A Gysin formula for Hall-Littlewood polynomials

Piotr Pragacz
Institute of Mathematics, Polish Academy of Sciences
Śniadeckich 8, 00-656 Warszawa, Poland
P.Pragacz@impan.pl

To Bill Fulton on his 75th birthday

Abstract

We give a formula for pushing forward the classes of Hall-Littlewood polynomials in Grassmann bundles, generalizing Gysin formulas for Schur S- and P-functions.

Let $E \rightarrow X$ be a vector bundle of rank n over a nonsingular variety X over an algebraically closed field. Denote by $\pi : G^q(E) \rightarrow X$ the Grassmann bundle parametrizing rank q quotients of E. Let $\pi_* : A(G^q(E)) \rightarrow A(X)$ be the homomorphism of the Chow groups of algebraic cycles modulo rational equivalence, induced by pushing-forward cycles (see [3, Chap. 1]). There exists an analogous map of cohomology groups. A goal of this note is to give a formula (see Theorem 7) for the image via π_* of Hall-Littlewood classes from the Grassmann bundle.

Hall-Littlewood polynomials appeared implicitly in Hall’s study [5] of the combinatorial lattice structure of finite abelian p-groups, and explicitly in the work of Littlewood on some problems of representation theory [8]. A detailed account of the theory of Hall-Littlewood functions is given in [9].

The formula in Theorem 7 generalizes some Gysin formulas for Schur S- and P-functions. In particular, it generalizes the formula in [11, Prop. 1.3(ii)], and provides an explanation of its intriguing coefficient. We refer to [4] for general information about the appearance of Schur S- and Q-functions in cohomological studies of algebraic varieties.

Let t be an indeterminate. The main formula will be located in $A(X)[t]$, or in the extension $H^*(X, \mathbb{Z})[t]$ of the cohomology ring for a complex variety X. Let $\tau_E : Fl(E) \rightarrow X$ be the flag bundle parametrizing flags of quotients of E of ranks $n, n-1, \ldots, 1$. Suppose that x_1, \ldots, x_n is a sequence of the Chern roots of E. For a sequence $\lambda = (\lambda_1, \ldots, \lambda_n)$ of nonnegative integers, we define

$$R_\lambda(E; t) = (\tau_E)_* \left(x_1^{\lambda_1} \cdots x_n^{\lambda_n} \prod_{i < j} (x_i - tx_j) \right), \quad (1)$$

2010 Mathematics Subject Classification. Primary 14C17, 14M15, 05E05.

Keywords. push-forward of a cycle, Grassmann bundle, flag bundle, Hall-Littlewood polynomial, Schur P-function.

*This work was supported by National Science Center (NCN) grant No. 2014/13/B/ST1/00133.
where \((\tau_E)_*\) acts on each coefficient of the polynomial in \(t\) separately. (The same convention will be used for other flag bundles.)

The Grassmann bundle \(\pi : G^q(E) \to X\) is endowed with the tautological exact sequence of vector bundles

\[
0 \to S \to \pi^*E \to Q \to 0,
\]

where \(\text{rank}(Q) = q\). Let \(r = n - q\) be the rank of \(S\). Suppose that \(x_1, \ldots, x_q\) are the Chern roots of \(Q\) and \(x_{q+1}, \ldots, x_n\) are the ones of \(S\).

Proposition 1. For sequences \(\lambda = (\lambda_1, \ldots, \lambda_q)\) and \(\mu = (\mu_1, \ldots, \mu_r)\) of non-negative integers, we have

\[
\pi_*(R_\lambda(Q; t)R_\mu(S; t) \prod_{i \leq q < j} (x_i - tx_j)) = R_{\lambda \mu}(E; t),
\]

where \(\lambda \mu = (\lambda_1, \ldots, \lambda_q, \mu_1, \ldots, \mu_r)\) is the juxtaposition of \(\lambda\) and \(\mu\).

