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Abstract

We prove a quadratic expression for the Bezoutian of two univariate
polynomials in terms of the remainders for the Euclidean algorithm. In
case of two polynomials of the same degree, or of consecutive degrees,
this allows us to interpret their Bezoutian as the Christoffel-Darboux
kernel for a finite family of orthogonal polynomials, arising from the
Euclidean algorithm. We give orthogonality properties of remainders,
and reproducing properties of Bezoutians.

1 Introduction

In the classical theory of elimination, or of Sturm sequences, we encounter
relations which are better understood when translated in terms of orthog-
onal polynomials. The main goal of the present paper is to study the Be-
zoutians associated with a pair of univariate polynomials, and discuss their
relations to the Euclidean algorithm and orthogonal polynomials. By link-
ing Bezoutians of general pairs of polynomials, of the same degree or of
consecutive degrees, to the Christoffel-Darboux kernels of the families of
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orthogonal polynomials coming from the Euclidean algorithm, we establish
some reproducing properties of Bezoutians.1

Neither attempting to give a full survey on Bezoutians (or Bezoutian
matrices) in mathematics nor quote all relevant bibliography, we note that
there has recently been a revival of interest in Bezoutians because of their
importance in many diverse fields of numerical and symbolical computing
as well as in control theory. Bezoutians themselves are classical algebraic
objects associated with a pair of univariate polynomials (nowadays, also “Be-
zoutian matrices” associated with a pair of polynomial matrices are studied
– cf., e.g., [29] – but we shall not treat this more general notion here). This
concept was invented by Bézout [1], [2], and developed by Sylvester [28],
Jacobi [19], Cayley [7], and others for the purposes of elimination theory:
the non-vanishing of the determinant of the Bezoutian matrix is equivalent
to the fact that the polynomials are relatively prime. (As pointed out in
[30], the Bezoutian matrix evolved, in fact, from Euler’s work [11] in elim-
ination theory.) Also, Bezoutian matrices turned out to be useful tools
to study the real root counting problem cf., e.g., [13], and Routh-Hurwtiz
(resp. Schur-Cohn) problems of counting the roots of a given polynomial in
a given half-plane (resp. in a circle), cf., e.g., [14]. This is closely related to
the study of stability criteria for polynomials or linear discrete-time systems
(cf., e.g., [17], [20]). Bezoutian matrices show up as the inverse matrices to
Hankel matrices (cf., e.g., [15], [16]) and can be used for extremal problems
in set theory (cf., e.g., [31]).

As pointed out above, the present paper discusses other properties of
Bezoutians. We describe now in more detail the content of the paper. The
theorems, propositions (apart from 16 and 20), and corollaries mentioned in
the following, appear to be new – we have not seen them in the literature.

In Section 2, we recall the notions associated with the Euclidean al-
gorithm for polynomials in one variable, and the corresponding continued
fraction. Besides remainders and quotients, we define successive conver-
gents, and associated numerators and denominators and discuss relations
between them.

In Section 3, we prove our basic formula expressing the Bezoutian of
two polynomials as a quadratic form in their remainders (Theorem 11).
This formula leads to a short proof of classical formulas of Sylvester [28]
and Brioschi [5], [6] related to the theory of Sturm; this is discussed in
Proposition 16. In a certain limit case, Theorem 11 gives also the Sylvester
formula [28] for the Jacobian; this is the content of Proposition 20. In
Section 6, for general pairs of polynomials of degrees (n+1, n) and (n, n),
we derive from Theorem 11 expressions presenting the Bezoutians solely in

1As a matter of fact, we may safely associate to the Christoffel-Darboux kernel the
names of Bézout [2], Cayley [7], Sylvester [28], Hermite [18], Brioschi [5], [6], and recognize
that these mathematicians treated the case of a finite discrete measure, with the help of
the Euclidean algorithm.
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terms of the roots of the polynomials (Propositions 26, 27, and Theorems
29 and 30).

In Section 7, we interpret, in terms of orthogonal polynomials, some
identities of Brioschi [5] and show more general relations for denominators
and remainders (Proposition 32 and Corollary 34). Moreover, we use the
Schur function expression of orthogonal polynomials given in Proposition 31
to relate Bezoutians and Christoffel-Darboux kernels of the orthogonal poly-
nomials coming from the Euclidean algorithm. We infer some “reproducing”
congruences for Bezoutians (Theorems 38 and 41).

The appendix contains a proof of two useful properties of orthogonal
polynomials using the techniques of multi-Schur functions.

2 Euclidean algorithm and continued fractions

Let f = f(x) and ϕ = ϕ(x) be two polynomials in C[x] 2, of degrees m ≥ n
respectively. Performing the Euclidean algorithm for division (note that we
use here nonstandard signs3), we get

f = Q0ϕ−R1, ϕ = Q1R1 −R2, R1 = Q2R2 −R3 , ...

