(X0)) into the complex numbers.

In general, even if X is not affine, if we are given a k-generic point x ∈ X, we
can replace X by any affine open subset defined over k, which will (because x
is k-generic) automatically contain x; one verifies easily that the corresponding
inclusion K ↪→ C does not depend on the choice of this open subset. Thus we
obtain an inclusion ix : K ↪→ C of the function field K = k(X0) into C, associated
to any k-generic point of X.

It is easy to see that the procedure is reversible: any inclusion of k-algebras
i : K ↪→ C determines a unique k-generic point of X. Indeed, choose an affine
open subset SpecA = U0 ⊂ X0, so that K is the quotient field of A. The induced
inclusion A ↪→ C induces a surjection of C-algebras AC → C, whose kernel is a
maximal ideal, giving the desired k-generic point.

Suppose now that X0 is proper over k, and so X is proper over C (e.g., X is
projective). Let dimX0 = dimX = d. Then by the Serre duality theorem, the
sheaf cohomology group Hd(X,OX) is the dual C-vector space to

Γ(X,Ωd
X/C) = Γ(X,ωX) = Γ(X0, ωX0

)⊗k C.

Hence we may identify Hd(X,OX)⊗C Ωd
C/k with

HomC(Γ(X,ωX),Ωd
C/k) = Homk(Γ(X0, ωX0

),Ωd
C/k).

Note that a k-generic point x determines, via the inclusion ix : K ↪→ C, a k-linear
inclusion Ωn

K/k ↪→ Ωn
C/k, and hence, via the obvious inclusion

Γ(X0, ωX0
) = Γ(X0,Ω

n
X0/k

) ↪→ Ωn
K/k,

a canonical element

dix ∈ Homk(Γ(X0, ωX0
),Ωd

C/k) = Hd(X,OX)⊗C Ωd
C/k.
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Theorem 3.3. Let k ⊂ C be a countable algebraically closed subfield, and X0 an
irreducible non-singular proper k-variety of dimension d, with Γ(X0, ωX0

) 6= 0.
Let U0 ⊂ X0 be any Zariski open subset. Let X = (X0)C, U = (U0)C be the
corresponding complex varieties. Then there is a homomorphism of graded rings

CH∗(U) →
⊕

p≥0

Hp(X,OX)⊗C Ωp
C/k,

with the following properties.

(i) If x ∈ U is a point, which is not k-generic, then the image in Hd(X,OX)⊗
Ωd

C/k of [x] ∈ CHd(U) is zero.

(ii) If x ∈ U is a k-generic point, then the image in Hd(X,OX) ⊗ Ωd
C/k of

[x] ∈ CHd(U) is (up to sign) the canonical element dix described above.

As stated earlier, the above more explicit form of the infinite dimensionality
theorem follows from results proved in [27] and [28].

4. Zero cycle obstructions to embedding and immersing affine

varieties

We now consider the following two problems, which turn out to have some
similarities. We will show how, in each case, the problem reduces to finding an
example for which the Chern classes of the cotangent bundle (i.e., the sheaf of
Kähler differentials) have appropriate properties. We will then see, in Exam-
ple 4.4, how to construct examples with these properties. The discussion is based
on the article [4] of Bloch, Murthy and Szpiro.

Problem 4.1. Find examples of n-dimensional, non-singular affine algebras A
over (say) the complex number field C, for each n ≥ 1, such that A cannot be
generated by 2n elements as a C-algebra, or such that the module of Kähler
differentials cannot be generated by 2n− 1 elements da1, . . . , da2n−1 (in contrast,
it is a “classical” result that such an algebra A can always be generated by 2n+1
elements, and its Káhler differentials can always be generated by 2n exact 1-forms;
see, for example, [26]).

Problem 4.2. Find examples of prime ideals I of height < N in a polynomial
ring C[x1, . . . , xN ] such that C[x1, . . . , xN ]/I is regular, but I cannot be generated
by N − 1 elements (a theorem of Mohan Kumar [16] implies that such an ideal I
can always be generated by N elements).

First we discuss Problem 4.1. Suppose A is an affine smooth C-algebra which
is an integral domain of dimension n. Assume X = SpecA can be generated
by 2n elements, i.e., that there is a surjection f : C[x1, . . . , x2n] → A from a
polynomial ring. Let I = ker f . If i : X ↪→ A2n

C is the embedding corresponding

to the surjection f , then the normal bundle to i is the sheaf V ∨, where V = Ĩ/I2.
From the self-intersection formula, and the formula for the Chern class of the

dual of a vector bundle, we see that

(4.1) (−1)ncn(V ) = cn(V
∨) = i∗i∗[X] = 0,
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since CHn(A2n
C ) = 0.

On the other hand, suppose j : X ↪→ Y is any embedding as a closed subvariety
of a non-singular affine variety Y whose cotangent bundle (i.e., sheaf of Kähler
differentials) ΩY/C is a trivial bundle. For example, we could take Y = A2n

C , and
j = i, but below we will consider a different example as well.

Let W be the conormal bundle of X in Y (if Y = SpecB, and J = ker j∗ :

B � A, then W = J̃/J2). We then have an exact sequence of vector bundles on
X

0 →W → j∗ΩY/C → Ω1
X/C → 0.

Since ΩY/C is a trivial vector bundle, we get that

(4.2) c(W ) = c(ΩX/C)−1 ∈ CH∗(X).

Note that this expression for c(W ), and hence the resulting formula for cn(W ) as a
polynomial in the Chern classes of ΩX/C, is in fact independent of the embedding
j. In particular, from (4.1), we see that cn(W ) = 0 for any such embedding
j : X ↪→ Y .

Remark 4.3. In fact, the stability and cancellation theorems of Bass and Suslin
imply that in the above situation, the vector bundle W itself is, up to isomor-
phism, independent of j, and is thus an invariant of the variety X. We call it the
stable normal bundle of X; this is similar to the case of embeddings of smooth
manifolds into Euclidean spaces. We will not need this fact in our computations
below.

Returning to our discussion, we see that to find a C-algebra A with dimA = n,
and which cannot be generated by 2n elements as a C-algebra, it suffices to
produce an embedding j : X ↪→ Y of X = SpecA into a smooth variety Y of
dimension 2n, such that

(i) ΩY/C is a trivial bundle, and
(ii) if W is the conormal bundle of j, then cn(W ) 6= 0; in fact it suffices to

produce such an embedding such that j∗cn(W ) ∈ CH2n(Y ) is non-zero.

