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Abstract

We generalize the notion of Thom polynomials from singularities of
maps between two complex manifolds to invariant cones in representa-
tions, and collections of vector bundles. We prove that the generalized
Thom polynomials, expanded in the products of Schur functions of the
bundles, have nonnegative coefficients. For classical Thom polynomi-
als associated with maps of complex manifolds, this gives an exten-
sion of our former result for stable singularities to nonnecessary stable
ones. We also discuss some related aspects of Thom polynomials, which
makes the article expository to some extent.

1 Introduction

The present paper is both of the research and expository character. It
concerns global invariants for singularities. Our main new result here is
Theorem 5 (see also Corollary 6 and 7).

To start with, we recall that the global behavior of singularities is gov-
erned by their Thom polynomials (cf. [33], [1], [17], and [32]). By a singu-
larity, we shall mean in the paper a class of germs

(Cm, 0)→ (Cn, 0) ,
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where m,n ∈ N, which is closed under the right-left equivalence (i.e. ana-
lytic reparametrizations of the source and target).

Suppose that f : M → N is a map between complex manifolds, where
dim(M) = m and dim(N) = n. Let V η(f) be the cycle carried by the
closure of the set

{x ∈M : the singularity of f at x is η} . (1)

We recall that the Thom polynomial T η of a singularity η is a polynomial
in the formal variables

c1, c2, . . . , cm; c′1, c
′
2, . . . , c

′
n ,

such that after the substitution

ci = ci(TM), c′j = cj(f
∗TN) , (2)

(i = 1, . . . ,m, j = 1, . . . , n) for a general map f : M → N between complex
manifolds, it evaluates the Poincaré dual1 of [V η(f)]. This is the content of
the Thom theorem [33]. For a detailed discussion of the existence of Thom
polynomials, see, e.g., [1]. Thom polynomials associated with group actions
were studied by Kazarian in [17].

Recall that – historically – the first “Thom polynomial” appeared in
the so-called “Riemann-Hurwitz formula”. Let f : M → N be a general
holomorphic map of compact Riemann surfaces. This means that f is a
simple covering, that is, the critical points are nondegenerate and at most
one appears in each fiber. Denoting by ex the ramification index of f at
x ∈M (i.e. the number of sheets of f meeting at x), the Riemann-Hurwitz
formula asserts that∑

x∈M
(ex − 1) = 2g(M)− 2− deg(f)

(
2g(N)− 2

)
. (3)

Denoting by A1 the singularity of z 7→ z2 at 0, this is equivalent to saying
that the fundamental class of the ramification divisor of f ,∑

x

(ex − 1)[x] = [V A1(f)] ,

where x runs over the set of critical points of f , is given by the following
expression in the first Chern classes:

c1(f∗TN)− c1(TM) = c1(f∗TN − TM) . (4)

In other words, the Riemann-Hurwitz formula says:

T A1 = c′1 − c1 . (5)

1In the following, we shall often omit the expression: “the Poincaré dual of”.
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For a wider discussion of the Riemann-Hurwitz formula and early history of
Thom polynomials, we refer to Kleiman’s survey article [18]. The Riemann-
Hurwitz formula is true also in positive characteristic for finite separable
morphisms of algebraic curves (cf. [15], Chap. IV, Sect. 2).

Thom [33] generalized the Riemann-Hurwitz formula to general maps
f : M → N of complex manifolds with n − m > 0, the singularity being
always A1:

[V A1(f)] = cn−m+1(f∗TN−TM) =
n−m+1∑
i=0

Sn−m+1−i(TM
∗)ci(f

∗TN) , (6)

where Sj denotes the jth Segre class.
Though for the singularity A1 the Thom polynomials are rather simple,

they start to be quite complicated even for simplest singularities coming
“just after A1”, say (cf. the tables in [32]). For example, the Thom polyno-
mial for the singularities A4 is known only for small values of k (cf. [23]).
Therefore, it is important to study the structure of Thom polynomials. It
appears that a good tool for this task is provided by Schur functions [3],
[26], [27], [28], [29]. Let us quote some results related to Schur function
expansions of Thom polynomials of stable2 singularities.

First, it was shown in [27] that if a representative of a stable singularity

η : (Cm, 0)→ (Cn, 0)

is of Thom-Boardman type Σi, then all summands in the Schur function
expansion of T η are indexed by partitions containing3 the rectangle partition

(n−m+ i, . . . , n−m+ i) (i times).