...,Rn−2 = Qn−1Rn−1 −Rn, Rn−1 = QnRn .

Definition 1 The polynomial Ri is called the ith remainder and Qj is called
the jth quotient.

Obviously, degQi = degRi−1− degRi. In the generic case, degQi = 1
and degRi = n− i for i = 1, ..., n.

Definition 2 We say that (f, ϕ) is a general pair if degQi = 1 for i =
1, ..., n.

It is convenient to set R−1 := f , R0 := ϕ, and Rn+1 := 0. Then the
above sequence of equations is given compactly by the equations

Ri−1 = QiRi −Ri+1 , i = 0, . . . , n. (1)

We may rewrite the equation for i = 0 as follows:

ϕ

f
=

1

Q0 − R1
ϕ

.

2The polynomials in this paper, unless otherwise explicitly stated, have complex coef-
ficients.

3This variant of the Euclidean algorithm is called sometimes the extended Euclidean
algorithm.
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Iterating, we get a continued fraction:

ϕ

f
=

1

Q0 −
1

Q1 −
1

. . . 1

Qn

.

This is a continued fraction with n + 1 levels numbered from top to
bottom with k = 1, ..., n+ 1. We recall the following definition.

Definition 3 The intermediate fractions (stopping at the level k = 1, ..., n
instead of the last one) are rational functions

Nk/Dk = Nk(Q0, ...,Qn−1)/Dk(Q0, ...,Qn−1) ,

where we set inductively

Nk(Q0, ...,Qn−1) := Dk−1(Q1, ...,Qn−1) (2)

and

Dk(Q0, ...,Qn−1) := Q0Dk−1(Q1, ...,Qn−1)−Nk−1(Q1, ...,Qn−1) . (3)

The rational function Nk/Dk is called the kth convergent. The polynomial
Nk is called the numerator and Dk is called the denominator of the kth
convergent.

(Note that Equations (2) and (3) match with the equation:

Nk(Q0, . . . ,Qn−1)

Dk(Q0, . . . ,Qn−1)
=

1

Q0 − Nk−1(Q1,...,Qn−1)
Dk−1(Q1,...,Qn−1)

. )

We have the following expressions for the first three convergents:

N1

D1
=

1

Q0
,
N2

D2
=

Q1

Q0Q1 − 1
,
N3

D3
=

Q1Q2 − 1

Q0Q1Q2 −Q0 −Q2
.

The denominators Dk (resp. numerators Nk), are in the generic case of
degrees m− n+ k − 1 and k − 1, respectively.

We now recall the following result.

Lemma 4 For i = 1, . . . , n ,

Ri = ϕDi − fNi . (4)
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Proof. We proceed by induction on the number of the Qj ’s. Consider the
continued fraction associated with division of ϕ by R1. This continued
fraction depends on Q1, . . . ,Qn, and by the induction assumption we have

Ri = R1Di−1(Q1, . . . ,Qn−1)− ϕNi−1(Q1, . . . ,Qn−1) . (5)

By Equations (2) and (3), the right-hand side of Equation (5) is equal to

(−f+Q0ϕ)Ni(Q0, . . . ,Qn−1)−ϕ
(
Di(Q0, . . . ,Qn−1)−Q0Dk−1(Q1, . . . ,Qn−1)

)
.

(6)
Using Equation (2) once again, we see that the polynomial (6) equals

ϕDi(Q0, . . . ,Qn−1)− fNi(Q0, . . . ,Qn−1) ,

which is the wanted expression for Ri. The lemma is proved. �

Corollary 5 For i = 1, . . . , n, we have the following congruence:

Ri ≡ ϕDi mod f . (7)

Remark 6 Alternatively, we recover this fact by observing that the denom-
inators satisfy the recurrent equations:

Di−1 = QiDi −Di+1 , i = 0, . . . , n , (8)

where we set D−1 := 0 and D0 := 1. Indeed, Equations (8) and (1) give the
same recurrent relations for denominators and remainders, and R0 = ϕD0.

We refer the reader to [5] and [22] (see also [21]) for a more systematic
account of the (extended) Euclidean algorithm and related objects.

3 A quadratic expression for the Bezoutian

In this section, we prove a formula expressing the Bezoutian of two univariate
polynomials as a quadratic form in their remainders.

Definition 7 If g = g(x, y) is a polynomial in x,y, then we set

∂xy(g) :=
g(x, y)− g(y, x)

x− y
. (9)

Given two arbitrary univariate polynomials f and ϕ, Bézout [1], [2] (cf.
also [25], I, p. 41–52), considered quadratic expressions in the coefficients of
f, ϕ, that he called Équations dérivées. Following Jacobi [19] and Cayley [7]
(cf. also [25], II, p. 138), we can reinterpret Bézout’s system of equations as
the following polynomial.
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Definition 8 We set

Bez(f, ϕ) := ∂xy
(
f(x)ϕ(y)

)
, (10)

and call this bivariate polynomial (in x and y) the Bezoutian (of f and ϕ).