We see easily that the same example X = SpecA will have the property that
ΩA/C is not generated by 2n− 1 elements; in fact if P = ker(f : A⊕2n−1

� ΩA/C)

for some surjection f , then P̃ is a vector bundle of rank n− 1, so that cn(P̃ ) = 0,
while on the other hand, the exact sequence

0 → P → A⊕2n−1 f→ ΩA/C → 0

implies that

c(P̃ ) = c(ΩX/C)−1,

so that we would have
0 = cn(P̃ ) = cn(W ) 6= 0,

a contradiction.
Next we discuss the Problem 4.2 of finding an example of a “non-trivial” prime

ideal I ⊂ C[x1, . . . , xN ] in a polynomial ring such that the quotient ring A =
C[x1, . . . , xN ]/I is smooth of dimension > 0, while I cannot be generated by N−1
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elements (by the Eisenbud-Evans conjectures, proved by Sathaye and Mohan
Kumar, I can always be generated by N elements).

Suppose I can be generated by N − 1 elements, and dimA/I = n > 0. Then
I/I2 ⊕Q = A⊕N−1 for some projective A-module Q of rank n− 1; hence

(I/I2 ⊕Q⊕ A) ∼= A⊕N ∼= (I/I2 ⊕ ΩA/C).

Hence we have an equality between total Chern classes

c(ΩX/C) = c(Q̃),

and in particular, cn(ΩX/C) = 0.
So if X = SpecA is such that cn(ΩX/C) ∈ CHn(X) is non-zero, then for any

embedding X ↪→ AN
C , the corresponding prime ideal I cannot be generated by

N − 1 elements.

Example 4.4. We now show how to construct an example of an n-dimensional
affine variety X = SpecA over C, for any n ≥ 1, such that, for some embedding
X ↪→ Y = SpecB with dimY = 2n, and ideal I ⊂ B, the projective module
P = I/I2 has the following properties:

(i) cn(P ) 6= 0 in CHn(X)⊗Q
(ii) if c(P ) ∈ CH∗(X) is the total Chern class, then c(P )−1 has a non-torsion

component in CHn(X)⊗Q.

Then, by the discussion earlier, the affine ring A will have the properties that

(a) A cannot be generated by 2n elements as a C-algebra
(b) ΩA/C is not generated by 2n− 1 elements
(c) for any way of writing A = C[x1, . . . , xN ]/J as a quotient of a polynomial

ring (with n necessarily at least 2n+1), the ideal J requires N generators
(use the formula (4.2)).

The technique is that given in [4]. Let E be an elliptic curve (i.e., a non-
singular, projective plane cubic curve over C), for example,

E = Proj C[x, y, z]/(x3 + y3 + z3).

Let E2n = E× · · ·×E, the product of 2n copies of E. Let Y = SpecB ⊂ E2n be
any affine open subset. By the Mumford-Roitman infinite dimensionality theorem
(Theorem 3.1 above), CH2n(Y )⊗Q 6= 0. Also, since Y ⊂ E2n, clearly the 2n-fold
intersection product

CH1(Y )⊗2n → CH2n(Y )

is surjective. Hence we can find an element α ∈ CH1(Y ) with α2n 6= 0 in
CH2n(Y ) ⊗ Q. Let P be the projective B-module of rank 1 corresponding to
α. Since Y is affine, by Bertini’s theorem, we can find elements a1, . . . , an ∈ P
such that the corresponding divisors Hi = {ai = 0} ⊂ Y are non-singular, and
intersect transversally; take X = H1∩· · ·∩Hn. Then X = SpecA is non-singular
of dimension n, and the ideal I ⊂ B of X ⊂ Y is such that I/I2 ∼= (P ⊗B A)⊕n.
Thus, if j : X ↪→ Y is the inclusion, then we have a formula between total Chern
classes

c(I/I2) = j∗c(P )n = (1 + j∗c1(P ))n = (1 + j∗α)n.
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Hence
cn(I/I

2) = j∗(α)n,

and so by the projection formula,

j∗cn(I/I
2) = j∗(1)αn = α2n,

since
j∗(1) = [X] = [H1] · [H2] · · · · · · · [Hn] = αn ∈ CHn(Y ),

as X is the complete intersection of divisors Hi, each corresponding to the class
α ∈ CH1(Y ). By construction, j∗cn(I/I

2) 6= 0 in CH2n(Y )⊗Q, and so we have
that cn(I/I

2) 6= 0 in CHn(X)⊗Q, as desired.
Similarly

c(I/I2)−1 = (1 + j∗α)−n

has a non-zero component of degree n, which is a non-zero integral multiple of
j∗αn.

Remark 4.5. The existence of n-dimensional non-singular affine varieties X
which do not admit closed embeddings into affine 2n-space is in contrast to the
situation of differentiable manifolds — the “hard embedding theorem” of Whitney
states that any smooth n-manifold has a smooth embedding in the Euclidean
space R2n.

5. Indecomposable projective modules, using 0-cycles

Now we discuss M. Nori’s (unpublished) construction of indecomposable pro-
jective modules of rank d over any affine C-algebra AC of dimension d, such that
U = SpecAC is an open subset of a non-singular projective (or proper) C-variety
X with H0(X,ωX) = H0(X,Ωd

X/C) 6= 0.
The idea is as follows. Fix a countable, algebraically closed subfield k ⊂ C

such that X and U are defined over k; in particular, we are given an affine
k-subalgebra A ⊂ AC such that AC = A ⊗k C. We also have a k-variety X0

containing U0 = SpecA as an affine open subset, such that X = (X0)C.
Let Kn be the function field of Xn

0 = X0 ×k · · · ×k X0 (equivalently, Kn is
the quotient field of A⊗n = A ⊗k · · · ⊗k A). We have n induced embeddings
ϕi : K ↪→ Kn, where K = K1 is the quotient field of A, given by ϕi(a) =
1⊗ · · · ⊗ 1⊗ a⊗ 1⊗ · · · ⊗ 1 with a in the i-th position.

Choose an embedding Kn ↪→ C as a k-subalgebra. The inclusions ϕi then
determine n inclusions K ↪→ C, or equivalently, k-generic points x1, . . . , xn ∈ X
(in algebraic geometry, these are called “n independent generic points of X”).
Let mi be the maximal ideal of AC determined by xi, and let I = ∩ni=1mi. Clearly
I is a local complete intersection ideal of height d in the d-dimensional regular
ring AC. Thus we can find a projective resolution of I

0 → P → Fd−1 → · · · → F1 → I → 0,

where Fi are free. By construction, c(P ) = c(A/I)(−1)d

. By theorem 1.3, we have

c(A/I) = 1 + (−1)d−1(d− 1)!(
n∑

i=1

[xi]) ∈ CH∗(U).
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Hence ci(P ) = 0 for i < d, while cd(P ) is a non-zero integral multiple of the
class

∑
i[xi] ∈ CHd(U). This class is non-zero, from theorem 3.3 (we will get a

stronger conclusion below). Hence rankP ≥ d.
By Bass’ stability theorem, if rankP = d+r, we may write P = Q⊕A⊕r, where

Q is projective of rank d. Then P and Q have the same Chern classes. So we can
find a projective module Q of rank d with c(Q) = 1 +m(

∑
i[xi]) ∈ CH∗(U), for

some non-zero integer m.
Suppose Q = Q1 ⊕ Q2 with rankQ1 = p, rankQ2 = d − p, and 1 ≤ p ≤ d.