This is a consequence of the structure of the P-ideals of the singularities Σi,
which were introduced and investigated in [24]. Second, in [31], the authors
proved that for any partition I the coefficient αI in the Schur function
expansion of the Thom polynomial

T η =
∑
I

αISI(TM
∗ − f∗TN∗)

is nonnegative. This result was conjectured before in [3] and independently
in [26]. It appears to be a consequence of the Fulton-Lazarsfeld theory of
numerical positivity of cones in ample vector bundles [8] (cf. also [21, §8]),

2By a stable singularity we mean an equivalence class of stable germs (C•, 0) →
(C•+k, 0), where • ∈ N, under the equivalence generated by right-left equivalence and
suspension (by suspension of a germ κ we mean its trivial unfolding: (x, v) 7→ (κ(x), v)).
For a stable singularity, its Thom polynomial is of the form

∑
I αISI(TM∗ − f∗TN∗),

where SI denotes a Schur function, cf. Sections 3 and 5.
3We say that one partition is contained in another if this holds for their Young diagrams.
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combined with a functorial version of the bundles of jets, appearing in the
approach to Thom polynomials via classifying spaces of singularities [17].

In the present paper, we shall prove a more general result that – we
believe – will better explain a reason of the positivity in the above classi-
cal case, as well as in many other situations. To this end, we extend the
definition of Thom polynomials from the singularities of maps f : M → N
of complex manifolds [33] to the invariant cones in representations of the
product of general linear groups

p∏
i=1

GLni .

Such Thom polynomials are naturally defined on p-tuples of vector bundles
of ranks ni. It is convenient to pass to topological homotopy category, where
each p-tuple of bundles can be pulled back from the universal p-tuple of
bundles on the product of p classifying spaces

p∏
i=1

BGLni .

Suppose that the functor associated with such a representation preserves
global generateness. Our main result – Theorem 5 – then asserts that the
Thom polynomial for a p-tuple of vector bundles (E1, E2, . . . , Ep), when
expanded in the basis

{SI1(E1) · SI2(E2) · · · SIp(Ep)}

of products of Schur functions applied to the successive bundles, has non-
negative coefficients. The key tool is positivity of cone classes for globally
generated vector bundles combined with the Giambelli formula. For a poly-
nomial representation of

∏p
i=1GLni of positive degree, we get, in addition,

that the sum of the coefficients is positive (cf. Corollary 6).
Theorem 5, in the classical situation of singularities of maps f : M → N

between complex manifolds, implies that for a given singularity its Thom
polynomial, when expanded in the basis

SI(TM
∗) · SJ(f∗TN) ,

has nonnegative coefficients (cf. Corollary 7).
We also note that Theorem 5 implies the main result of our former paper

[31] for Thom polynomials of stable of singularities of maps between complex
manifolds, where, however, the Schur functions in difference of bundles were
used (cf. Theorem 8).
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2 Thom polynomials of invariant cones

In this section, we define “generalized Thom polynomials”. Our construction
is modeled on that used to the construction of classical Thom polynomials
with the help of the “classifying spaces of singularities” (cf., e.g., [17]).

Suppose that (n1, n2, . . . , np) ∈ Np and that V is a representation of

G =

p∏
i=1

GLni . (7)

The representation V gives rise to a functor φ defined for a collection of
bundles on a variety X:

E1, E2, . . . , Ep 7→ φ(E1, E2, . . . , Ep) ,

with dimEi = ni, i = 1, . . . , p. By passing to the dual bundles, we may
assume that the functor φ is covariant in each variable.

Let
P (E•) = P (E1, E2, . . . , Ep) (8)

be the principal G-bundle associated with the bundles E1, E2, . . . , Ep. We
define a new vector bundle:

V (E•) = V (E1, E2, . . . , Ep) := P (E•)×G V . (9)

Suppose now that a G-invariant cone Σ ⊂ V is given. We set

Σ(E•) = Σ(E1, E2, . . . , Ep) := P (E•)×G Σ ⊂ V (E•) . (10)

We define the “Thom polynomial” T Σ to be the dual class4 of

[Σ(R(1), . . . , R(p))] ∈ H∗
(
V (R(1), . . . , R(p)),Z

)
= H∗(BG,Z) ,

where R(i), i = 1, . . . , p, is the pullback of the tautological vector bundle
from BGLni to

BG =

p∏
i=1

BGLni .

Then, the so defined Thom polynomial

T Σ ∈ H∗(BG,Z)

depends on the Chern classes of the R(i)’s.

We shall write T Σ(E1, . . . , Ep) for the Thom polynomial T Σ, with
cj(R

(i)) replaced by cj(Ei) for i = 1, . . . , p.