We refer to [21], p. 53, for some examples of Bezoutians.

We have the following two relations:

Bez(f, ϕ) = −Bez(ϕ, f) , (11)

Bez(αf + βg, ϕ) = αBez(f, ϕ) + β Bez(g, ϕ) , (12)

where α and β do not depend on x, y.
Also, the coefficients of the bivariate polynomial Bez(f, ϕ) are symmet-

ric, but we shall not need this property. Basic properties of Bezoutians are
collected, e.g., in [12], Chap. 8. For the purposes of the present paper, it is
recommended to consult also Chapter 3 of [21].

Assume m = deg f ≥ n = degϕ and use the notation of Section 2. We
record first the following lemma.

Lemma 9 For i = 0, 1, . . . , n,

Bez(Ri−1,Ri) = piRi(x)Ri(y) + Bez(Ri,Ri+1) , (13)

where pi = pi(x, y) = ∂xy(Qi(x)).

Proof. We have

Ri−1(x)Ri(y)−Ri−1(y)Ri(x)

Ri(x)Ri(y)
=
Ri−1(x)

Ri(x)
− Ri−1(y)

Ri(y)
. (14)

Since
Ri−1(x)/Ri(x) = Qi(x)−Ri+1(x)/Ri(x) ,

we can rewrite the right-hand side of Equation (14) as

Qi(x)−Qi(y)− Ri+1(x)

Ri(x)
+
Ri+1(y)

Ri(y)
=

= (x− y)pi +
Ri(x)Ri+1(y)−Ri(y)Ri+1(x)

Ri(x)Ri(y)
. (15)

Equating the left-hand side of Equation (14) with the right-hand side of
Equation (15), multiplying by Ri(x)Ri(y), and dividing by x−y, we obtain
Equation (13). The lemma has been proved. �

Remark 10 Note that the derivative of Qi is the limit case:

lim
y→x

pi(x, y) = Q′i(x) . (16)

This will be used in Section 5.
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The following theorem is basic for the present paper.

Theorem 11 With the above notation,

Bez(f, ϕ) = p0ϕ(x)ϕ(y) +
n∑

i=1

piRi(x)Ri(y) . (17)

Proof. Indeed, iterating Equation (13), we arrive at

Bez(f, ϕ) = p0R0(x)R0(y) + Bez(R0,R1) = · · · =
n∑

i=0

piRi(x)Ri(y) .

This proves the theorem. �
We now discuss two special cases of this formula: the case of a general

pair of polynomials (f, ϕ) of degrees (n+1, n) and the case of a general pair of
polynomials of the same degree n. The remainders for these two cases will be
interpreted in the last two sections in terms of orthogonal polynomials, and
their Bezoutian will be linked with the corresponding Christoffel-Darboux
kernel.

Lemma 12 If (f, ϕ) is a general pair of polynomials of degrees (n+1, n),
then for i = 0, 1, . . . , n,

Bez(Ri−1,Ri) = αiRi(x)Ri(y) + Bez(Ri,Ri+1) , (18)

where αi is the coefficient of x in Qi(x).

Proof. This is just a special case of Lemma 9 because we have

∂xy(Qi(x)) = αi for i = 0, 1, . . . , n . �

Iterating Equation (18), we get the following result.

Proposition 13 If (f, ϕ) is a general pair of polynomials of degrees (n+1, n),
then

Bez(f, ϕ) = α0ϕ(x)ϕ(y) +
n∑

i=1

αiRi(x)Ri(y) . (19)

For example take n = 2, f(x) = x3 +x2 + 2x+ 1, and ϕ(x) = x2 +x+ 1.
Then

Bez(f, ϕ) = 1 + x2 + y2 + x2y + xy2 + x2y2.

We have R1 = −x − 1, R2 = −1, Q1 = −x, Q2 = x + 1, so that α0 = 1,
α1 = −1, α2 = 1, and Proposition 13 says:

Bez(f, ϕ) = (x2 + x+ 1)(y2 + y + 1)− (x+ 1)(y + 1) + 1 .

We record the following consequence of Equations (7) and (19):
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Corollary 14 If (f, ϕ) is a general pair of polynomials of degrees (n+1, n),
then the following congruence holds modulo the ideal (f(x), f(y)):

Bez(f, ϕ) ≡ ϕ(x)ϕ(y)
(
α0 +

n∑
i=1

αiDi(x)Di(y)
)
. (20)

If we specialize x and y to roots of f , then this congruence is replaced
by an equality.

