
Multiplying Schubert classesPiotr Pragacz�Institute of Mathematics of Polish Academy of Sciences�Sniadeckich 8, 00-956 Warszawa, PolandP.Pragacz@impan.gov.plAbstractWe show how to compute the structure constants for cohomologicalmultiplication of Schubert classes by exploiting the action of the Weylgroup and that of BGG-operators, on the cohomology ring of a ag variety.We illustrate this method with simple proofs of the Chevalley and Pieriformulas.1 IntroductionOne of the main problems of Schubert calculus on ag varieties (or generalizedag varieties G=B) is to give expressions for the structure constants for the co-homological multiplication of Schubert classes. The main problem is to describethese structure constants as the cardinalities of some sets, but also \closed" for-mulas for the structure constants are of some interest. This is a classical topicstarting with the work of Schubert, Giambelli, Pieri, Lesieur, Hodge-Pedoe,Littlewood-Richardson 1, Borel, Chevalley, Monk, and Horrocks, and continuingin recent years with the work of Bernstein-Gelfand-Gelfand, Demazure, Koch,Lascoux-Sch�utzenberger, Kleiman-Laksov, Stoll, Carrell, Kostant-Kumar, Hiller-Boe, Stembridge, Akyildiz, Sert�oz, Fulton, Pragacz-Ratajski, Bergeron-Sottile,Knutson, Vakil, Buch-Kresch-Tamvakis, Duan, and Gatto { to mention a few.We do not attempt to survey this activity here, but in the bibliographical ref-erences the reader may �nd a vast discussion of the structure constants.The purpose of this note is to give a closed formula (Theorem 1) for theseconstants. This formula evolved from a sequence of papers [24], [25], and [26](see also [23] and [9]). The �rst main tool that we use is the action of the Weylgroup on H�(G=B;Q) expressed in terms of Schubert classes. The second maintool is the theory of BGG-operators acting as skew derivations on H�(G=B;Q).�Research supported by KBN grant 2P03A 024 23.1The famous combinatorial Littlewood-Richardson rule governing the multiplication ofSchubert classes on Grassmannians, was found, in fact, in a parallel context of representationtheory. The same remark applies to the contribution of Stembridge.1



These fundamental tools were developed mainly by Bernstein-Gelfand-Gelfand[1] and Demazure [6], [7] in the 70's, as a continuation of the work of Borel [2].We illustrate our method with short proof the Chevalley formula (Theorem2), and transparent, purely algebro-combinatorial proof of the classical Pieriformula (Theorem 3). (These proofs were mentioned in [11], p.122 and [26],p.50, respectively.)Background. The content of this note was obtained in the 90's and has notbeen written up until now.2 Following an encouragement of Michel Brion, wehave decided to publish it now because of an increasing interest in the structureconstants. The story told here is closely related to the lecture notes by Brion[3], Buch [4], Duan [8], and Tamvakis [27] in the present volume. This is, infact, the main reason for the appearance of this note here.2 Characteristic map and BGG-operatorsA general reference for group-theoretic notions used in this note is [17].Let G be a semisimple algebraic group and B � G a Borel subgroup.Let X be a variety on which B acts freely (from the right). Suppose thatthe quotient X=B exists so that p : X ! X=B is a principal B-bundle. On theother hand, let � : B ! GL(V ) be a linear representation. We denote by L�the vector bundle X �B V that is the quotient of X � V by the equivalencerelation (x; v) � �xb; �(b)�1v�;where x 2 X , b 2 B, and v 2 V . Equivalently, if U is an open subset of X=B,then �(U;L�) is the set of morphisms ' : p�1(U) ! V such that '(xb) =�(b)�1'(x).In particular, with any character � of B (that is, a homomorphism of B intothe multiplicative group) there is associated a line bundle L�; this induces ahomomorphism of groups X�(B)! Pic(X=B), where X�(B) denotes the groupof characters of B.Composing this