Then in CH∗(U)⊗Q, the class
∑

i[xi] is expressible as
∑

i

[xi] = α · β, α ∈ CHp(U)⊗Q, β ∈ CHd−p(U)⊗Q.

Using the homomorphism of graded rings of Theorem 3.3,

CH∗(U)⊗Q →
⊕

j≥0

Hj(X,OX)⊗C Ωj
C/k,

we see that the element

ξ =

n∑

i=1

dixi
∈ Hd(X,OX)⊗ Ωd

C/k

is expressible as a product

ξ =
n∑

i=1

dixi
= α · β, α ∈ Hp(X,OX)⊗C Ωp

C/k, β ∈ Hd−p(X,OX)⊗C Ωd−p
C/k .

Let L be the algebraic closure of Kn in C. The graded ring

d⊕

j=0

Hj(X,OX)⊗C Ωj
C/k =

d⊕

j=0

Hj(X0,OX0
)⊗k Ωj

C/k

has a graded subring
d⊕

j=0

Hj(X0,OX0
)⊗k Ωj

L/k

which contains the above element ξ. We claim that ξ is then expressible as
a product α · β of homogeneous elements of degrees p, d − p with α, β lying
in this subring. Indeed, since C is the direct limit of its subrings B which are
finitely generated L-subalgebras, we can find such a subring B, and homogeneous

elements α̃, β̃ of degrees p, d−p in
⊕d

j=0H
j(X0,OX0

)⊗kΩ
j
B/k such that ξ = α̃ · β̃.

Choosing a maximal ideal in B, we can find an L-algebra homomorphism B � L,
giving rise to a graded ring homomorphism

f :
d⊕

j=0

Hj(X0,OX0
)⊗k Ωj

B/k →
d⊕

j=0

Hj(X0,OX0
)⊗k Ωj

L/k.

Then ξ = f(α̃) · f(β̃) holds in
⊕d

j=0H
j(X0,OX0

)⊗k Ωj
L/k itself.
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Now

Ω1
L/k = Ω1

Kn/k ⊗Kn
L =

n⊕

j=1

Ω1
K/k ⊗K L,

where the j-th summand corresponds to the j-th inclusion K ↪→ Kn. We may
write this as

Ω1
L/k = Ω1

K/k ⊗K W,

where W ∼= L⊕n is an n-dimensional L-vector space with a distinguished basis.
Then there are natural surjections

Ωr
L/k =

r∧

L

(Ω1
K/k ⊗K W ) � Ωr

K/k ⊗K Sr(W ),

where Sr(W ) is the r-th symmetric power of W as an L-vector space. In par-
ticular, since Ωd

K/k is 1-dimensional over K, we get a surjection Ωd
L/k � Sd(W ).

This determines the component of degree d of a graded ring homomorphism

Φ :

d⊕

j=0

Hj(X0,OX0
)⊗k Ωj

L/k →
d⊕

j=0

Hj(X0,OX0
)⊗k Ωj

K/k ⊗K Sj(W ).

As in the discussion preceeding Theorem 3.3, by Serre duality on X0, the
natural inclusion H0(X0,Ω

d
X0/k

) ↪→ Ωd
K/k determines a canonical element θ ∈

Hd(X0,OX0
)⊗k Ωd

K/k. Identifying the symmetric algebra S
•

(W ) = S
•

(L⊕n) with

the polynomial algebra L[t1, . . . , tn], we have that Φ(ξ) = θ ·(td1 + · · ·+tdn). Hence,
in the graded ring

d⊕

j=0

Hj(X0,OX0
)⊗k Ωj

K/k ⊗K Sj(W ),

the element θ · (td1 + · · ·+ tdn) is expressible as a product of homogeneous elements
α, β of degrees p and d− p. Hence, by expressing

α ∈ Hp(X0,OX0
)⊗k Ωp

K/k ⊗K S
p(W ), β ∈ Hd−p(X0,OX0

)⊗k Ωd−p
K/k ⊗K S

d−p(W )

in terms of K-bases of Hp(X0,OX0
) ⊗k Ωp

K/k and Hd−p(X0,OX0
) ⊗k Ωd−p

K/k, we

deduce that in the polynomial ring S•(W ) = L[t1, . . . , tn], the “Fermat polyno-
mial” td1 + · · ·+ tdn is expressible as a sum of pairwise products of homogeneous
polynomials

td1 + · · ·+ tdn =

N∑

m=1

am(t1, . . . , tn)bm(t1, . . . , tn)

with

N =

(
d

p

)(
d

d− p

)
(dimkH

p(X0,OX0
))(dimkH

d−p(X0,OX0
)).

If n > 2N , the system of homogeneous polynomial equations a1 = b1 = · · · =
aN = bN = 0 defines a non-empty subset of the projective variety td1 + · · ·+ tdn = 0
in Pn−1

L , along which this Fermat hypersurface is clearly singular — and this is a
contradiction!
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6. Stably trivial vector bundles on affine varieties, using cycles

In this section, we give a construction of stably trivial non-trivial vector bundles
on affine varieties, following an argument of Mohan Kumar and Nori. Here,
instead of topology, the properties of Chow rings and Chern classes provide the
invariants to prove non-triviality of the vector bundles; thus the arguments are
valid over any base field.

Theorem 6.1. Let k be a field, and let

A =
k[x1, . . . , xn, y1, . . . , yn]

(x1y1 + · · ·+ xnyn − 1)
.

Let m = (m1, . . . , mn) be an n-tuple of positive integers, and set

P (m) = ker
(
ψ(m) : A⊕n → A

)
,

(a1, . . . , an) 7→ a1x
m1

1 + · · ·+ anx
mn

n .

Then P (m) is a stably free projective A-module of rank n− 1. If
∏n

i=1mi is not
divisible by (n− 1)!, then P (m) is not free.

Note that in particular, if all the mi are 1, and n ≥ 3, the corresponding
projective module is not free.

Conversely, a theorem of Suslin [31] implies that, if
∏n

i=1mi is divible by (n−1)!,
then P is free, since we can find an invertible n × n matrix over A whose first
row has entries xm1

1 , . . . , xmn
n .

The theorem above is proved by relating the freeness of P (m) to another prop-
erty. Let

R =
k[z, x1, . . . , xn, y1, . . . , yn]

(z(1− z)− x1y1 − · · · − xnyn)
,

and consider the ideals

I = (x1, . . . , xn, z) ⊂ R, I ′ = (x1, . . . , xn, 1− z).