Similarly, we infer the following result.

Proposition 15 If (f, ϕ) is a general pair of polynomials of the same degree
n, then

Bez(f, ϕ) =

n∑
i=1

αiRi(x)Ri(y) , (21)

where αi is the coefficient of x in Qi(x).

4 Nullity of Sylvester’s and Brioschi’s determi-
nants

In this section, we give a new simple proof of two classical identities of
Sylvester and Brioschi, based on the quadratic expression for the Bezoutian
from Theorem 11.

Let f be a univariate polynomial of degree n+1. Suppose that (n+1)ϕ(x)
is the derivative of f(x). In his study of Sturm sequences, Sylvester [28],
vol. I, p. 502 stated (without proof) the vanishing of the following determi-
nant: ∣∣∣Di(aj)

2
∣∣∣
0≤i,j≤n

, (22)

where a0, . . . , an are the roots4 of f , Di(x), i = 1, . . . , n, are the denomina-
tors of convergents from Section 2, and D0 = 1.

Brioschi [5] generalized Sylvester’s relation to any polynomial ϕ of degree
n such that f and ϕ are relatively prime and the pair (f, ϕ) is general.

Proposition 16 With these assumptions, if we set

D0(x)2 := α0 −
f ′(x)

ϕ(x)
, (23)

then the same determinant (22) vanishes (α0 is the coefficient of x in Q0(x)).

4Since we are interested in the nullity of the determinant (22), we can order these roots
arbitrarily.
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Proof. It suffices to show that there exist complex numbers ci, i = 0, . . . , n,
such that for any root a of f the following equation holds:

c0D0(a)2 + c1D1(a)2 + · · ·+ cnDn(a)2 = 0 . (24)

This follows from the expression of the specializations x = y = a of the
Bezoutian, divided by ϕ(a)2:

ϕ(a)−2 Bez(f, ϕ)
∣∣∣
x=y=a

=
f ′(a)ϕ(a)

ϕ(a)2
= α0 + α1D1(a)2 + · · ·+ αnDn(a)2 ,

(25)
where Corollary 14 has been used.5 �

5 Sylvester’s formula for the Jacobian

Sylvester [28] p. 506 stated a formula relating the Jacobian of two forms in
two variables (of the same degree) with the remainders and quotients. The
purpose of this section is to give a simple proof of this formula, based on
the quadratic expression for the Bezoutian from Theorem 11.

Let f and ϕ be two univariate polynomials with deg f ≥ degϕ.

Definition 17 We set

W (f, ϕ) := f ′ϕ− fϕ′ . (26)

This is the simplest Wronskian. Note that

W (f, ϕ) = lim
y→x

Bez(f, ϕ) . (27)

By virtue of Equation (16), we get, as the “limit x = y case” of Equation
(13) the following result.

Lemma 18 With the notation of Section 2, for i = 0, 1, . . . , n,

W (Ri−1,Ri) = Q′iR2
i +W (Ri,Ri+1) . (28)

Iterating Equation (28), we arrive at the following formula.

Proposition 19 We have the following quadratic expression for the Wron-
skian:

W (f, ϕ) =

n∑
i=0

Q′iR2
i . (29)

5For another proof of Sylvester’s relation, see [21], Ex.2.34.
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Suppose now that two (homogeneous) forms F = F (x, y), Φ = Φ(x, y) in
two variables x and y are given with N = degF = deg Φ. Set f = F (x, 1),
ϕ = Φ(x, 1) and suppose deg f ≥ degϕ = n. Following Sylvester [28], we
state the following quadratic expression of the specialized Jacobian J(F,Φ)
in terms of the remainders (for the division of f by ϕ). Its proof consists
into recognizing that the Jacobian is a Wronskian.

Proposition 20 We have the following formula for the Jacobian:

1

N
J(F,Φ)

∣∣∣
y=1

=
n∑

i=0

Q′iR2
i . (30)

Proof. By the well-known identity

NF = x
∂F

∂x
+ y

∂F

∂y
, (31)

and Equation (29), we have

n∑
i=0

Q′iR2
i = f ′ϕ− fϕ′

=
∂F

∂x
· 1

N

(
x
∂Φ

∂x
+ y

∂Φ

∂y

)∣∣∣
y=1
− 1

N

(
x
∂F

∂x
+ y

∂F

∂y

)∂Φ

∂x

∣∣∣
y=1

=
1

N

(∂F
∂x

∂Φ

∂y
− ∂F

∂y

∂Φ

∂x

)∣∣∣
y=1

=
1

N
J(F,Φ)

∣∣∣
y=1

.