homomorphism with the homomorphism of the �rst Chernclass from Pic(X=B) to H2(X=B;Z), one gets a homomorphism from X�(B) toH2(X=B;Z), which extends to a homomorphism of graded ringsc : S��X�(B)�! H�(X=B;Z)from the symmetric algebra of the Z-module X�(B) to the cohomology ring ofX=B; this homomorphism is called the characteristic map of the �ber bundlep : X ! X=B. In this note, S = �Sk will denote the symmetric algebraS��X�(B)� = �Sk�X�(B)�.2The material of this note was presented at various Impanga seminars, and, e.g., at theLittelmann-Mathieu seminar in Strasbourg (December, 1994), at the Summer School \Schu-bert Varieties" in Thurnau (June, 1995), and at the topology seminar at CAS in Beijing (June,2002). 2



Choose a maximal torus T � B with the Weyl group W = NG(T )=T of(G; T ). ThenW acts on the group of charactersX�(T ) of T , and since X�(B) =X�(T ), this induces an action of W on S.The root system of (G; T ) is denoted by R; the set R+ of positive rootsconsists in the opposites of roots of (B; T ). Let � � R+ be the associatedbasis of R. The Weyl group W is generated by simple reections, i.e. by thereections associated with the elements of �. For any root � 2 R, we denote bys� the reection associated with �. The reection s� can be realized as a linearendomorphism of the Euclidean space X�(T )
R , equipped with aW -invariantinner product ( ; ) . We have s�(�) = �� (�_; �)� , where �_ = 2�=(�; �).By a reduced decomposition of an element w 2 W we understand a presen-tation w = s�1 � � � s�l where all �p 2 �, and l is the smallest number occurringin such a presentation, called the length of w and denoted l(w).By w0 we denote the longest element of W , the unique element of W withlength equal to the cardinality of R+.We shall need the following \BGG-operators" Aw, w 2 W , acting on thering S (cf. [1], [6], and [7]).De�nition 1 Given a root � and f 2 S, we setA�(f) := f � s�(f)� :The operator A� is a well de�ned (group) endomorphism on S lowering thedegree by 1. Note that A�(f) = (�_; f) for f 2 S1; this will be used in theproof of Theorem 2.We now record (cf. [1], Theorem 3.4 and [6], Th�eor�eme 1):Lemma 1 If �1; : : : ; �k and �1; : : : ; �k are simple roots such thats�1 � � � s�k = s�1 � � � s�kare two reduced decompositions, thenA�1 � � �A�k = A�1 � � �A�k :Thus for w 2W , given its reduced decomposition w = s�1 � � � s�k , the operatorAw := A�1 � � �A�kis well-de�ned (i.e. doesn't depend on a reduced decomposition of w).The following result says how the BGG-operators act on products (cf., e.g.,[6], Eq. (6), p.289):Lemma 2 We have for f; g 2 S and a simple root �,A�(fg) = A�(f)g + s�(f)A�(g) : (1)3



Geometric interpretations of BGG-operators are related to correspondencesin ag bundles (cf., e.g., [11], Chap.2 and 6), and Gysin maps for Bott-Samelsonschemes. These schemes are described in the notes by Brion [3] and Duan [8]in the present volume. This last aspect of BGG-operators is discussed in [11],Appendix C.The reader may also consult [15] for a detailed treatment of the so-calledSchubert calculus of the coinvariant algebra, that is based on BGG-operators.3 Structure constants for Schubert classesIn the geometry of ag manifolds G=B a large role is played by the Schubert cellsBwB=B and their closures called Schubert varieties. We set Xw := Bw0wB=B.The cohomology class [Xw] of Xw lies in H2l(w)(G=B;Z). The Schubert cellsform a cellular decomposition of G=B, so the classes [Xw] form an additive basisfor the cohomology.Our goal, in this section, is to give a closed formula for the constants cuwv ,appearing in the decomposition of the product[Xw] [ [Xv] =Xu cuwv[Xu] (2)of Schubert classes.We shall need a couple of tools that we describe now.The characteristic map c : S ! H�(G=B;Z) of the �bration G ! G=B isusually called the Borel characteristic map. Its kernel is generated by positivedegree W -invariants, and c 
