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Let c1, c2, . . . be variables with deg(ci) = i.

Fix n, e ∈ N. Let P (c1, . . . , ce) be a homogeneous polynomial
of degree n.

We say that P is positive for ample vector bundles, if for
every n-dimensional projective variety X
and any ample vector bundle of rank e on X,
deg(P (c1(E), . . . , ce(E)) > 0.

Computations of Griffiths: c1, c2, c21 − c2.

red herring: it was thought that c21− 2c2 is positive but is not.
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Kleiman: polynomials that are positive for ample
vector bundles on surfaces are nonnegative combinations of c2
and c21 − c2.

Bloch-Gieseker: cn is always positive; important link to Hard
Lefschetz Theorem.

Fulton-Lazarsfeld showed that a polynomial is positive
iff its coefficients in the basis od Schur polynomials are
nonnegative.

n = 3 c3, c2c1 − c3, c31 − 2c2c1 + c3.

For globally generated bundles, a very closed result was
obtained by Usui-Tango.

Whenever we speak about the classes of algebraic cycles, we
always mean their Poincaré dual classes in cohomology.
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Let Σ be an algebraic right-left invariant set in J k(Cm
0 ,C

n
0 ).

Then there exists a universal polynomial T Σ over Z

in m+ n variables which depends only on Σ, m and n

s.t. for any manifolds Mm, Nn and general map f :M → N

the class of Σ(f) = f−1
k (Σ) is equal to

T Σ(c1(M), . . . , cm(M), f∗c1(N), . . . , f∗cn(N)).

where fk :M → J k(M,N) is the k-jet extension of f .

If a singularity class Σ is “stable” (e.g. closed under the

contact equivalence), then T Σ depends on ci(TM − f∗TN).
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Fix k ∈ N.

Autn:= group of k-jets of automorphisms of (Cn, 0).

J = J k(m,n):= space of k-jets of (Cm, 0)→ (Cn, 0).

G := Autm × Autn.

Consider the universal principal G-bundle EG→ BG, such
that every principal G-bundle E → B is the pull-back via a
map B → BG.

J̃ := J̃ (m,n) = EG×G J .
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Let T Σ ∈ H2 codim(Σ)(J̃ ,Z) be the class of Σ̃. Since

H•(J̃ ,Z) ∼= H•(BG,Z) ∼= H•(BGLm × BGLn,Z) ,

T Σ is identified with a polynomial in c1, . . . , cm and
c′1, . . . , c

′
n which are the Chern classes of universal bundles

Rm and Rn on BGLm and BGLn:

T Σ = T Σ(c1, . . . , cm, c
′
1, . . . , c

′
n).

(Rm “parametrizes”TM for dimM = m, similarly for Rn.)
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of stable germs (C•, 0)→ (C•+k, 0), under the equivalence

generated by the right-left equivalence and suspension.

{singularities} ←→ {finite dim’l. C− algebras }

Ai ←→ C[[x]]/(xi+1), i ≥ 0

Ia,b ←→ C[[x, y]]/(xy, xa + yb), b ≥ a ≥ 2

IIIa,b ←→ C[[x, y]]/(xy, xa, yb), b ≥ a ≥ 2

Ai, k = 0:

(x, u1, . . . , ui−1)→ (xi+1 +
∑i−1

j=1 ujx
j , u1, . . . , ui−1)
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Computing Thom polynomials
For a singularity η by T η we mean the Thom polynomial
associated with the closure of the right-left orbit of its
representative.

Let η be a singularity with prototype
κ : (Cm, 0)→ (Cm+k, 0).

Gη = maximal compact subgroup of

Autκ = {(ϕ, ψ) ∈ Diff(Cm, 0)×Diff(Cm+k, 0) : ψ◦κ◦ϕ−1 = κ}

Well defined up to conjugacy; it can be chosen so that the
images of its projections to the factors are linear. Its
representations on the source and target will be denoted by

λ1(η) and λ2(η) .
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principal Gη-bundle EGη → BGη using the representations
λ1(η) and λ2(η): E′

η and Eη. The Chern class and Euler

classs of η are defined by

c(η) :=
c(Eη)

c(E′
η)

and e(η) := e(E′
η).