Proof. Consider a commutative diagram

\[
\begin{array}{ccc}
\text{Fl}(Q) & \times_{G^q(E)} & \text{Fl}(S) \\
\tau_Q \times \tau_S \downarrow & & \downarrow \tau = \tau_E \\
G^q(E) & \pi & X
\end{array}
\]

It follows that

\[
\pi_*(\tau_Q \times \tau_S)_* = \tau_*.
\]

Using Eq.(1) for \(Q\) and \(S\) and Eq.(2), we obtain

\[
\pi_*(R_\lambda(Q; t)R_\mu(S; t) \prod_{i \leq q < j} (x_i - tx_j)) = \pi_*(\tau_Q)_* (x_1^{\lambda_1} \cdots x_q^{\lambda_q} \prod_{i < j \leq q} (x_i - tx_j)) = \pi_*(\tau_Q \times \tau_S)_* (x_1^{\lambda_1} \cdots x_q^{\lambda_q} \prod_{i < j \leq q} (x_i - tx_j)) = \tau_*(x_1^{\lambda_1} \cdots x_q^{\lambda_q} x_{q+1}^{\mu_1} \cdots x_n^{\mu_r} \prod_{i < j} (x_i - tx_j)) = R_{\lambda \mu}(E; t).
\]

In the argument above, we have used the following equality:

\[
\prod_{i < j \leq q} (x_i - tx_j) \prod_{q < i < j} (x_i - tx_j) \prod_{i \leq q < j} (x_i - tx_j) = \prod_{i < j} (x_i - tx_j).
\]

We now set

\[
v_m(t) = \prod_{i=1}^m \frac{1 - t^i}{1 - t} = (1 + t)(1 + t + t^2) \cdots (1 + t + \cdots + t^{m-1}).
\]
Let $\lambda = (\lambda_1, \ldots, \lambda_n)$ be a sequence of nonnegative integers. Consider the maximal subsets I_1, \ldots, I_d in $\{1, \ldots, n\}$, where the sequence λ is constant. Let m_1, \ldots, m_d be the cardinalities of I_1, \ldots, I_d. So we have $m_1 + \cdots + m_d = n$. We set

$$v_\lambda(t) = \prod_{i=1}^{d} v_{m_i}(t).$$

(4)

Let S_n be the symmetric group of permutations of $\{1, \ldots, n\}$. We define a subgroup S_n^λ of S_n as the stabilizer of λ. Of course,

$$S_n^\lambda = \prod_{i=1}^{d} S_{m_i}.$$

Finally, we associate to a sequence λ a $(d - 1)$-step flag bundle (with steps of lengths m_i)

$$\eta_\lambda : Fl_\lambda(E) \to X,$$

parametrizing flags of quotients of E of ranks

$$n - m_d, n - m_d - m_{d-1}, \ldots, n - m_d - m_{d-1} - \cdots - m_2.$$

(5)

Example 2. Let $\nu = (\nu_1 > \ldots > \nu_k > 0)$ be a strict partition (see [9, I,1,Ex.9]) with $k \leq n$. Let $\lambda = \nu \cdot n^{k - k}$ be the sequence ν with $n-k$ zeros added at the end. Then $d = k + 1$, $(m_1, \ldots, m_d) = (1^k, n - k)$, $v_\lambda(t) = v_{n-k}(t)$, $S_n^\lambda = (S_1)^k \times S_{n-k}$, and $\eta_\lambda : Fl_\lambda(E) \to X$ is the flag bundle, often denoted by E^k, parametrizing quotients of E of ranks $k, k - 1, \ldots, 1$.

If $\lambda = (a^n b_{n-p})$, then $d = 2$, $(m_1, m_2) = (p, n - p)$, $v_\lambda(t) = v_p(t) v_{n-p}(t)$, $S_n^\lambda = S_p \times S_{n-p}$, and η_λ is here the Grassmann bundle $\pi : G^p(E) \to X$.