Q is surjective (cf. [2]), so that the cohomologyring H�(G=B;Q) is identi�ed with the quotient of S 
 Q modulo the idealgenerated by positive degree W -invariants. By combining this last propertywith Lemma 2, we infer that the BGG-operators induce { via the characteristicmap { operators Aw on H�(G=B;Q) lowering the degree by 2l(w).In particular, for a; b 2 H�(G=B;Q) and a simple root �, we haveA�(a [ b) = A�(a) [ b+ s�(a) [ A�(b) : (3)Iterations of this equation will play an important role in the present section andthe next one.Note also that the action of W on S induces { via the characteristic map {an action of W on H�(G=B;Q). (This action will be described below in termsof Schubert classes { cf. Lemma 4.)We record the following equation relating three \heroes" of the present note:the characteristic map, BGG-operators, and Schubert classes (cf. [7], Section 4and [1], Section 4): for f 2 Sk, in H�(G=B;Z) we havec(f) = Xl(w)=kAw(f)[Xw] : (4)4



This equation is closely related to the question of �nding polynomial represen-tatives of Schubert classes { a problem that we do not address in the presentnote (cf. [11] for a discussion of this issue).The next result says how the operators Aw act on Schubert classes (cf. [1],Theorem 3.14 (i)):Lemma 3 For l(vw�1) = l(v)� l(w), we haveAw([Xv ]) = [Xvw�1 ] ; (5)and in the opposite case, Aw([Xv]) = 0 .We have also the following formula for the action of a simple reection on aSchubert class (cf. [1], Theorem 3.12 (iv) and [7], Proposition 3):Lemma 4 For a simple root � and w 2 W ,s�([Xw]) = [Xw] if l(ws�) = l(w) + 1 ; (6)s�([Xw]) = �[Xw]�X(�_; �)[Xws�s� ] if l(ws�) = l(w)� 1 ; (7)where the sum is over all positive roots � 6= � such that l(ws�s�) = l(w).We now proceed towards computing the structure constants cuwv. By com-bining Equations (2) and (5), we can express the coeÆcient cvwv as follows:cuwv = Au([Xw] [ [Xv]) : (8)Suppose that l(w) = k and l(v) = l. Take a reduced decomposition of u:u = s�1 � � � s�k+l :Iterating (3) we obtaincuwv = A�1 � � �A�k+l([Xw] [ [Xv]) =XAI([Xw]) [ AI�([Xv]) ;where the sum is over all subsequences I = (i1 < � � � < ik) � f1; 2; : : : ; k + lg,AI := A�i1 � � �A�ik , and AI� is obtained by replacing in A�1 � � �A�k+l each A�iby s�i for i 2 I . By Lemma 3 we infer the following result.Theorem 1 With the above notation,cuwv =XAI�([Xv]) ; (9)where the sum runs over all I such that s�i1 � � � s�ik is a reduced decompositionof w. 5



Applying successively to the summands in (9) the formulas (5), (6), and (7),we get an expression for the constants cuwv.Recall the following formula for multiplication by the classes of Schubertdivisors in H�(G=B;Z):Theorem 2 (Chevalley, [5]) For w 2W , and a simple root �,[Xw] [ [Xs� ] =X(�_; !�)[Xws� ] ; (10)where � runs over positive roots such that l(ws�) = l(w)+1 and !� denotes thefundamental weight associated with �.Proof. We prove Equation (10) using Theorem 1. By the de�nition of a funda-mental weight, we have for  2 �, (!�; _) = Æ� , the Kronecker delta. Thisimplies that A(!�) = Æ� , and using Equation (4) we get c(!�) = [Xs� ]. Fixw 2 W and pick f 2 S
Q such that (c
Q)(f) = [Xw]. Then in H�(G=B;Q),[Xs� ] [ [Xw] = (c
Q)(!� � f) ; (11)and by Theorem 1 we obtain that the coeÆcient of the Schubert class [Xu] inthe expansion of (11) can be evaluated as the sum (9) with [Xv] replaced by!�.Take a reduced decomposition u = s�1 � � � s�h . By the \Exchange Condition"(cf. [18], pp.14{15), a reduced decomposition for w can be gotten from the onefor u by omitting one simple reection if u = ws� for some (positive) root �.Conversely, if w = s�1 � � � s�p�1s�p+1 � � � s�h , thenw�1u = s�h � � � s�p � � � s�h = s�for � = s�h � � � s�p+1(�p). The root � is positive by, e.g., [15], Proposition 3.6because s�h � � � s�1 is reduced.Since the omitted simple reection is unique, the looked at sum (9) hasexactly one summands�1 � � � s�p�1A�ps�p+1 � � � s�h(!�) = A�ps�p+1 � � � s�h(!