Ai, C[[x]]/(xi+1); Gη = U(1)× U(k).

c(Ai) =
1 + (i+ 1)x

1 + x

k∏

j=1

(1 + yj),

e(Ai) = i! xi
k∏

j=1

(yj − x)(yj − 2x) · · · (yj − ix).

Singularities and positivity – p. 9/37



I2,2, C[[x, y]]/(xy, x2 + y2); Gη
∼= U(1)× U(1)× U(k).

Singularities and positivity – p. 10/37



I2,2, C[[x, y]]/(xy, x2 + y2); Gη
∼= U(1)× U(1)× U(k).

c(I2,2) =
(1 + 2x1)(1 + 2x2)

(1 + x1)(1 + x2)

k∏

j=1

(1 + yj),

Singularities and positivity – p. 10/37



I2,2, C[[x, y]]/(xy, x2 + y2); Gη
∼= U(1)× U(1)× U(k).

c(I2,2) =
(1 + 2x1)(1 + 2x2)

(1 + x1)(1 + x2)

k∏

j=1

(1 + yj),

e(I2,2) = x1x2(x1−2x2)(x2−2x1)

k∏

j=1

(yj−x1)(yj−x2)(yj−x1−x2).

Singularities and positivity – p. 10/37



I2,2, C[[x, y]]/(xy, x2 + y2); Gη
∼= U(1)× U(1)× U(k).

c(I2,2) =
(1 + 2x1)(1 + 2x2)

(1 + x1)(1 + x2)

k∏

j=1

(1 + yj),

e(I2,2) = x1x2(x1−2x2)(x2−2x1)

k∏

j=1

(yj−x1)(yj−x2)(yj−x1−x2).

III2,2, C[[x, y]]/(xy, x2, y2); Gη = U(2)× U(k−1).

Singularities and positivity – p. 10/37



I2,2, C[[x, y]]/(xy, x2 + y2); Gη
∼= U(1)× U(1)× U(k).

c(I2,2) =
(1 + 2x1)(1 + 2x2)

(1 + x1)(1 + x2)

k∏

j=1

(1 + yj),

e(I2,2) = x1x2(x1−2x2)(x2−2x1)

k∏

j=1

(yj−x1)(yj−x2)(yj−x1−x2).

III2,2, C[[x, y]]/(xy, x2, y2); Gη = U(2)× U(k−1).

c(III2,2) =
(1+2x1)(1+2x2)(1+x1+x2)

(1+x1)(1+x2)

k−1∏

j=1

(1 + yj).

Singularities and positivity – p. 10/37



Fix a singularity η.

Singularities and positivity – p. 11/37



Fix a singularity η. Assume that the number of singularities
of codimension ≤ codim η is finite.

Singularities and positivity – p. 11/37



Fix a singularity η. Assume that the number of singularities
of codimension ≤ codim η is finite. Suppose that the Euler

classes of all singularities of smaller codimension than
codim(η), are not zero-divisors. Then

Singularities and positivity – p. 11/37



Fix a singularity η. Assume that the number of singularities
of codimension ≤ codim η is finite. Suppose that the Euler

classes of all singularities of smaller codimension than
codim(η), are not zero-divisors. Then

(i) if ξ 6= η and codim(ξ) ≤ codim(η), then T η(c(ξ)) = 0;

Singularities and positivity – p. 11/37



Fix a singularity η. Assume that the number of singularities
of codimension ≤ codim η is finite. Suppose that the Euler

classes of all singularities of smaller codimension than
codim(η), are not zero-divisors. Then

(i) if ξ 6= η and codim(ξ) ≤ codim(η), then T η(c(ξ)) = 0;

(ii) T η(c(η)) = e(η).

Singularities and positivity – p. 11/37



Fix a singularity η. Assume that the number of singularities
of codimension ≤ codim η is finite. Suppose that the Euler

classes of all singularities of smaller codimension than
codim(η), are not zero-divisors. Then

(i) if ξ 6= η and codim(ξ) ≤ codim(η), then T η(c(ξ)) = 0;

(ii) T η(c(η)) = e(η).