The proposition has been proved. �

6 Bezoutians in terms of the roots of polynomials

In this section, we give some expressions for the Bezoutians of general pairs
of monic polynomials of degrees (n+1, n) and (n, n), solely in terms of the
roots of the two polynomials.

First we need to introduce multi-Schur functions. Here are some basic
definitions (for a more detailed account, we refer the reader to [21]; see also
[22] and [23]).

Definition 21 By an alphabet A, we understand a (finite) multi-set of ele-
ments in a commutative ring.

We shall often identify an alphabet A with the sum
∑

a∈A a , and
perform the usual algebraic operations on such elements. We shall give
priority to the algebraic notation over the set-theoretic one.
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Definition 22 Given two alphabets A, B, the complete functions Si(A−B)
of the difference of the alphabets are defined by the generating series (with z
an extra variable):∑

Si(A−B)zi =
∏
b∈B

(1−bz)/
∏
a∈A

(1−az) . (32)

For example, if A is of cardinality m, then

Sm(x−A) =
∏
a∈A

(x− a)

is a monic polynomial with the multi-set of roots A.

Definition 23 Given I = (i1, i2, . . . , ir) ∈ Nr, and alphabets A1, . . . ,Ar,
B1, . . . ,Br, the multi-Schur function SI(A1−B1, . . . ,Ar−Br) is

SI(A1−B1, . . . ,Ar−Br) :=
∣∣∣Sik+k−h(Ak−Bk)

∣∣∣
1≤h,k≤r

. (33)

For example,

S5,7,2,0,3(A− B,C− D,E− F,G−H,K− L) =

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S5(A− B) S8(C− D) S4(E− F) S3(G−H) S7(K− L)

S4(A− B) S7(C− D) S3(E− F) S2(G−H) S6(K− L)

S3(A− B) S6(C− D) S2(E− F) S1(G−H) S5(K− L)

S2(A− B) S5(C− D) S1(E− F) 1 S4(K− L)

S1(A− B) S4(C− D) 1 0 S3(K− L)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

In case of a multi-Schur function such that

A1 − B1 = · · · = Ar − Br = A−B ,

we write more compactly SI(A−B) and call it a Schur function.

In case of a multi-Schur function such that for some p,

i1 = · · · = ip = i , ip+1 = · · · = ir = j ,

A1−B1 = · · · = Ap−Bp = A−B , Ap+1−Bp+1 = · · · = Ar−Br = C−D ,

we write more compactly

Sip ; jr−p(A−B ; C−D) .
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For example, the multi-Schur function

S1,1,1,1,5,5,5(A−B,A−B,A−B,A−B,C−D,C−D,C−D)

is written
S14;53(A−B;C−D) .

We record the following well known property (loc.cit.): for a partition
I ∈ Nr (i.e., I is weakly increasing),

SI(A−B) = (−1)|I|SJ(B−A) , (34)

where J is the conjugate partition of I (i.e. the consecutive rows of J are
equal to the corresponding columns of I).

Definition 24 Given two alphabets A, B, we set

R(A,B) :=
∏

a∈A, b∈B
(a−b) . (35)

We have (cf., e.g. [21] (1.4))

R(A,B) = Snm(A−B) , (36)

where m = card(A) and n = card(B).
In particular, the polynomial Sn(x−B) equals R(x,B), and R(A,B) is

the resultant of the polynomials R(x,A) and R(x,B).
From now on, the alphabets will consist of complex numbers, and for

two alphabets A,B, f(x) will denote the polynomial R(x,A) and ϕ(x) will
denote R(x,B).6

Definition 25 We say that a pair of alphabets (A,B) is general if (f, ϕ) is
a general pair of polynomials.

For a pair (A,B) of alphabets, we set

Bez(A,B) := Bez(f, ϕ) .

Suppose first that A and B form a general pair of alphabets of cardinal-
ities n+1 and n.

Proposition 26 With the above notation,

Bez(A,B) = R(x+y,B)

+
n∑

i=1

(−1)i
S1n−i;(i+1)i(B−x;B−A)S1n−i;(i+1)i(B−y;B−A)

Sii−1(B−A)S(i+1)i(B−A)
. (37)

6We can assume as well that A and B consist of independent variables, and work over
the base field of rational functions in A and B. All the results that we shall obtain, remain
true in this situation (and, obviously, the pair (f, ϕ) is general).
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Proof. We use the formula for Bez(A,B) from Proposition 13.
Second, we invoke the following expressions for successive remainders as

multi-Schur functions:

Ri(x) = S1n−i;(i+1)i(B−x;B−A) (38)

(cf. [22], Theorem 2.6.1 and [21], Theorem 3.2.1.)
Third, the coefficients αi admit the following expressions in terms of

Schur functions in A−B coming from [22] (2.7) p. 23 (cf. also [21] (3.8),
pp. 57–58):

αi =
(−1)i

Sii−1(B−A)S(i+1)i(B−A)
. (39)

(In these references, this expression is given in a slightly different but equiv-
alent form.)