Note that I, I ′ are prime ideals in R, and I + I ′ = R (i.e. the corresponding
subvarieties of SpecR are disjoint); further, I ∩ I ′ = II ′ = (x1, . . . , xn) is a
complete intersection.

Consider the ideal (xm1

1 , . . . , xmn
n ) ⊂ R. Clearly its radical is the complete

intersection (x1, . . . , xn) = II ′. Hence we may uniquely write

(xm1

1 , . . . , xmn

n ) = J(m) ∩ J ′(m)

where J(m), J ′(m) have radicals I, I ′ respectively. In fact J(m), J ′(m) are the
contractions to R of the complete intersection (xm1

1 , . . . , xmn
n ) from the overrings

R[ 1
1−z

], R[1
z
] respectively.

Lemma 6.2. Let X = SpecR, and W (m) ⊂ X the subscheme with ideal J(m).
If P (m) is a free A-module, then there exists a vector bundle V on X of rank n
and a section, whose zero scheme on X is W (m).
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Proof. We write J , J ′ instead of J(m), J ′(m) to simplify notation. Consider the
surjection

α : R⊕n → J ∩ J ′ = (xm1

1 , . . . , xmn

n ).

If we localize to R[ 1
z(1−z)

], we obtain a surjection

α̃ : R⊕nz(1−z) → Rz(1−z),

whose kernel Q is a stably free projective Rz(1−z)-module, fitting into a split exact
sequence of projective modules

0 → Q→ R⊕nz(1−z)
α̃→ Rz(1−z) → 0.

It is easy to see that the projective module Q is free if and only if there is some
ϕ ∈ GLn(Rz(1−z)) so that α̃ ◦ ϕ is projection onto the first coordinate.

If this is the case, the surjection

R[
1

1− z
]⊕n → JJ ′[

1

1− z
] = J [

1

1− z
]

clearly “patches” over SpecRz(1−z) with the “trivial” surjection

R[
1

z
]⊕n → R[

1

z
] = J [

1

z
]

given by projection on the first coordinate, to yield a projective R-module P̃ of
rank n, with a surjection

P̃ → J.

We then take V to be the vector bundle on X associated to the dual projective

module P̃∨, and the section of V to be dual to the map P̃ → J .
Finally, we observe that there is a homomorphism A→ R[ 1

z(1−z)
] given by

xi 7→ xi,

yi 7→
yi

z(1− z)
,

which gives an identification

Q ∼= P (m)⊗A Rz(1−z).

Hence if P (m) is free, so is the projective Rz(1−z)-module Q, and we can thus
construct V as above. �

Lemma 6.3. CH i(X) = 0 for 1 ≤ i ≤ n− 1, and CHn(X) ∼= Z is generated by
the class of W , the irreducible subvariety defined by the ideal I.

Proof. Consider the smooth 2n-dimensional projective quadric hypersurface X in
P2n+1
k given by the equation

n∑

i=1

XiYi = Z0(Z1 − Z0).

We may identify X = SpecR with the affine open subset of X obtained by setting
Z1 = 1 in the above homogeneoues polynomial equation. Hence the complement
of X is the smooth hyperplane section Z1 = 0. From the known structure of the
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Chow ring of a smooth “split” quadric hypersurface in any dimension, we know
that

(i) CH i(X) is spanned by the complete intersection with any projective linear
subspace of codimension i, for any i < n, while

(ii) CHn(X) is free abelian of rank 2, spanned by the classes of 2 linear (pro-
jective) subvarieties, which are the irreducible components of a suitable
complete intersection with a projective linear subspace.

For i < n, we may choose a complete intersection generator of CH i(X) as in (i)
to be contained in the linear subspace intersection X ∩{Z1 = 0}. From the exact
localization sequence

CH i−1(X ∩ {Z1 = 0}) → CH i(X) → CH i(X) → 0

it follows that CH i(X) = 0 for 1 ≤ i ≤ n− 1. Also, one sees easily that if W ′ is
the subscheme defined by I ′, then the closures of W , W ′ in X are generators for
CHn(X) = Z⊕2 as in (ii), and W +W ′ is rationally equivalent to 0 on X, so that
CHn(X) is generated by the class of W . Finally, CHn−1(X ∩ {Z1 = 0}) = Z, so
CHn(X) must have rank 1, again from the above exact localization sequence of
Chow groups. �

Thus, from Theorem 1.3 we must also have F 1K0(X) = F nK0(X) where
F iK0(X) is the subgroup generated by the classes of modules supported in codi-
mension ≥ i; also, F nK0(X)/F n+1K0(X) is generated by the class of OW .

The vector bundle V constructed in lemma 6.2 above thus has the following
properties:

(i) cn(V ) = [W (m)] = (
∏n

i=1mi)[W ] in CHn(X).
(ii) [V ] − [O⊕n

X ] ∈ F 1K0(X) = F nK0(X), so that for some r ∈ Z, we must
have

[V ]− [O⊕n
X ] = r[OW ] (mod F n+1K0(X)),

which yields
cn(V ) = rcn([OW ]) ∈ CHn(X)

(iii) from the Riemann-Roch theorem without denominators,

cn(OW ) = (−1)n−1(n− 1)![W ] ∈ CHn(X) = Z · [W ].

Hence we must have
n∏

i=1

mi = r(−1)n−1(n− 1)!,

which proves Theorem 6.1.

7. 0-cycles and the complete intersection property for affine

varieties

Let A be a finitely generated reduced algebra over a field k, which we assume
to be algebraically closed, for simplicity. Let d = dimA. A point x ∈ X = SpecA
is called a complete intersection point if the corresponding maximal ideal M ⊂ A
has height d, and is generated by d elements of A. Any such point is necessarily
a smooth point (of codimension d) in X (we will take points of codimension < d
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to be singular, by definition, in this context). We will refer to the corresponding
maximal ideals as smooth maximal ideals.

In this section, we want to discuss the following problem:

Problem 7.1. Characterize reduced affine k-varieties X such that all smooth
points are complete intersections.

It is easy to show, using the theory of the Jacobian (suitably generalized in the
singular case), that for d = dimX = 1, we have a complete answer, as follows.
Any such curve X can be written as X = X \ S where X is a reduced projective
curve over k, and S a finite set of non-singular points of X, in a unique way.
Then: all smooth points of X are complete intersections ⇔ H1(X,OX) = 0.

So the interesting case of the problem is in dimensions d > 1. There are several
conjectures and results related to this problem. We first state a general “positive”
result.

Theorem 7.2. Let k = Fp be the algebraic closure of the finite field Fp. Then
for any reduced finitely generated k-algebra A of dimension d > 1, every smooth
maximal ideal is a complete intersection.