4Compare the footnote 4 in [31].
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Lemma 1 For any vector bundles E1, E2, . . . , Ep on a variety X, the dual
class5 of [Σ(E•)] in

H2 codim(Σ)(V (E•),Z) = H2 codim(Σ)(X,Z)

is equal to T Σ(E1, . . . , Ep).

Proof. Each p-tuple of bundles can be pulled back from the universal p-
tuple (R(1), R(2), . . . , R(p)) of bundles on BG using a C∞-map. It is possible
to work entirely with the algebraic varieties and maps. One can use the
Totaro construction and representability for affine varieties ([34, proof of
Theorem 1.3]). 2

Remark 2 In the situation of classical Thom polynomials [33], the functor
φ is the functor of k-jets :

(E,F ) 7→ J k(E,F ) =

(
k⊕
i=1

SymiE∗

)
⊗ F ,

where k is large enough, adapted to the investigated class of singularities – cf.
[31] for details and applications. (We note that in this situation an invariant
closed subset Σ, called in [31] a “class of singularities”, is automatically a
cone.)

3 Schur functions and the Giambelli formula

In this section, we recall the notion of Schur functions. We also recall a
geometric interpretation of them, namely the classical Giambelli formula.

Given a partition I = (i1, i2, . . . , il) ∈ Nl, where

i1 ≥ i2 ≥ · · · ≥ il ≥ 0 6 ,

and vector bundles E and F on a variety X, the Schur function7 SI(E−F )
is defined by the following determinant:

SI(E − F ) =
∣∣∣Sip−p+q(E − F )

∣∣∣
1≤p,q≤l

, (11)

where the entries are defined by the expression∑
Si(E − F ) =

∏
b

(1− b)/
∏
a

(1− a) . (12)

5The meaning of the “dual class” for singular X is explained in [31], Note 6.
6Since the most common references to Schubert Calculus use weakly decreasing parti-

tions, we follow this convention in the present paper.
7Usually this family of functions is called “super Schur functions” or “Schur functions

in difference of bundles”.
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Here, the a’s and b’s are the Chern roots of E and F and the LHS of Eq.
(12) is the Segre class of the virtual bundle E − F . So the Schur functions
SI(E − F ) lie in a ring containing the Chern classes of E and F ; e.g., we
can take the cohomology ring H∗(X,Z) or the Chow ring A∗(X).

Given a vector bundle E and a partition I, we shall write SI(E) for
SI(E − 0), where 0 is the zero vector bundle.

We refer to [20], [22], and [30] for the theory of Schur functions SI(E)
and SI(E − F ).

Given a smooth variety X, we shall identify its cohomology H∗(X,Z)
with its homology H∗(X,Z), as is customary. More precisely, this identifi-
cation is realized via capping the cohomology classes with the fundamental
class [X] of X, using the standard map:

∩ : H∗(X,Z)⊗H∗(X,Z)→ H∗(X,Z) .

Let V be a complex vector space of dimension N , and let Gm(V ) be
the Grassmannian parametrizing m-dimensional subspaces of V . On knows
that Gm(V ) is a smooth projective variety of dimension mn, where n =
N −m. We shall also use the notation Gn(V ) for this Grassmannian. The
Grassmannian Gm(V ) is stratified by Schubert cells; the closures of these
cells are Schubert varieties ΩI(V•), where

I = (n ≥ i1 ≥ i2 ≥ · · · ≥ im ≥ 0)

is a partition, and

V• : 0 = V0 ⊂ V1 ⊂ · · · ⊂ VN = V

is a complete flag of subspaces of V , with dimVj = j for j = 0, 1, . . . , N .
The precise definition of ΩI(V•) is

ΩI(V•) = {Λ ∈ Gm(V ) : dim(Λ ∩ Vn+j−ij ) ≥ j, j = 1, . . . ,m} . (13)

This is a subvariety of codimension |I| = i1 + i2 + · · ·+ im in Gm(V ). The
cohomology class [ΩI(V•)] does not depend on a flag V•. We denote it by σI
and call a Schubert class.

Let Q denote the tautological quotient bundle on Gm(V ). Then

σ(i) = ci(Q) = S(1,...,1)(Q) ,

where 1 appears i times, and – more generally – the following Giambelli
formula [10] holds:

Proposition 3 In the cohomology ring of Gm(V ), we have

σI =
∣∣∣cip−p+q(Q)

∣∣∣
1≤p,q≤m

= SI∼(Q) , (14)

where I∼ is the conjugate partition of I (i.e. the consecutive rows of the
diagram of I∼ are the transposed consecutive columns of the diagram of I).
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(Cf. [12, Chap. 1, Sect. 5 ], [6, §9.4]).

Given a partition I, consider the partition

J = (n− im, n− im−1, . . . , n− i1) .