Combining these three facts, Equation (37) follows. �

The polynomial S1n−i;(i+1)i(B−x;B−A) is, up to sign, a multi-Schur pre-
sentation of the ith subresultant (cf. [23], Proposition 2.2). For a vast
discussion of subresultants, see, e.g., [9], [24], [10], [23], and the references
there.

In a similar way, for a general pair (A,B) of alphabets with the same
cardinality n, invoking Proposition 15, we get the following identity.

Proposition 27 We have

Bez(A,B) =
n∑

i=1

(−1)i
S1n−i;ii(B−x;B−A)S1n−i;ii(B−y;B−A)

S(i−1)i−1(B−A)Sii(B−A)
. (40)

We now record the following result.

Lemma 28 Suppose that A and B are alphabets of cardinalities m and n
with m ≥ n. For i = 1, . . . , n, we have the following congruence:

Ri(x) ≡ Sim−n+i−1(A−B−x)ϕ(x) mod f(x) . (41)

Proof. It is a consequence of the explicit expression of Ri(x) as an element
of the ideal generated by f(x) and ϕ(x):

Ri(x) = (−1)n−i+1S(m−n+i)i−1(B−A−x)f(x) + Sim−n+i−1(A−B−x)ϕ(x) .
(42)

To prove Equation (42), we proceed in the same way as in [21] (3.1.5), p. 49.
We only leave to the reader to check that the signs are as stated. �

We shall now establish two expressions (44) and (45), solely in terms
of roots, that are congruent to the above Bezoutians modulo the ideal
(f(x), f(y)).
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We start with a general pair of alphabets (A,B) of cardinalities n+1 and
n. It follows from Proposition 13 and Lemma 28 that, modulo the ideal
(f(x), f(y)),

Bez(A,B) ≡ R(x+y,B)
(

1 +
n∑

i=1

αiSii(A−B−x)Sii(A−B−y)
)
. (43)

We now record the following result.

Theorem 29 For a general pair of alphabets (A,B) of cardinalities n + 1
and n, we have the following congruence modulo the ideal (f(x), f(y)):

Bez(A,B) ≡ R(x+y,B)
(

1 +
n∑

i=1

(−1)i
Sii(A−B−x)Sii(A−B−y)

S(i−1)i(A−B)Sii+1(A−B)

)
. (44)

Proof. We combine Equations (43), (39), and (34). �

We now pass to a pair of alphabets of the same cardinality.

Theorem 30 For a general pair of alphabets (A,B) of the same cardinality
n, we have the following congruence modulo the ideal (f(x), f(y)):

Bez(A,B) ≡ R(x+y,B)
( 1

S1(A−B)
+

n−1∑
i=1

(−1)i
S(i+1)i(A−B−x)S(i+1)i(A−B−y)

Sii(A−B)S(i+1)i+1(A−B)

)
.

(45)

Proof. We shall deduce the present case from the one of alphabets of car-
dinalities (n, n−1). For this purpose, suppose that

ψ(x) := Sn−1(x−C)

is the monic remainder of ϕ(x) modulo f(x), i.e.

ϕ(x) = f(x) + S1(A−B)ψ(x) . (46)

Then the pair (A,C) is general. We have, by combining Equations (46) and
(12) (note that S1(A−B) is a scalar),

Bez(A,B) = Bez(A,C)S1(A−B) . (47)

Thanks to Equation (46), the remainders of f(x) by ψ(x) coincide with those
of f(x) by ϕ(x), up to powers of u := S1(A−B). We get from Equation (42),
equalizing degrees by an appropriate power of u,

S(i+1)i(A−B−x)ϕ(x) ≡ ui+1 S(i+1)i(A−C−x)ψ(x) mod f(x) .
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Similarly, comparing the top coefficients of S1n−i; ii(A−x; A−B) and
S1n−i; (i−1)i(A−x; A−C), we infer

Sii(A−B) = uiS(i−1)i(A−C) .

Thus, using Equation (47), the congruence (44):

Bez(A,C) ≡ ψ(x)ψ(y)
(

1− S1(A−C−x)S1(A−C−y)

S11(A−C)

+
S22(A−C−x)S22(A−C−y)

S11(A−C)S222(A−C)
− · · ·

)
becomes

Bez(A,B) ≡ R(x+y,B)
( 1

S1(A−B)
− S2(A−B−x)S2(A−B−y)

S1(A−B)S22(A−B)

+
S33(A−B−x)S33(A−B−y)

S22(A−B)S333(A−B)
− · · ·

)
.

This proves the theorem. �
Note that the congruences (44) and (45) become equalities, when spe-

cializing x and y to roots of f .