In the case when dimA ≥ 3, or A is smooth of dimension 2, this is a result
essentially due to M. P. Murthy. The higher dimensional case is reduced to the
2-dimensional case by showing that any smooth point of V = SpecA lies on a
smooth affine surface W ⊂ V such that the ideal of W in A is generated by d− 2
elements (i.e., W is a complete intersection surface in V ). This argument (see
[20] for details) depends on the fact that we are dealing here with affine algebraic
varieties.

The case of an arbitrary 2-dimensional algebra is a corollary of results of Amal-
endu Krishna and mine [1]; the details are worked out in [2]. I will make a few
remarks about this later in this paper.

Next, we state two conjectures, which are “affine versions” of famous conjec-
tures on 0-cycles.

Conjecture 7.3. (Affine Bloch Conjecture). Let k = C, the complex numbers.
Let V = SpecA be a non-singular affine C-variety of dimension d > 1, and let
X ⊃ V be a smooth proper (or projective) C-variety containing V as a dense
open subset. Then:
all maximal ideals of A are complete intersections
⇔ X does not support any global regular (or holomorphic) differential d-forms
⇔ Hd(X,OX) = 0.

Here, OX is the sheaf of algebraic regular functions on X. The non-existence of
d-forms is equivalent to the cohomology vanishing condition, by Serre duality; the
open question is the equivalence of either of these properties with the complete
intersection property for maximal ideals.

This conjecture has been verified in several “non-trivial” examples (for example,
if V = SpecA is a “small enough” Zariski open subset of the Kummer variety of
an odd (> 1) dimensional abelian variety over C, all smooth maximal ideals of A
are complete intersections).
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One consequence of the conjecture is that, for smooth affine C-varieties, the
property that all maximal ideals are complete intersections is a birational invariant
(that is, it depends only on the quotient field of A, as a C-algebra). This birational
invariance can be proved to hold in dimension 2, using a result of Roitman; in
dimensions ≥ 3, it is unknown in general.

Conjecture 7.4. (Affine Bloch-Beilinson Conjecture) Let k = Q be the field of
algebraic numbers (algebraic closure of the field of rational numbers). Then for
any finitely generated smooth k-algebra of dimension d > 1, every maximal ideal
is a complete intersection.

This very deep conjecture has not yet been verified in any “nontrivial” example
(i.e., one where there do exist smooth maximal ideals of A ⊗Q C which are not
complete intersections).

However, it is part of a more extensive set of interrelated conjectures relatingK-
groups of motives over algebraic number fields and special values of L-functions,
and there are nontrivial examples where some other parts of this system of conjec-
tures can be verified. This is viewed as indirect evidence for the above conjecture.

I will now relate these “affine” conjectures to the more standard forms of these,
in terms of algebraic cycles and K-theory. The first step is a fundamental result of
Murthy, giving a K-theoretic interpretation of the complete intersection property.

Recall that K0(A) denotes the Grothendieck group of finitely generated pro-
jective A-modules. It coincides with the Grothendieck group of finitely generated
A-modules of finite projective dimension: recall that M has finite projective di-
mension if there exists a finite projective resolution of M , i.e., an exact sequence

0 → Pr → Pr−1 → · · · → P0 →M → 0

where the Pi are finitely generated projective A-modules. Then such a module M
has a well-defined class [M ] ∈ K0(A), obtained by choosing any such resolution,
and defining

[M ] =

r∑

i=0

(−1)i[Pi] ∈ K0(A).

Recall also that a maximal ideal M has finite projective dimension precisely when
the local ring AM is a regular local ring.

Theorem 7.5. (M. P. Murthy) Let A be a reduced finitely generated algebra over
an algebraically closed field, of dimension d. Assume F dK0(A) has no torsion of
exponent (d−1)!. Then a smooth maximal ideal M of A is a complete intersection
⇔ [M] = [A] in K0(A).

The main point in the proof of Murthy’s theorem is to show that any smooth
maximal ideal M is a quotient of a projective A-module P of rank d, satisfying
the addiitonal condition that [P ]− [A⊕d] ∈ F dK0(A). Then [M] = [A] in K0(A)
implies that the above projective module P has cd(P ) = 0, so that P is in fact
stably trivial, from Riemann-Roch (Theorem 1.3), since we assumed F dK0(A)
has no (d−1)!-torsion. Now Suslin’s cancellation theorme for projective modules
implies that P is a free module, so that M is a complete intersection.
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Let A be a reduced, finitely generated algebra, of Krull dimension d, over an
algebraically closed field k. We can associate to it the group

F dK0(A) = subgroup of K0(A) generated by

[A]− [M] for all smooth maximal ideals M.

If V = SpecA, then F dK0(A) is a quotient of the free abelian group on smooth
points of V , modulo a suitable equivalence relation. When V is nonsingular,
one can identify this equivalence relation with rational equivalence, up to torsion,
using the “Riemann-Roch Theorem without denominators”, using the d-th Chern
class map.

This also suggests a good definition of rational equivalence for 0-cycles for
singular V ; this was given by Levine and Weibel [11], and Levine (unpublished)
has defined a suitable d-th Chern class, for which the Riemann-Roch without
denominators is valid.

Now assume V = SpecA is an affine open subset of a nonsingular projective
k-variety X of dimension d. Clearly

CHd(V ) =
CHd(X)

subgroup generated by points of X \ V .

We saw earlier that Roitman’s Theorem on torsion 0-cycles (extended by Milne
to arbitrary characteristic) gives a description of the torsion in CHd(X). Using
this, it can be shown that CHd(V ) is a torsion free, divisible abelian group (i.e.,
a vector space over Q). In particular, we see that the map ψd : CHd(V ) →
F dK0(V ) is an isomorphism.

Thus, by Murthy’s theorem, for nonsingular A, all maximal ideals of A are
complete intersections ⇔ CHd(X) is generated by points of X \ V .

We now restate the Bloch and Bloch-Beilinson Conjectures in something re-
sembling their “original” forms.

Conjecture 7.6. (Bloch Conjecture) Let X be a projective smooth variety over
C. Suppose that, for some integer r > 0, X has no nonzero regular (or holomor-
phic) s-forms for any s > r. Then for any “sufficiently large” subvariety Z ⊂ X
of dimension r, we have CHd(X \ Z) = 0.

For a smooth projective complex surface X, this conjecture states that if X has
no holomorphic 2-forms, then CH2(X \C) = 0 for some curve C in X. This has
been verified in several situations, for example, for surfaces of Kodaira dimension
≤ 1 (Bloch, Kas, Lieberman), for general Godeaux surfaces (Voisin), and in some
other cases.

In higher dimensions, Roitman proved it for complete intersections in projective
space, and there are a few other isolated examples, like the Kummer variety
associated to an odd dimensional abelian variety (see [5]).