We shall now need some results from [9, III]. Let y_1, \ldots, y_n and t be independent indeterminates. We record the following equation from [9, III, (1.4)]:

Lemma 3. We have

$$\sum_{w \in S_n} w \left(\prod_{i<j} \frac{y_i - ty_j}{y_i - y_j} \right) = v_n(t).$$

For a sequence $\lambda = (\lambda_1, \ldots, \lambda_n)$ of nonnegative integers, we define

$$R_\lambda(y_1, \ldots, y_n; t) = \sum_{w \in S_n} w \left(y_1^{\lambda_1} \cdots y_n^{\lambda_n} \prod_{i<j} \frac{y_i - ty_j}{y_i - y_j} \right)$$

Arguing as in [9, III (1.5)], we show with the help of Lemma 3 the following result.

Proposition 4. The polynomial $v_\lambda(t)$ divides $R_\lambda(y_1, \ldots, y_n; t)$, and we have

$$R_\lambda(y_1, \ldots, y_n; t) = v_\lambda(t) \sum_{w \in S_n / S_n^\lambda} w \left(y_1^{\lambda_1} \cdots y_n^{\lambda_n} \prod_{i<j, \lambda_i \neq \lambda_j} \frac{y_i - ty_j}{y_i - y_j} \right).$$
Let us invoke the following description of the Gysin map for the flag bundle $F l_\lambda(E) \to X$ with the help of a symmetrizing operator. Recall that $A(F l_\lambda(E))$ as an $A(X)$-module is generated by S_n^λ-invariant polynomials in the Chern roots of E (see [1, Thm 5.5]). We define for an S_n^λ-invariant polynomial $f = f(y_1, \ldots, y_n)$,

$$
\partial_\lambda(f) = \sum_{w \in S_n/S_n^\lambda} w(\frac{f(y_1, \ldots, y_n)}{\prod_{i<j, \lambda_i \neq \lambda_j} (y_i - y_j)}).
$$

The following result is a particular case of [2, Prop. 2.1] (in the situation of Corollary 6, the result was shown already in [10, Sect. 2]).

Proposition 5. With the above notation, we have

$$
(\eta_\lambda)_*(f(x_1, \ldots, x_n)) = ((\partial_\lambda f)(y_1, \ldots, y_n))(x_1, \ldots, x_n).
$$

It follows from Propositions 4 and 5 that

$$
R_\lambda(E; t) = v_\lambda(t)(\eta_\lambda)_*(x_1^{\lambda_1} \cdots x_n^{\lambda_n} \prod_{i<j, \lambda_i \neq \lambda_j} (x_i - tx_j)),
$$

where x_1, \ldots, x_n are the Chern roots of E.

Let λ be a sequence of nonnegative integers. Extending [9, III, 2], we set

$$
P_\lambda(E; t) = \frac{1}{v_\lambda(t)} R_\lambda(E; t). \tag{6}
$$

It follows from Proposition 4 that $P_\lambda(E; t)$ is a polynomial in the Chern classes of E and t.

Let us record the following particular case.

Corollary 6. Let ν be a strict partition with length $k \leq n$. Set $\lambda = \nu \circ \iota^{n-k}$. We have

$$
P_\lambda(E; t) = (\tau_E^\nu)_*(x_1^{\nu_1} \cdots x_n^{\nu_n} \prod_{i<j, i \leq k} (x_i - tx_j)).
$$

As a consequence of Propositions 1 and 4, using Eq.(6), we obtain the following result.

Theorem 7. Let $\lambda = (\lambda_1, \ldots, \lambda_k)$ and $\mu = (\mu_1, \ldots, \mu_r)$ be sequences of nonnegative integers. Then we have

$$
\pi_* \left(\prod_{i \leq q < j} (x_i - tx_j) P_{\lambda}(Q; t) P_{\mu}(S; t) \right) = \frac{v_\lambda(t)}{v_\lambda(t)v_\mu(t)} P_{\lambda\mu}(E; t).
$$

We first consider the specialization $t = 0$.