Then (loc.cit.) σJ is the unique Schubert class of complementary codimen-
sion to σI whose intersection with σI is nonzero, and in fact∫

Gm(V )
σI · σJ = 1 . (15)

The class σJ is called the complementary class to σI .

4 Cone classes for globally generated and ample
vector bundles

In the proof of our main result, we shall use the following results of Fulton
and Lazarsfeld from [7], [8] (cf. also [5, Chap. 12], [21, §8]). Recall first some
classical definitions and facts from [5] (we shall also follow the notation from
this book). Let E be a vector bundle of rank e on X. By a cone in E we
mean a subvariety of E which is stable under the natural Gm-action on E.
If C ⊂ E is a cone of pure dimension d, then one may intersect its cycle [C]
with the zero-section of the vector bundle:

z(C,E) := s∗E([C]) ∈ Ad−e(X) , (16)

where s∗E : Ad(E) → Ad−e(X) is the Gysin map determined by the zero-
section sE : X → E. For a projective variety X, there is a well defined
degree map

∫
X : A0(X)→ Z.

The following results stem from [7, Theorem 1 (A)] and [8, Theorem 2.1].

Theorem 4 Suppose that E is a vector bundle of rank e on a projective
variety X, and let C ⊂ E be a cone of pure dimension e.

(1) If some symmetric power of E is globally generated, then∫
X
z(C,E) ≥ 0.

(2) If E is ample, then ∫
X
z(C,E) > 0.

Under the assumptions of the theorem, we also have in H0(X,Z) the ho-
mology analog of z(C,E), denoted by the same symbol, and the homology
degree map degX : H0(X,Z) → Z. They are compatible with their Chow
group counterparts via the cycle map: A0(X) → H0(X,Z) (cf. [5, Chap.
19]). We thus have the same inequalities for degX

(
z(C,E)

)
.
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5 Schur function expansions of Thom polynomials

We follow the setting from Section 2. Since the Schur functions form an
additive basis of the ring of symmetric functions, the Thom polynomial T Σ

is uniquely written in the following form:

T Σ =
∑

αI1,...,Ip SI1(R(1)) SI2(R(2)) · · · SIp(R(p)) , (17)

where αI1,...,Ip are integer coefficients.

We say that the functor φ, associated with a representation V , preserves
global generateness if for a collection of globally generated vector bundles
E1, E2, . . . , Ep, the bundle

φ(E1, E2, . . . , Ep)

is globally generated.
Examples of functors preserving global generateness over fields of charac-

teristic zero are polynomial functors. They are, at the same time, quotient
functors and subfunctors of the tensor power functors (cf. [14]). On the
other hand, the functors: Hom(−, E) with fixed E, or Hom(−,−), do not
preserve global generateness.

The main result of the present paper is

Theorem 5 Suppose that the functor φ preserves global generateness. Then
the coefficients αI1,...,Ip in Eq. (17) are nonnegative. Assume additionally
that there exists a projective variety X 8 of dimension greater than or equal
to codim(Σ), and there exist vector bundles E1, . . . , Ep on X such that the
bundle φ(E1, E2, . . . , Ep) is ample. Then at least one of the coefficients
αI1,...,Ip is positive.

Proof. We assume for simplicity that p = 2 (the reasoning in general case
goes in the same way). We want to estimate the coefficients αIJ in the
universal expansion into products of Schur functions:

T Σ(E1, E2) =
∑
I,J

αIJ SI(E1) · SJ(E2) (18)

Let E1 and E2 be the pullbacks of the tautological quotient bundles from
the Grassmannians Gn1(CN1) and Gn2(CN2) to

Gn1(CN1)×Gn2(CN2) ,

where N1 and N2 are sufficiently large. It is enough to estimate the coef-
ficients αIJ for such E1 and E2. Let σK ∈ H∗(Gn1(CN1),Z) be the com-
plementary class to σI∼ and σL ∈ H∗(Gn2(CN2),Z) be the complementary

8The variety X can be singular.
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class to σJ∼ . By the Giambelli formula (Proposition 3) and properties of
complementary Schubert classes (15), we have

αIJ =

∫
Gn1 (CN1 )×Gn2 (CN2 )

T Σ(E1, E2) · (σK × σL) .

The vector bundles E1 and E2 are globally generated. Hence, by the as-
sumption, the bundle φ(E1, E2) is globally generated. By Theorem 4(1), we
thus have αIJ ≥ 0.

Now, suppose that there exists a projective variety of dimension greater
than or equal to codim(Σ), and there exist vector bundles E1, E2 on X such
that the bundle φ(E1, E2) is ample. Let Y be a subvariety of X of dimension
equal to codim(Σ). Then, by Theorem 4(2), we have∫

Y
T Σ(E1, E2) > 0 .