�) :The latter expression equals (�_; !�) because A�p(g) = (�_p ; g) for g 2 S1 ,the inner product ( ; ) isW -invariant, and s�h � � � s�p+1(�_p ) = �_. This provesthe theorem.For an algebraic proof in the SLn-case3 along these lines, see [20]. A geo-metric proof in the SLn-case is given in the notes by Brion [3].The same method works for all spaces G=P , where P is a parabolic subgroupof G. Let � be a subset of � and let W� be the subgroup of W generated byfs�g�2�. We set P� := BW�B. Denote by W � the setW � := fw 2 W : l(ws�) = l(w) + 1 8� 2 �g:3This case was obtained by Monk [21] using di�erent methods.6



This last set is the set of minimal length left coset representatives of W� in W .The projection G=B ! G=P� induces an injectionH�(G=P�;Z) ,! H�(G=B;Z)which additively identi�es H�(G=P�;Z) withLw2W � Z[Xw]. Multiplicatively,H�(G=P�;Q) is identi�ed with the ring of invariants H�(G=B;Q)W� . We referfor details to [1], Sect. 5.The restriction c : SW� ! H�(G=P�;Z) of the Borel characteristic mapsatis�es, for anyW�-invariant f from Sk, the following equation inH�(G=P�;Z):c(f) = Xw2W�l(w)=k Aw(f)[Xw] : (12)For maximal parabolic subgroups P of the symplectic and orthogonal groups,this method led to combinatorial expressions for the structure constants in theproducts of arbitrary Schubert classes by some \special Schubert classes" inH�(G=P;Z) (cf. [24], [25], [26], [9], and [23]).Remark 1 Equation (3) is often called the \Leibniz-type formula". Kostantand Kumar [19] discovered independently, in the context of the \nil Hecke ring",that the structure constants can be computed via the iteration of the Leibniz-typeformula.4 A combinatorial proof of the Pieri formulaIn this section, we give a proof of the classical Pieri formula for the Grassman-nian Gr(n;m) of n-dimensional subspaces in Cm via the above method. In fact,there are two Pieri formulas: for multiplication by the Chern classes[14] of thetautological subbundle on Gr(n;m), and for multiplication by the Chern classesof the tautological quotient bundle on Gr(n;m). The latter version appearsmore often mainly because the Chern classes of the tautological quotient bun-dle enjoy a simple interpretation in terms of the classical \Schubert conditions":the kth Chern class is represented by the locus of all n-planes in Cm which havepositive dimensional intersection with a �xed (m � n � k + 1)-plane in Cm.By passing to the dual Grassmannian, we see that both formulas are, in fact,equivalent. We shall treat in detail the latter case. We also make a link withthe ring of symmetric functions, known since Giambelli (cf. [12] and [13]).For the remainder of this note, we set q := m� n.In the following, I , J will denote strict partitions contained in the partition(m;m� 1; : : : ; q + 1) with exactly n parts 4. (We identify partitions with theirYoung diagrams, as is customary.) Note that such partitions contain the \upper-left triangle" Æ = (n; n� 1; : : : ; 1) :4In other words, I = (i1; : : : ; in) where m � i1 > � � � > in � 1.7



On the other hand, �, � will denote \ordinary" partitions contained in (qn). Infact, there is a bijection between these two sets: with I , we associate � de�nedby �p = ip � n+ p� 1 for p = 1; : : : ; n.Also, we associate with I the following permutation wI in the symmetricgroup Sm:wI = � � � (sq��3+3 � � � sq+1sq+2)(sq��2+2 � � � sqsq+1)(sq��1+1 � � � sq�1sq) : (13)It is easy to see, that the right-hand side of (13) gives a reduced decompositionof wI .Take for example m = 7, n = 3, and I = (6; 4; 3). Then � = (3; 2; 2) andwI = s5s6s4s5s2s3s4 which is the permutation [1; 3; 6; 7; 2; 4; 5] (we display apermutation as the sequence of its consecutive values).In general, for I = (m � i1 > � � � > in � 1), we have in Sm,wI = [j1 < � � � < jq ;m+ 1� in < � � � < m+ 1� i1] ;where j1; : : : ; jq are uniquely determined by I .Let B � SLm(C) be the Borel group of lower triangular matrices. Usingthe