Conjecture 7.7. (Bloch-Beilinson Conjecture) Let X be a smooth projective va-
riety of dimension d over Q. Then CHd(X) is “finite dimensional”; in particular,
there is a curve C ⊂ X so that CHd(X \ C) = 0.
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As remarked earlier, there is only indirect evidence for this conjecture: it has
not been verified for any smooth projective surface over Q which supports a non-
zero 2-form (e.g., any hypersurface in projective 3-space of degree ≥ 4).

To exhibit one such nontrivial example is already an interesting open question.
From the algebraic viewpoint, it seems restrictive to work only with smooth

varieties. In any case, it is unknown in characteristic p > 0 that a smooth
affine variety V can be realized as an open subset of a smooth proper variety
X (in characteristic 0, this follows from Hironaka’s theorem on resolution of
singularities).

Inspite of this, it is possible to make a systematic study of the singular case,
and to try to extend the above conjectures, using the Levine-Weibel Chow group
of 0-cycles; see [28] for further discussion.

For our purposes, let me focus on one very special situation. Let

Z ⊂ PNk

be a non-singular projective algebraic k-variety, and

A = ⊕n≥0An
= homogeneous coordinate ring of Z.

The affine variety V = SpecA is the affine cone over Z with vertex corre-
sponding to the unique graded maximal ideal M = ⊕n>0An, and the vertex is
the unique singular point of V .

The projective cone C(Z) over Z with the same vertex naturally contains V as
an open subset, whose complement is a divisor isomorphic to Z, and the vertex
is again the only singular point of C(Z).

The following theorem is obtained using results from my paper with Amalendu
Krishna [1], in the 2-dimensional case, and a preprint of Krishna’s in the higher
dimensional case; see [2] for more details.

Theorem 7.8. (i) Let k = Q. Then every smooth maximal ideal of A is a
complete intersection.
(ii) Let k = C. Then every smooth maximal ideal of A is a complete intersection
⇒ Hd−1(Z,OZ(1)) = 0 (⇔ Hd(C(Z),OC(Z)) = 0). If V is Cohen-Macaulay
of dimension ≤ 3, then the converse holds: if Hd−1(Z,OZ(1)) = 0, then every
smooth maximal ideal of A is a complete intersection.

Here, (i) is analogous to the Bloch-Beilinson Conjecture, while (ii) is analogous
to the Bloch Conjecture.

Here are two examples, which shed some light on the content of the above
theorems.

Example 7.9. (Amalendu Krishna + V. S.)

A =
Q[x, y, z]

(x4 + y4 + z4)
.

The following properties hold.
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(i) All smooth maximal ideals of A are complete intersections.
(ii) “Most” smooth maximal ideals of A⊗Q C are not complete intersections.
(iii) The complete intersection smooth points on VC are those lying on rulings

of the cone over Q-rational points of the Fermat Quartic curve.

This is a consequence of Theorem 7.8.

Example 7.10.

A =
Q[x, y, z]

(xyz(1− x− y − z))
.

Again, all smooth maximal ideals of A are complete intersections, while “most”
smooth maximal ideals of A⊗Q C are not complete intersections.

In fact, there is an identification

F 2K0(A⊗Q k) = K2(k),

where K2 denotes the Milnor K2 functor.
Now one has the result of Garland (vastly generalized by Borel) that K2(Q) =

0, while K2(C) is “very large”.

8. 0-cycles on normal surfaces

Here, we give some idea of the proof of Theorem 7.8, for the case of surfaces.
Let X be a normal, quasiprojective surface over a field k. Then CH2(X)

is identified with F 2K0(X), which in turn is identified with the subgroup of
the Grothendieck group K0(X) of vector bundles consisting of elements (virtual
bundles) of trivial rank and determinant.

Let π : Y → X be a resolution of singularities, and let E be the exceptional
set, with reduced structure. Let nE denote the subscheme of Y with ideal sheaf
OY (−nE); this is in fact an effective Cartier divisor. One can define relative
algebraic K-groups Ki(Y, nE) for any n ≥ 0, along the following lines.

The algebraic K-groups of a scheme T are defined (by Quillen) by

Ki(T ) = πi+1(K(T )),

where K(T ) is a certain connected CW complex associated to the category of
vector bundles on T , and πn denotes the n-th homotopy group. Quillen shows
that K0(T ) defined in this way coincides with the usual Grothendieck group, and
if T = SpecA is affine, then K1(T ), K2(T ) coincide with the groups K1(A) of
Bass, and K2(A) of Milnor, respectively. For an introduction to these ideas, see
[30].

Given a morphism f : S → T of schemes, there is an induced continuous map
f ∗ : K(T ) → K(S), and hence induced homomorphisms Ki(T ) → Ki(S), for all
i. Let K(f) denote the homotopy fibre of the continuous map f ∗ : K(T ) → K(S).
Then there is an associated long exact sequence of homotopy groups

· · · → πi+1(K(S)) → πi(K(f)) → πi(K(T )) → πi(K(S)) → · · ·
If we define Ki(f) = πi+1(K(f)), this exact sequence may be rewritten as

· · · → Ki+1(S) → Ki(f) → Ki(T ) → Ki(S) → · · ·
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In particular, if T is a scheme, and f : S → T is the inclusion of a closed
subscheme, we write Ki(T, S) instead of Ki(f), and call it the i-th relative K
group of the pair (T, S). We also write K(T, S) to mean K(f), in this situation,
so that Ki(T, S) = πi+1(K(T, S)).

The relative K-groups have certain functoriality properties. In particular, if S
is the singular locus (with reduced scheme structure) of our normal surface X,
and nS is the subscheme of X defined by the n-th power of the ideal sheaf of S,
then there is a commutative diagram of schemes and morphisms

nE → Y
π |nE↓ ↓ π

nS → X

which gives rise to a commutative diagram of relative K-groups

→ K1(Y ) → K1(nE) → K0(Y, nE) → K0(Y ) → K0(nE)
↑ ↑ ↑ ↑ ↑

→ K1(X) → K1(nS) → K0(X, nS) → K0(X) → K0(nS)

Another functoriality property of relative K-groups implies the following. Let
(T, S) be a pair consisting of a scheme and a closed subscheme, and i : T ′ ↪→ T
another closed subscheme such that (a) T ′∩S = ∅, and (b) all vector bundles on T ′

have finite OT -homological dimension (e.g., T \S is a Noetherian regular scheme).
There is a well-defined homotopy class of maps i∗ : K(T ′) → K(T ), together with
a lifting K(T ′) → K(T, S), which is again well-defined up to homotopy. Thus the
natural “Gysin” maps Ki(T

′) → Ki(T ) lift to maps Ki(T
′) → Ki(T, S).