Example 8. We recall Schur S-functions. Let $s_i(E)$ denotes the ith complete symmetric function in the roots x_1, \ldots, x_n, given by

$$
\sum_{i \geq 0} s_i(E) = \prod_{j=1}^n \frac{1}{1 - x_j}.
$$
Given a partition λ = (λ₁ ≥ ... ≥ λₙ ≥ 0), we set

\[s_\lambda(E) = \left| s_{\lambda_{i-j}}(E) \right|_{1 \leq i, j \leq n}. \]

(See also [9, I, 3].) Translating the Jacobi-Trudi formula (loc. cit.) to the Gysin map for \(\tau_E : Fl(E) \to X \) (see, e.g. [11, Sect. 4]), we have

\[s_\lambda(E) = (\tau_E)_*(x_1^{\lambda_1+n-1} \cdots x_n^{\lambda_n}). \]

We see that \(P_\lambda(E; t) = s_\lambda(E) \) for \(t = 0 \). Under this specialization, the theorem becomes

\[\pi_\ast((x_1 \cdots x_q)s_\lambda(Q)s_\mu(S)) = \pi_\ast(s_{\lambda+r, \ldots, \lambda+r}(Q)s_\mu(S)) = s_{\lambda+r}(E), \]

a result obtained originally in [7, Prop. p. 196] and [6, Prop. 1].

If a sequence \(\lambda = (\lambda_1, \ldots, \lambda_n) \) is not a partition, then \(s_\lambda(E) \) is either 0 or \(\pm s_\mu(E) \) for some partition \(\mu \). One can rearrange \(\lambda \) by a sequence of operations \(\ldots, i, j, \ldots \mapsto \ldots, j-1, i+1, \ldots \) applied to pairs of successive integers. Either one arrives at a sequence of the form \(\ldots, i, i+1, \ldots \), in which case \(s_\lambda(E) = 0 \), or one arrives in \(d \) steps at a partition \(\mu \), and then \(s_\lambda(E) = (-1)^d s_\mu(E) \).

Corollary 9. Let \(\nu \) and \(\sigma \) be strict partitions of lengths \(k \leq q \) and \(h \leq r \). It follows from Eq. (3) that

\[\frac{v_{\nu_0^q-k, \sigma_0^r-k}(t)}{v_{\nu_0^q-k}(t)v_{\sigma_0^r-k}(t)} = \left[\frac{n-k-h}{q-h} \right] (t) \cdot (1+t)^e, \]

the Gaussian polynomial times \((1+t)^e\) where \(e \) is the number of common parts of \(\nu \) and \(\sigma \). Thus the theorem applied to the sequences \(\lambda = \nu_0^q-k \) and \(\mu = \sigma_0^r-h \) yields the following equation:

\[\pi_\ast\left(\prod_{i \leq q < j} (x_i - tx_j)P_\nu(Q; t)P_\sigma(S; t) \right) = \left[\frac{n-k-h}{q-h} \right] (t) \cdot (1+t)^e \cdot P_{\lambda+r}(E; t). \quad (7) \]

We need the following property of Gaussian polynomials, which should be known but we know no precise reference.

Lemma 10. At \(t = -1 \), the Gaussian polynomial

\[\begin{bmatrix} a+b \\ a \end{bmatrix} (t) \]

specializes to zero if \(ab \) is odd and to the binomial coefficient

\[\left(\frac{(a+b)/2}{\lfloor a/2 \rfloor} \right) \]

otherwise.

Proof. We have

\[\begin{bmatrix} a+b \\ a \end{bmatrix} (t) = \frac{(1-t)(1-t^2) \cdots (1-t^{a+b})}{(1-t) \cdots (1-t^a)(1-t) \cdots (1-t^b)}. \]
Since \(t = -1 \) is a zero with multiplicity 1 of the factor \((1 - t^d)\) for even \(d \), and a zero with multiplicity 0 for odd \(d \), the order of the rational function \(\frac{a+b}{a} \) at \(t = -1 \) is equal to
\[
\left\lfloor \frac{(a + b)/2}{a/2} \right\rfloor (t^2) .
\]
The order (8) is equal to 1 when \(a \) and \(b \) are odd, and 0 otherwise. In the former case, we get the claimed vanishing, and in the latter one, the product of the factors with even exponents is equal to
\[
\left\lfloor \frac{a+b}{a/2} \right\rfloor (1) \text{ which is the binomial coefficient}
\]
This is the requested value since the remaining factors with an odd exponent give 2 in the numerator and the same number in the denominator.