notation of the previous section, we set P = P�, where � is obtained byomitting the simple root "n � "n+1 in the basis "1� "2; "2� "3; : : : ; "m�1� "mof the root system of type (Am�1):f"i � "j j i 6= jg � �mi=1R"i :We have an identi�cation SLm(C)=P = Gr(n;m). We set XI := Bw0wIP=P ,where w0 = [m;m� 1; : : : ; 1], and X� := XI for � associated with I as above.Note that [X�] 2 H2j�j(Gr(n;m);Z), where j�j denotes the sum of the parts of�. Denote by (k+) the strict partition (k+n; n�1; : : : ; 1), so that its associated� is a one-row partition (k).We want to compute the coeÆcients cJ in the expansion:[XI ] [ [X(k+)] =XJ cJ [XJ ] :Set xi := �"m+1�i for i = 1; : : : ;m, so that c(x1); : : : ; c(xq) are the Chernroots of the tautological quotient bundle on on Gr(n;m). The Borel charac-teristic map allows us to treat H�(Gr(n;m);Z) as a quotient of the ring S0 ofpolynomials symmetric in x1; : : : ; xq and in xq+1; : : : ; xm. (Recall that for type(Am�1), the characteristic map is surjective without tensoring by Q.) The op-erators s� and A� indexed by the simple roots corresponding to P are inducedby the following operators si and Ai, i = 1; : : : ; q � 1; q + 1; : : : ;m� 1; on S0.The operator si interchanges xi with xi+1, leaving other variables invariant, andAi is the ith simple (Newton's) divided di�erence @i: for f 2 S0,@i(f) = f � si(f)xi � xi+1 :8



The operator Aw on S0, in this case (w 2 Sm), will be denoted by @w, as iscustomary.Let ek = ek(x1; : : : ; xq) be the kth elementary symmetric polynomial inx1; : : : ; xq . We now record:Lemma 5 For any k = 1; : : : ; q, the following equation holds in H�(Gr(n;m);Z):c(ek) = [X(k)] :Proof. By virtue of Equation (12), it suÆces to show that@w(ek) = 0 unless w = w(k+) ; and @w(k+)(ek) = 1 :Note that w(k+) = sq�k+1 � � � sq�1sq . The displayed assertion follows by induc-tion on the number of variables, by invoking the following properties of @i:@i(er(x1; : : : ; xj)) 6= 0 only if j = i ;@i(er(x1; : : : ; xi)) = er�1(x1; : : : ; xi�1) :The lemma is proved.This lemma says that X(k) represents the kth Chern class of the tautologicalrank q quotient bundle on Gr(n;m).Number the successive columns of J from left to right with m;m� 1; : : : ; 1,the successive rows from top to bottom with 1; : : : ; n, and use the matrix coor-dinates for boxes in J .Let J� be the e�ect of subtracting the triangle Æ from J . In the following,D will denote a subset of J�.De�nition 2 Read J� row by row from left to right and from top to bottom.Every box from D (resp. from J� nD) in column i gives us si (resp. @i). Then@DJ is the composition of the resulting si's and @i's (the composition writtenfrom right to left), and rD is the word obtained by erasing all the @i's from @DJ .In particular, rJ� is the reduced decomposition (13) of wJ , and @;J = @wJ .Take for example m = 8, n = 3, and J = (8; 6; 5). In the following picture,\�" depicts a box in D and \Æ" stands for a box in J� n D. Moreover, therow-numbers and column-numbers are displayed.� � Æ � �� � � Æ Æ Æ� � � � � � � �8 7 6 5 4 3 2 1123Then we have@DJ = s4s5@6s7@3@4@5s6s1s2s3s4s5 and rD = s4s5s7s6s1s2s3s4s5 :9



If rD is a reduced decomposition of wI , then D is a disjoint union of thefollowing \p-ribbons". For �xed p = 1; : : : ; n, the p-ribbon consists of all boxesof D giving rise to those si (in rD) which \transport" the item \m + 1 � ip"from its position in [1; 2; : : : ;m] to its position in the sequence wI .In the above example, for I = (7; 5; 2), the 1-ribbon consists of the dots inthe �rst row, the 2-ribbon is f(3; 4); (3; 5); (2; 6)g, and the 3-ribbon is f(3; 7)g.It can happen that some p-ribbon is empty. Suppose that p is such that thep-ribbon is not empty (this is equivalent to the fact that the box (p; n+ p� 1)belongs to the p-ribbon). Then the column-numbers of boxes in the p-ribbonare m+1� ip; : : : ; n+ p� 2; n+ p� 1, and their row-numbers weakly increasewhile