7 Euclidean remainders versus orthogonal polyno-
mials

In this section, we investigate two families of orthogonal polynomials (we
refer to [3], [4], and [26] for basic information on orthogonal polynomials,
needed in the present section). The first family comes from the Euclidean
algorithm for division of a pair of polynomials of degrees (n+1, n), and the
second one comes from division of a pair of polynomials of degrees (n, n).

Assume first that (A,B) is a pair of alphabets of cardinalities n+ 1 and
n (and follow the convention of the previous section). One finds in the book
of Brioschi [5], p. 167, the following identities (we invoke the notation of
Section 2 and write A−a for A \ {a}). For a fixed i,∑

a∈A
Di(a)Ni(a)

ϕ(a)

R(a,A−a)
= 0 , (48)

∑
a∈A
Di(a)Di−1(a)

ϕ(a)

R(a,A−a)
= 0 , (49)

∑
a∈A
D2

i (a)Qi(a)
ϕ(a)

R(a,A−a)
= 0 . (50)
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These three identities make use of the following functional on C[x]:

µ : g(x) 7→ µ
(
g(x)

)
:=
∑
a∈A

g(a)
ϕ(a)

R(a,A−a)
. (51)

The functional µ is an incarnation of the Lagrange interpolation in the points
a ∈ A (cf., e.g., [3] and [21]). It is characterized by the fact that it sends
each xi, i ∈ N, onto the complete function Si(A−B).

Given a linear functional, it is known how to write an orthogonal basis
in terms of moments (cf. [26] and [3]). These expressions are still valid
in the case of our functional µ, restricted to the space of polynomials of
degree ≤ n, and the following proposition is a rewriting, in terms of Schur
functions, of the classical expressions of orthogonal polynomials in terms of
Hankel determinants involving moments.

Proposition 31 The Schur polynomials

Pk = Skk(A−B−x) , (52)

k = 0, 1, . . . , n, form a unique (up to normalization) orthogonal basis with
respect to the functional µ, of polynomials of respective degrees 0, 1, . . . , n.

(For the reader’s convenience, we recall a proof in Appendix 8.)
By combining the congruence (7) with Lemma 28, we thus get the fol-

lowing basic result.

Proposition 32 For any fixed 0 ≤ i < j ≤ n, the following relations hold:∑
a∈A

aiDj(a)
ϕ(a)

R(a,A−a)
= 0 , (53)

∑
a∈A
Di(a)Dj(a)

ϕ(a)

R(a,A−a)
= 0 . (54)

Brioschi’s relation (49) is just a particular case of Equation (54) with
consecutive i and j.

We can replace in Equation (48) the polynomial Ni, which is of degree
i− 1, by any polynomial of degree strictly less than i, because the set {Di}
forms an orthogonal basis. Since by Equation (8) we have

QiDi = Di−1 +Di+1 ,

Equation (50) results from the orthogonality of Di with Di+1, and with Di−1.
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Remark 33 Let f be a univariate polynomial of degree n+1. Suppose that
(n+1)ϕ(x) is the derivative of f(x) In [6], Brioschi gives the following rela-
tions: for fixed 0 ≤ i < j ≤ n,∑

a∈A
aiDj(a) = 0 . (55)

The sum looks different from Equation (53) because the term

ϕ(a)

R(a,A−a)
=
ϕ(a)

f ′(a)
=

1

n+1
(56)

can be erased.

We infer from Proposition 32 and Equation (7):

Corollary 34 For any fixed 0 ≤ i < j ≤ n, the following relations hold:∑
a∈A

aiRj(a)
1

ϕ(a)R(a,A−a)
= 0 , (57)

∑
a∈A
Ri(a)Rj(a)

1

ϕ(a)R(a,A−a)
= 0 . (58)

Remark 35 Note that
f ′(x)

f(x)
=
∑
a∈A

1

x− a
, (59)

so that the case treated by Sylvester and Brioschi is the case of orthogonal
polynomials for a discrete uniform measure, in relation with Lagrange inter-
polation. As a matter of fact, it was also the starting point of Chebyshev (cf.
[8], and [4] for an account to Chebyshev’s work on orthogonal polynomials).
Taking a generic ϕ(x) of degree n, we have similarly

ϕ(x)

f(x)
=
∑
a∈A

ϕ(a)
R(x,A−a)

R(a,A−a)
, (60)

thanks to Lagrange interpolation, and this time the measure is no more uni-
form, but still concentrated in the points of A.

We shall now investigate the Christoffel-Darboux kernels associated with
the just studied family of orthogonal polynomials and another one associ-
ated with a pair of monic polynomials of the same degree. We shall derive
“reproducing” congruences for the related Bezoutians.