This system of equations (taken for all such ξ’s) determines
the Thom polynomial T η in a unique way.

Singularities and positivity – p. 11/37



Fix a singularity η. Assume that the number of singularities
of codimension ≤ codim η is finite. Suppose that the Euler

classes of all singularities of smaller codimension than
codim(η), are not zero-divisors. Then

(i) if ξ 6= η and codim(ξ) ≤ codim(η), then T η(c(ξ)) = 0;

(ii) T η(c(η)) = e(η).

This system of equations (taken for all such ξ’s) determines
the Thom polynomial T η in a unique way.

Notation: “shifted”parameter r := k + 1;

Singularities and positivity – p. 11/37



Fix a singularity η. Assume that the number of singularities
of codimension ≤ codim η is finite. Suppose that the Euler

classes of all singularities of smaller codimension than
codim(η), are not zero-divisors. Then
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of codimension ≤ codim η is finite. Suppose that the Euler

classes of all singularities of smaller codimension than
codim(η), are not zero-divisors. Then

(i) if ξ 6= η and codim(ξ) ≤ codim(η), then T η(c(ξ)) = 0;

(ii) T η(c(η)) = e(η).

This system of equations (taken for all such ξ’s) determines
the Thom polynomial T η in a unique way.

Notation: “shifted”parameter r := k + 1;
η(r) = η : (C•, 0)→ (C•+r−1, 0);
T η
r = Thom polynomial of η(r).
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In the Chern class monomial basis, the expansions of Thom
polynomials are not necesarry positive:

Singularities and positivity – p. 12/37



In the Chern class monomial basis, the expansions of Thom
polynomials are not necesarry positive:

r = 1, I2,2: c22 − c1c3, I2,3: 2c1c
2
2 − c

2
1c3 + 2c2c3 − 2c1c4

Singularities and positivity – p. 12/37



In the Chern class monomial basis, the expansions of Thom
polynomials are not necesarry positive:

r = 1, I2,2: c22 − c1c3, I2,3: 2c1c
2
2 − c

2
1c3 + 2c2c3 − 2c1c4

We got positive expansions in the basis of Schur functions of
Thom polynomials of singularities A1(r), A2(r), A3(r),
I2,2(r), III2,3(r), III3,3(r), A4(r), r = 1, ..., 4

Singularities and positivity – p. 12/37



In the Chern class monomial basis, the expansions of Thom
polynomials are not necesarry positive:

r = 1, I2,2: c22 − c1c3, I2,3: 2c1c
2
2 − c

2
1c3 + 2c2c3 − 2c1c4

We got positive expansions in the basis of Schur functions of
Thom polynomials of singularities A1(r), A2(r), A3(r),
I2,2(r), III2,3(r), III3,3(r), A4(r), r = 1, ..., 4

Theorem. (PP+AW, 2006) Let Σ be a singularity class.
Then for any partition I the coefficient αI in

T Σ =
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polynomials are not necesarry positive:

r = 1, I2,2: c22 − c1c3, I2,3: 2c1c
2
2 − c

2
1c3 + 2c2c3 − 2c1c4

We got positive expansions in the basis of Schur functions of
Thom polynomials of singularities A1(r), A2(r), A3(r),
I2,2(r), III2,3(r), III3,3(r), A4(r), r = 1, ..., 4

Theorem. (PP+AW, 2006) Let Σ be a singularity class.
Then for any partition I the coefficient αI in

T Σ =
∑

αISI(T
∗M − f∗T ∗N) ,

is nonnegative.

– conjectured by Feher-Komuves (2004).
The theorem is not obvious. But its proof is obvious.

Singularities and positivity – p. 12/37



If C is a cone in a v.b. E, z(C,E) := sE
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In the def. of Thom polynomial via classifying spaces of
singularities, we replace Rm and Rn on BGL(m)× BGL(n)
by arbitrary vector bundles E and F on an arbitrary common
base.