In our context, in particular, any point x ∈ X \ S = Y \ E defines homo-
morphisms K0(k(x)) → K0(X, nS) and K0(x) → K0(Y, nE), giving a com-
mutative triangle. Identifying K0(k(x)) = Z, we see that any point in X \ S
has a class in K0(X, nS) as well as in K0(Y, nE), compatibly with the map
π∗ : K0(X, nS) → K0(Y, nE). Define

F 2K0(Y, nE) ⊂ K0(Y, nE), F 2K0(X, nS) ⊂ K0(X, nS)

to be the subgroups generated by the classes of points of X \ S. We then have a
commutative square

F 2K0(Y, nE) → F 2K0(Y )
↑ ↑

F 2K0(X, nS) → F 2K0(X)

In fact, it is easy to see that all the four maps in this square are surjective. Indeed,
this is clear for the maps with domain F 2K0(X, nS), since both the target groups
are also generated by points of X \ S, by definition. This same set of points also
generates F 2K0(Y ), from an easy moving lemma, since the class group of any
curve is generated by the classes of points in any nonempty Zariski open subset.

For any scheme T , one has a decomposition

K1(T ) = Γ(T,O∗
T )⊕ SK1(T ),

which is functorial for arbitrary morphisms. For affine T , this is defined using the
determinant. In fact for any T there is a functorial morphism T → Spec Γ(T,OT ),
inducing a map on K1(Γ(T,OT )) → K1(T ), as well as a map K1(T ) → Γ(T,O∗

T ),
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where we identify the sheaf of units O∗
T with the sheaf (for the Zariski topology)

associated to the presheaf V 7→ K1(V ).
Next, one sees that

ker
(
F 2K0(Y, nE) → F 2K0(Y )

)
⊂ imageSK1(nE),

and similarly

ker
(
F 2K0(X, nS) → F 2K0(X)

)
⊂ imageSK1(nS).

This follows easily from the fact that any invertible function on the complement
of a finite subset of X extends to one on all of X, and similarly for Y . However,
SK1(nS) = 0 since nS is a 0-dimensional affine scheme. Hence we see that
F 2K0(X, nS) = F 2K0(X). Thus we obtain an induced surjective map

CH2(X) = F 2K0(X) → F 2K0(Y, n),

for each n, compatible with the natural restriction maps

F 2K0(Y, nE) → F 2K0(Y, (n− 1)E)) → F 2K0(Y ).

The following theorem, which is the main new ingredient in the proof of the-
orem 7.8, proves a conjecture of Bloch and myself, first stated in my Chicago
thesis (1982) (see also [24], page 6).

Theorem 8.1. Let π : Y → X be a resolution of singularities of a normal, quasi-
projective surface, and let E be the exceptional locus, with its reduced structure.
Then for all large n > 0, the maps

F 2K0(X) → F 2K0(Y, nE), F 2K0(Y, nE) → F 2K0(Y, (n− 1)E)

are isomorphisms.

The proof of this theorem is in two steps, and is motivated by a paper [34] of
Weibel, which studied negative K-groups of surfaces, and proved two old conjec-
tures of mine from the paper [25].

First, one shows that the resolution π : Y → X can be factorized as a compo-
sition of two maps f : Y → Z, g : Z → X, where g : Z → X is the blow up of a
local complete intersection subscheme supported on S (the singular locus of X),
and f : Y → Z is the normalization map.

Next, one has that the maps on algebraic k-groups g∗ : Ki(X) → Ki(Z)
are split inclusions for all i ≥ 0, since g is a proper, birational morphism of
finite Tor dimension: indeed, these conditions imply that there is a well-defined
push-forward map g∗ : Ki(Z) → Ki(X), satisfying the projection formula, which
implies that g∗ ◦ g∗ equals multiplictation by the class of g∗[OZ ] ∈ K0(X). But
this element of the ring K0(X) is invertible, since on an open dense subset U of
X, it restricts to the unit element of K0(U); now one remarks that kerK0(X) →
K0(U)) is a nilpotent ideal.

In particular, we see that F 2K0(X) → F 2K0(Z) is an isomorphism. Hence, for
any closed subscheme T supported in g−1(S), we see that the two maps

F 2K0(X) → F 2K0(Z, T ), F 2K0(Z, T ) → F 2K0(Z)
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are isomorphism as well (since both are surjective, and their composition is an
isomorphism. We also get that if T ⊂ T ′ ⊂ Z are two such subschemes of Z,
then F 2K0(Z, T

′) → F 2K0(Z, T ) is an isomorphism.
Next, one applies a suitable Mayer-Vietoris technique to study the relation

between K-groups of Z and its normalization Y . Let T be a conductor subscheme

for f : Y → Z, and let T̃ be the corresponding subscheme of Y . There are natural
maps Ki(Z, T ) → Ki(Y, T̃ ), inducing in particular a surjection

F 2K0(Z, T ) → F 2K0(Y, T̃ ).

Now, using a fundamental localization theorem of Thomason-Trobaugh [33], it is
shown in [21] (Cor. A.6) that there is an exact sequence

H1(T̃ , I/I2 ⊗ ΩT̃ /T ) → K0(Z, T ) → K0(Y, T̃ ),

which is functorial in T . Here I is the ideal sheaf of T̃ on Y (whose direct image

on Z equals the ideal sheaf of T ). Let 2T̃ be the subscheme of Z defined by the
ideal sheaf I2, and let 2T denote the subscheme of Z defined similarly. There is
then a commutative diagram with exact rows

H1(I2/I4 ⊗ Ω2T̃ /2T ) → K0(Z, 2T ) → K0(Y, 2T̃ )

↓ ↓ ↓
H1(I/I2 ⊗ ΩT̃ /T ) → K0(Z, T ) → K0(Y, 2T̃ )

But the left hand vertical arrow is 0, since the sheaf map I2/I4 → I/I2 is 0!
Hence

ker
(
F 2K0(Z, 2T ) → F 2K0(Y, 2T̃ )

)
⊂ ker

(
F 2K0(Z, 2T ) → F 2K0(Z, T )

)
.

But we’ve seen already that F 2K0(Z, 2T ) → F 2K0(Z, T ) is an isomorphism,
and in fact both of these groups are isomorphic to F 2K0(X) (as well as to
F 2K0(Z)). Hence the surjective map

F 2K0(Z, 2T ) → F 2K0(Y, 2T̃ )

must in fact be an isomorphism, and so F 2K0(X) → F 2K0(Y, 2T̃ ) is an isomor-

phism. Finally, if n > 0 is large enough so that 2T̃ is a subscheme of nE, then
we have that the two maps

F 2K0(X) → F 2K0(Y, nE), F 2K0(Y,E) → F 2K0(Y, 2T̃ )

are isomorphisms, since both maps are surjective, and their composition is an
isomorphism. This proves Theorem 8.1.