reading D from left to right and from top to bottom.By Theorem 1 and Lemma 5, we havecJ =X@DJ (ek) ; (14)where the sum is over all subsets D � J� such that rD is a reduced decomposi-tion of wI .We need the following lemma.Lemma 6 If there are boxes (i; j) and (i�1; j�1) in J� nD, then @DJ (ek) = 0.Proof. We set E := Qni=1(1 + xi) and we shall prove that @DJ (E) = 0. Tocompute with compositions of the si's and @i's in @DJ , it is handy to introducethe following more general functions. For a = (a1; a2; : : : ; am) 2 f0; 1gm, we setEa :=Qmi=1(1 + aixi) , so that E = E(1;:::;1;0;:::;0) with q 1's. We have:si(Ea) = Ea0 where a0 = (a1; : : : ; ai�1; ai+1; ai; ai+2; : : : ; am) ; (15)@i(Ea) = d �Ea0 if ai+1 = ai + d ; (16)where a0 = (a1; : : : ; 0; 0; : : : ; an) is a with ai; ai+1 replaced by zeros. Using(15) and (16), we see that the operator @j in @DJ , corresponding to the box(i; j) \kills" the function Ea that has been obtained by applying the previousoperators sr and @r (in @DJ ) to E. This proves the lemma.It follows from this lemma that there is at most one D � J� such that rDis a reduced decomposition of wI and @DI (ek) 6= 0, namely D = I�. (Indeed,the p-ribbon must exactly coincide with the pth row of I� .) In other words, thesum in (14) has at most one summand.Second, applying Lemma 6 again, we see that D = I� gives a non-zerocontribution to the sum in (14) i� J n I is a horizontal strip with pairwiseseparated rows5. In this case, using (15) and (16), we obtain @I�J (ek) = 1.We rewrite the outcome of the above considerations in terms of Schubertclasses [X�] 2 H�(Gr(n;m);Z) in part (i) of the following theorem. Part (ii)follows from part (i) by passing to the dual Grassmannian.5Recall that a horizontal strip is a skew diagram with at most one box in each column,and a vertical strip is a skew diagram with at most one box in each row.10



Theorem 3 (Pieri, [22]) (i) For any partition � � (qn) and k = 1; : : : ; q,[X�] [ [X(k)] =X� [X�] ; (17)where j�j = j�j+ k and � n � is a horizontal strip.(ii) For any partition � � (qn) and p = 1; : : : ; n,[X�] [ [X(1;:::;1)] =X� [X�] ; (18)where 1 appears p times, j�j = j�j+ p and � n � is a vertical strip.For example, we have in H�(Gr(3; 8);Z):[X(4;2)] [ [X(3)] = [X(5;4)] + [X(5;3;1)] + [X(5;2;2)] + [X(4;4;1)] + [X(4;3;2)] :Remark 2 There are several (really) di�erent proofs of the Pieri formula. Wedo not attempt to make a survey here. The proof that appears most often inmonographs is based on studying the triple intersection of general translates ofSchubert varieties. This proof appeared originally in Hodge's paper [16]. Cf.also [10], x9.4 , and the notes of Brion [3], where this proof is discussed in thecontext of Richardson varieties.Remark 3 The Schubert classes [X(k)] and [X(1;:::;1)] are often called \spe-cial". These classes and the \special Schubert classes" in [24], [25], [26], and[9] have the following property: the corresponding w 2 W has a unique reduceddecomposition. This seems to be a proper group-theoretic characterization of a\special Schubert class", and was also remarked by Kirillov and Maeno.Acknowledgements. I wish to thank Michel Brion for his encouragement towrite up this material, and for some valuable comments.References[1] I. N. Bernstein, I. M. Gelfand and S. I. Gelfand, Schubert cells and coho-mology of the spaces G=P , Russian Math. Surveys, 28:3 (1973), 1{26.[2] A. Borel, Sur la cohomologie des espaces �br�es principaux et des espaceshomog�enes de groupes de Lie compacts, Ann. of Math. 57 (1953), 115{207.[3] M. Brion, Lectures on geometry of ag varieties, this volume.[4] A. S. Buch, Combinatorial K-theory, this volume.[5] C. Chevalley, Sur les d�ecompositions cellulaires des espaces G=B, AlgebraicGroups and their generalizations, (W. S. Haboush and B. J. Parshall, eds.),Proc. Symp. Pure Math. 56, Part I (1994), AMS, 1{23.11
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