Given Σ of codim c, we get Σ(E,F ) with class∑
I αISI(E

∗−F ∗).

We specialize: X proj. of dim c, E trivial, F ample.
Σ(E,F ) is a cone in J (E,F ) and
z(Σ(E,F ),J (E,F )) =

∑
I αISI(E

∗ − F ∗) =
∑

I αISI∼(F ).
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If C is a cone in a v.b. E, z(C,E) := sE
∗([C]).

If E is ample, and dim(C) = rank(E), then deg(z(C,E) > 0.

In the def. of Thom polynomial via classifying spaces of
singularities, we replace Rm and Rn on BGL(m)× BGL(n)
by arbitrary vector bundles E and F on an arbitrary common
base.

Given Σ of codim c, we get Σ(E,F ) with class∑
I αISI(E

∗−F ∗).

We specialize: X proj. of dim c, E trivial, F ample.
Σ(E,F ) is a cone in J (E,F ) and
z(Σ(E,F ),J (E,F )) =

∑
I αISI(E

∗ − F ∗) =
∑

I αISI∼(F ).

Since J (E,F ) = FN is ample, the latter polynomial is
positive for ample v.b., so is a positive combination of Schur
polynomials.
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Klyachko and, independently, Kazarian proposed after
another, even“more obvious”proof:
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Klyachko and, independently, Kazarian proposed after
another, even“more obvious”proof:

Using some Veronese map,“materialize”all singularity classes
in sufficiently large Grassmannians; to write down all details
will be a good subject for a Master Thesis.
Fix a singularity class Σ and take the Schur expansion of T Σ.
Take sufficiently large Grassmannian containing Σ and such
that specializing T Σ in the tautological bundle Q, we do not
lose any Schur summand.
Identify – by the Giambelli formula – a Schur polynomial of Q
with a Schubert cycle in the Grassmannian.
To test a coefficient, intersect [Σ] with the corresponding
dual Schubert cycle.
By the Bertini-Kleiman theorem, put the cycles in a general
position, so that we can reduce to set-theoretic intersection,
which is nonnegative.
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R(A,B) :=
∏

a∈A, b∈B(a−b) .
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Factorization: For partitions I = (i1, . . . , im) and
J = (j1, . . . , jk),
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R(A,B) :=
∏

a∈A, b∈B(a−b) .

Factorization: For partitions I = (i1, . . . , im) and
J = (j1, . . . , jk), consider the partition

(j1, . . . , jk, i1 + n, . . . , im + n).
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R(A,B) :=
∏

a∈A, b∈B(a−b) .

Factorization: For partitions I = (i1, . . . , im) and
J = (j1, . . . , jk), consider the partition

(j1, . . . , jk, i1 + n, . . . , im + n).

We have

S(j1,...,jk,i1+n,...,im+n)(Am − Bn) = SI(A) R(A,B) SJ(−B) .
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R(A,B) :=
∏

a∈A, b∈B(a−b) .

Factorization: For partitions I = (i1, . . . , im) and
J = (j1, . . . , jk), consider the partition

(j1, . . . , jk, i1 + n, . . . , im + n).

We have

S(j1,...,jk,i1+n,...,im+n)(Am − Bn) = SI(A) R(A,B) SJ(−B) .

- discovered by Berele-Regev in their study of polynomial
characters of Lie superalgebras; particular cases known to
19th century algebraists: Pomey etc.
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Singularity I2,2(r), codim(I2,2(r)) = 3r + 1.
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Singularity I2,2(r), codim(I2,2(r)) = 3r + 1. T1 = S22
(Porteous 1971). So assume that r ≥ 2.

Equations characterizing the Thom polynomial: A0, A1, A2:

Tr(−Br−1) = Tr(x− 2x −Br−1) = Tr(x− 3x −Br−1) = 0 ,
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Singularity I2,2(r), codim(I2,2(r)) = 3r + 1. T1 = S22
(Porteous 1971). So assume that r ≥ 2.