Therefore, T Σ 6= 0, which implies that at least one of the coefficients αIJ is
positive. 2

Consider now the projective variety

X =

p∏
i=1

Gni(CN ) ,

where N is sufficiently large. We denote by Qi the pullback to X of the
tautological quotient bundle on Gni(CN ) , i = 1, . . . , p. The bundle Qi is
not ample, but it is globally generated. Let L be an ample line bundle on
X. Then each bundle

Ei = Qi ⊗ L
is ample (cf. [14]).

Observe the hypotheses of the theorem are satisfied by the variety X,
vector bundles E1, . . . , Ep, and any polynomial functor φ of positive degree.
We thus obtain

Corollary 6 If φ is a polynomial functor of positive degree, then the coef-
ficients αI1,...,Ip in Eq. (17) are nonnegative, and their sum is positive.

In the next corollary, we use the concept of a classical Thom polynomial
associated with a map f : M → N of complex manifolds and a nontrivial
class of singularities Σ (cf. [31]). We do not, however, assume now that Σ
is stable.

By the theory of Schur functions, there exist universal coefficients βIJ ∈
Z such that

T Σ =
∑
I,J

βIJSI(TM
∗) · SJ(f∗TN) . (19)

The following result follows from Theorem 5.
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Corollary 7 For any pair of partitions I, J , we have βIJ ≥ 0.

We also give an alternative proof of the main result from [31]. Let Σ be
a stable singularity. Then by the Thom-Damon theorem ([33], [2]),

T Σ(c1(M), . . . , cm(M), c1(N), . . . , cn(N))

is an universal polynomial in

ci(TM−f
∗TN) where i = 1, 2, . . .

(Cf. also [17, Theorem 2].)

Using the theory of supersymmetric functions (cf. [20], [22], [30]), the
Thom-Damon theorem can be rephrased by saying that there exist coeffi-
cients αI ∈ Z such that

T Σ =
∑
I

αISI(TM
∗−f∗TN∗) , (20)

the sum is over partitions I with |I| = codim(Σ). The expression in Eq. (20)
is unique (loc.cit.).

Theorem 8 Let Σ be a stable singularity. Then for any partition I the
coefficient αI in the Schur function expansion of the Thom polynomial T Σ

(cf. Eq. (20)) is nonnegative.

Proof. By the theory of Schur functions (loc.cit.), we have that the coeffi-
cient of SI(TM

∗−f∗TN∗) in the RHS of (20) is equal to the coefficient of
SI(TM

∗) in the RHS of (19), that is, αI = βI,∅ for any partition I. The
assertion now follows from Corollary 7. 2

Remark 9 Note that Theorem 5 overlaps various situations already studied
in the literature. Consider, e.g., a family of quadratic forms on the tangent
bundle of an m-fold M with values in a line bundle L, i.e. a section of

Hom(Sym2(TM), L) .

The singularities of such forms lead to Thom polynomials. The group which
is relevant here is GLm×GL1 with the natural representation in the vector
space

r⊕
i=0

Symi(Cm)⊗Hom(Sym2(Cm),C) .

The singularity classes defined by the 0th jet are just invariant subsets of
Hom(Sym2(Cm),C). The corank of the quadratic form determines the sin-
gularity class.
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We recover9 the situation already described in the literature in the con-
text of degeneracy loci formulas for morphisms with symmetries of rank m
bundles:

E∗ → E ⊗ L .

The degrees of projective symmetric varieties were computed in [11]. The
Schur function formulas for a trivial L were given in [13], [16]. To give the
formulas in full generality [25], we consider, for partitions I = (i1, . . . , im)
and J = (j1 . . . , jm), the following determinant studied in the paper [19] of
Lascoux:

dI,J =
∣∣∣(ia +m− a
jb +m− b

)∣∣∣
1≤a,b≤m

. (21)

Then, the Thom polynomial associated with the locus of quadratic forms
whose corank ≥ q is equal to

2−(q2)
∑
J

2|J | dρq ,J SJ(E) · S(q+1
2 )−|J |(L) ,

where J = (j1, . . . , jq) runs over partitions contained in the partition

ρq = (q, q − 1, . . . , 1) .

(Cf. [25] for details. Similar formulas are valid for antisymmetric forms
(loc.cit.).) In particular, we obtain the positivity of the dρq ,J ’s – a result
known before by combinatorial methods (cf. [9]).

It seems to be interesting to apply Theorem 5 to other concrete situa-
tions, where Thom polynomials of invariant cones appear.
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