The assertions of the lemma follow. \(\Box \)

We now consider the specialization \(t = -1 \).

Example 11. Consider Schur \(P \)-functions \(P_\lambda(E) = P_\lambda \) (or \(P_\lambda(y_1, \ldots, y_n) = P_\lambda \)) defined as follows. For a strict partition \(\lambda = (\lambda_1 > \ldots > \lambda_k > 0) \) with odd \(k \),
\[
P_\lambda = P_{\lambda_1} P_{\lambda_2} \ldots P_{\lambda_k} - P_{\lambda_2} P_{\lambda_1, \lambda_3, \ldots} + \cdots + P_{\lambda_k} P_{\lambda_1, \ldots, \lambda_{k-1}} ,
\]
and with even \(k \),
\[
P_\lambda = P_{\lambda_1, \lambda_2} P_{\lambda_3, \ldots} - P_{\lambda_1, \lambda_2} P_{\lambda_3, \ldots} + \cdots + P_{\lambda_1, \lambda_2} P_{\lambda_3, \ldots} .
\]
Here, \(P_\lambda = \sum s_\mu \), the sum over all hook partitions \(\mu \) of \(\lambda \), and for positive \(i > j \) we set
\[
P_{i,j} = P_i P_j + 2 \sum_{d=1}^{j-1} (-1)^d P_{i+d} P_{j-d} + (-1)^j P_{i+j} .
\]
(See also [9, III, 8].) It was shown in [12, p. 225] that for a strict partition \(\lambda \) of length \(k \),
\[
P_\lambda(y_1, \ldots, y_n) = \sum_{w \in S_n/(S_1)^k \times S_{n-k}} w \left(y_1^{\lambda_1} \cdots y_n^{\lambda_k} \prod_{i<j, i \leq k} (y_i + y_j) \right)
\]
(see also [9, III, 8]). This implies
\[
P_\lambda(E) = (r_{E, S}^E)^* \left(x_1^{\lambda_1} \cdots x_k^{\lambda_k} \prod_{i<j, i \leq k} (x_i + x_j) \right) .
\]
By Corollary 6, we see that \(P_\lambda(E) = P_\lambda(E; t) \) for \(t = -1 \).

We now use the notation from Corollary 9. Specializing \(t = -1 \) in Eq.(7), we get by Lemma 10
\[
\pi_* (c_{\nu \sigma}(Q \otimes S) P_{\nu}(Q) P_{\sigma}(S)) = d_{\nu \sigma} P_{\nu \sigma}(E) ,
\]
where $d_{\nu,\sigma} = 0$ if $(q - k)(r - h)$ is odd and
\[
d_{\nu,\sigma} = (-1)^{(q-k)h} \left(\frac{[(n - k - h)/2]}{[(q - k)/2]} \right)
\]
otherwise. This result was obtained originally in [11, Prop. 1.3(ii)] in a different way. The present approach gives an explanation of the intriguing coefficient $d_{\nu,\sigma}$.

Suppose that $\lambda = (\lambda_1, \ldots, \lambda_k)$ is not a strict partition. If there are repetitions of elements in λ, then P_λ is zero; if not then $P_\lambda = (-1)^l P_\mu$, where l is the length of the permutation which rearranges $(\lambda_1, \ldots, \lambda_k)$ into the corresponding strict partition μ.

We thank Witold Kraśkiewicz, Itaru Terada and Anders Thorup for helpful discussions, and the referee for suggesting several improvements of the text.

References