As a consequence of this theorem, we see that ker(F 2K0(X) → F 2K0(Y )) is
identified with a subgroup of coker (SK1(Y ) → SK1(nE)), for sufficiently large n.
In fact, it is shown in [1] that equality holds, i.e., that there is an exact sequence
(for any large enough n)

SK1(Y ) → SK1(nE) → F 2K0(X) → F 2K0(Y ) → 0.
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Assume now that k has characteristic 0, and E is a divisor with simple normal
crossings. The groups SK1(nE) is then shown to fit into an exact sequence

(8.1) H1(Y, IE/InE)⊗k Ωk/Z → SK1(nE) → SK1(E) → 0.

Without going into technical details, let me say that this follows from a com-
bination of several ingredients.

The first is a formula SK1(W ) = H1(W,K2,W ) for any scheme W of dimension
≤ 1, where K2,W is the sheaf associated to the presheaf U 7→ K2(Γ(OU)) of Milnor
K-groups.

In our case, since E is a reduced divisor on a smooth surface, the local ring
of nE at a smooth point x ∈ E has the form Ox,E[t]/(tn), where t is a local
generator for the ideal sheaf IE in the local ring Ox,Y . A result of Bloch gives a
formula for any local Q-algebra of the form A = R[t1, . . . , tr], where the ideal I
in A generated by t1, . . . , tr is nilpotent, with quotient ring A/I = R. His result
is that

K2(A) = K2(R)⊕ ker ΩA/Z → ΩR/Z

d(I)
.

In particular, this is applicable when A = R[t]/(tn) is a truncated polynomial
algebra, and thus gives a local description of K2,nE at smooth points x ∈ E.

Since E has simple normal crossings, at a singular point of E, the local ring
of nE has the form Ox,Y /(s

ntn) where s, t are a regular system of parameters.
This local ring is not of the type covered by the Bloch formula, but one has a
Mayer-Vietoris sequence relating the K2 of such a ring to the K2 groups of the two
(non-reduced) branches, and to K2 of their intersection, and the Bloch formula is
applicable to compute these K2 groups. The local identifications with truncated
polynomial algebras depend on choices of local generators for the ideal sheaves
in Y of components of E, so when the above descriptions of the stalks of the
K2 sheaf are globalized, one has appropriate terms involving the ideal sheaves of
components of E.

Finally, one manages to reduce to the above sequence (8.1), by showing that
certain additional terms appearing at the sheaf level have no contribution to
the cohomology of the K2 sheaf, using the Grauert-Riemenschneider vanishing
theorem for π : Y → X, that R1π∗ωY = 0.

Now if k = Q, we see that since Ωk/Z = 0 in this case, we get that for a

resolution π : Y → X of a normal surface X over Q, with a normal crossing
exceptional locus E, we have a formula

CH2(X) = F 2K0(X) ∼= F 2K0(Y,E).

If X is the affine cone over a smooth projective curve C over Q, then Y may be
taken to be the blow up of the vertex of the cone. Then Y is a geometric line
bundle over the original curve C, and E is its 0-section. Hence Ki(Y ) → Ki(E)
is an isomorphism for all i, by the homotopy invariance of algebraic K-theory for
regular schemes, and so Ki(Y,E) = 0 for all i. This gives in particular, from
Theorem 8.1, that CH2(X) = 0. This was the conclusion of Theorem 7.8 for
k = Q.
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On the other hand, suppose k = C, the complex numbers, and X is the cone
over a smooth projective complex curve C. Again using the blow-up Y → X of
the vertex, and the line bundle structure on Y with 0-section E, we first see that
(8.1) simplifies in this case to a formula

SK1(nE) = SK1(E)⊕⊕n−1
j=1H

1(C,OC(j))⊗C ΩC/Z.

This uses that the inclusion E ↪→ nE has a retraction, so (8.1) becomes a split
exact sequence; then one uses that I/In ∼= ⊕n−1

j=1OC(j)) as sheaves of C-vector
spaces, using the underlying graded structure.

Theorem 8.1 now implies that

CH2(X) = ⊕∞j=1H
1(C,OC(1))⊗C ΩC/Z,

where the direct sum is of course finite, since H1(C,OC(j)) vanishes for all large
j. Since for the curve C,

H1(C,OC(j)) = 0 =⇒ H1(C,OC(j + 1)) = 0 ∀ j,
since multiplication by a suitable section of OC(1) gives an inclusion OC(j) →
OC(j + 1) with a cokernel supported at points, and so this induces a surjection
on H1. Hence, we see that

CH2(X) = 0 ⇔ H1(C,OC(1)) = 0.

This is the other conclusion of Theorem 7.8 for the case k = C.
It was known earlier that Theorem7.2 follows from the special case of nor-

mal affine surfaces, as discussed earlier. In this case, it can be deduced using
Theorem 8.1. Again, one first takes a resolution Y → X with normal crossing
exceptional locus E, and makes the analysis of SK1(nE) as in characteristic 0.
Then, instead of using the Bloch formula, which is in fact not valid in charac-
teristic p, one shows that ker(SK1(nE) → SK1(E)) is pN torsion, for some N ,
using certain local descriptions of the K2 sheaves, found for example in work of
Bloch and Kato.

On the other hand, one sees also that ker(F 2K0(X) → F 2K0(Y )) is a divisible
abelian group, and further, that

coker SK1(Y ) → SK1(E)

is a torsion-free divisible group (one ingredient in the proof of the latter is the
negative definiteness of the intersection pairing on components of E). This
implies that F 2K0(Y,E) → F 2K0(Y ) is an isomorphism on torsion, and so
kerF 2K0(X) → F 2K0(Y,E) is also divisible, by a diagram chase. But we
have also seen that it is pN -torsion for some large enough N , so it is 0, i.e.,
F 2K0(X) ∼= F 2K0(Y,E), and also F 2K0(X) → F 2K0(Y ) is an isomorphism on
torsion subgroups.

This analysis is valid over an arbitrary algebraically closed ground field of
characteristic p. Further, if X is affine, one sees that CH2(Y ) is in fact torsion-
free, from the theorems of Roitman and Milne, cited earlier. Hence CH2(X) is
torsion-free. But if now k = Fp, clearly CH2(X) is torsion, since the Picard

group of any affine curve over Fp is torsion. Hence we get that CH2(X) = 0 in
this case, as claimed in Theorem 7.2.
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Boston, MA, 1996.

[31] Suslin, A. A., Stably free modules. (Russian) Mat. Sb. (N.S.) 102(144) (1977), no. 4, 537–
550, 632.

[32] Szpiro, L., Lectures on Equations defining Space Curves, Tata Institute of Fundamental
Research Lecture Notes, No. 62, Springer-Verlag (1979).

[33] Thomason, R., Trobaugh, T, Higher algebraic K-theory of schemes and of derived cate-
gories, in The Grothendieck Festschrift III, Progress in Math. 88, Birkhauser (1990).

[34] Weibel, C. A., The negative K-theory of normal surfaces, Duke Math. J. 108 (2001) 1-35.

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha

Road, Mumbai-400005, India.

E-mail address : srinivasmath.tifr.res.in