We first recall the following definition (cf. [3], [26]).
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Definition 36 Given a family of orthogonal polynomials P0(x), . . . , Pn(x)
associated with a linear functional µ, then the Christoffel-Darboux kernel is:

K(x, y) :=
n∑

i=0

Pi(x)Pi(y)/µ
(
Pi(x)2

)
. (61)

Suppose that (A,B) is a pair of alphabets of cardinalities (n+1, n), and
let µ be the functional defined in Equation (51). The following result is
a translation to Schur functions of a well-known normalization property of
orthogonal polynomials.

Lemma 37 With the above notation,

µ
(
Sii(A−B−x)2

)
= (−1)iS(i−1)i(A−B)Sii+1(A−B) . (62)

(For the reader’s convenience, we recall a proof in Appendix 8.)
Assume now, in addition, that the pair (A,B) is general. By combining

the congruence (44), Proposition 31 and Lemma 37, we infer the following
congruence modulo the ideal (f(x), f(y)):

Bez(A,B) ≡ ϕ(x)ϕ(y)K(x, y) . (63)

This congruence suggests that the Bezoutian Bez(A,B) has a reproducing
property. Its proof will require the following properities:

∂xyf(x) = Sn(x+ y − A) , (64)

Sn+1+i(y − A) = yif(y) and Sn+i(y − B) = yiϕ(y) (65)

for i > 0, and for alphabets C, D, E and F,

Sk(C− D + E− F) =
∑
p

Sp(C− D)Sk−p(E− F) , (66)

Sk(C + E− D− E) = Sk(C− D) . (67)

(Cf. [21], [23].)

Theorem 38 Given a general pair of alphabets (A,B) of respective cardi-
nalities n+1 and n, and a polynomial g(x), we have

µ
(
g(x) Bez(A,B)

)
≡ ϕ(y)2 g(y) mod f(y) . (68)

Proof. Since, by the Leibniz rule (cf. [21] (7.1.9)),

Bez(A,B) = ∂xyf(x)ϕ(y) + f(y)∂xyϕ(y) ,

we have
Bez(A,B) ≡ ϕ(y) ∂xyf(x) mod f(y) . (69)
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By Equation (64), we must show

µ
(
g(x)ϕ(y)Sn(x+ y − A)

)
≡ ϕ(y)2 g(y) mod f(y) . (70)

By using Equations (65), (66) and (67), we have for any i ≥ 0, modulo
f(y),

µ
(
xi ϕ(y)Sn(x+ y − A)

)
= ϕ(y)[Si+n(A−B) + Si+n−1(A−B)S1(y−A) + · · ·+ Si(A−B)Sn(y−A)]

≡ ϕ(y)Si+n(A− B + y − A) = ϕ(y)2 yi . �

Finally, consider a general pair of alphabets (A,B) of the same cardinality
n. We state only results and omit their proofs which are similar to the ones
in the previous case. We recall (cf. Lemma 28):

Lemma 39 For i = 1, . . . , n,

Ri(x) ≡ Sii−1(A−B−x)ϕ(x) mod f(x) . (71)

Proposition 40 The Schur functions Skk−1(A−B−x) , k = 1, . . . , n , form
a unique (up to normalization) orthogonal basis of polynomials of respective
degrees 0, 1, . . . , n−1, with respect to the following functional ν on C[x]:

ν : xi 7→ Si+1(A−B) , i ∈ N . (72)

Theorem 41 For any polynomial g(x), the following congruence holds:

ν(g(x) Bez(A,B)) ≡ ϕ(y)2 g(y) mod f(y) . (73)

8 Appendix: proofs of Proposition 31 and Lemma
37

Proposition 31 can be proved as follows. Fix k = 1, . . . , n. We have the
following equality:

Skk(A−B−x)xi = Skk; i(A−B; x) . (74)

(We can pass from the right-hand side of Equation (74) to its left-hand side
by multiplying the ith row by x and subtracting it from the (i−1)st row,
successively for i = 2, 3, . . . , k+1.)

The functional µ acts only on the last column of the determinant

Skk; i(A−B; x) ,

and sends it onto
Skk; i(A−B; A−B) .
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When i < k, this last determinant Skk,i(A−B) vanishes, having two identical
columns. In other words, the polynomial Pk = Skk(A−B−x) is orthogonal
to x0, . . . , xk−1. This proves the proposition.

Lemma 37 admits the following justification. Using (the proof of) Propo-
sition 31 and appropriate Laplace expansion, we have

µ
(
Sii(A−B−x)Sii(A−B−x)

)
= µ

(
Sii(A−B−x)(−x)iS(i−1)i(A−B)

)
= (−1)iS(i−1)i(A−B)Sii+1(A−B) .

This proves the lemma.

For more on symmetric function interpretation of orthogonal polynomi-
als, consult [21], Chap. 8.
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