Equations characterizing the Thom polynomial: A0, A1, A2:

Tr(−Br−1) = Tr(x− 2x −Br−1) = Tr(x− 3x −Br−1) = 0 ,

I2,2:

Tr(X2− 2x1 − 2x2 −Br−1) =

= x1x2(x1−2x2)(x2−2x1) R(X2+ x1+x2 ,Br−1)
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Introduce the alphabet:

D := 2x1 + 2x2 + x1 + x2
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Introduce the alphabet:

D := 2x1 + 2x2 + x1 + x2

III2,2 :

Tr(X2 −D− Br−2) = 0
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Introduce the alphabet:

D := 2x1 + 2x2 + x1 + x2

III2,2 :

Tr(X2 −D− Br−2) = 0

(The variables here correspond now to the Chern roots of the
cotangent bundles).
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Goal: give a presentation of Tr as a Z-linear combination of
Schur functions
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Lemma. A partition appearing in the Schur function
expansion of Tr contains (r + 1, r + 1) and has at most
three parts.
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three parts.

Linear endomorphism Φ: Si1,i2,i3 7→ Si1+1,i2+1,i3+1.
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Goal: give a presentation of Tr as a Z-linear combination of
Schur functions with explicit algebraic expressions of the
coefficients.

Lemma. A partition appearing in the Schur function
expansion of Tr contains (r + 1, r + 1) and has at most
three parts.

Linear endomorphism Φ: Si1,i2,i3 7→ Si1+1,i2+1,i3+1.

Tr = sum of terms “ αijSij ” in Tr.

Lemma. Tr = T r + Φ(Tr−1).
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Proposition. T r(X2) = (x1x2)
r+1 Sr−1(D).
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Chern numbers of symmetric degeneracy loci; PP, 1988
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Proposition. T r(X2) = (x1x2)
r+1 Sr−1(D).

Sr−1(D)=sr−1(Sym
2(E)), the Segre class, rank(E) = 2.

Complete quadrics: Schubert, Giambelli (19th century);
reneval: De Concini-Procesi, Laksov, Vainsencher, Lascoux,
Thorup (in the 80’s)

Chern numbers of symmetric degeneracy loci; PP, 1988

The Segre class sr−1(Sym
2(E)) is:

∑

p≤q, p+q=r−1

[( r

p+1

)
+

(
r

p+2

)
+ · · ·+

(
r

q+1

)]
Sp,q(E) .
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T 2 = 3S34
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T 2 = 3S34

T2 = Φ(T1)+T 2 = Φ(S22)+3S34 = S133+3S34
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T 3 = 7S46 + 3S55, etc.
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T2 = Φ(T1)+T 2 = Φ(S22)+3S34 = S133+3S34

T 3 = 7S46 + 3S55, etc.

T3 = Φ(T2)+T 3 = Φ(S133+3S34)+T 3 = S244+3S145+7S46+3S55, etc.
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T2 = Φ(T1)+T 2 = Φ(S22)+3S34 = S133+3S34

T 3 = 7S46 + 3S55, etc.

T3 = Φ(T2)+T 3 = Φ(S133+3S34)+T 3 = S244+3S145+7S46+3S55, etc.

One gets a depending on“r”expression: T
I2,2
r =

∑
αISI
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T 2 = 3S34

T2 = Φ(T1)+T 2 = Φ(S22)+3S34 = S133+3S34

T 3 = 7S46 + 3S55, etc.

T3 = Φ(T2)+T 3 = Φ(S133+3S34)+T 3 = S244+3S145+7S46+3S55, etc.

One gets a depending on“r”expression: T
I2,2
r =

∑
αISI

Theorem. (PP, 1988) Let η be of Thom-Boardman type

Σi,.... Then all summands in the Schur function expansion
of T η

r are indexed by partitions containing the rectangle
partition (r+i−1, . . . , r+i−1) (i times).
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Lagrangian Thom polynomials
Let L be a Lagrangian submanifold in the linear symplectic
space V = W ⊕W ∗
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Σ = {x ∈ L : dim(TxL ∩W
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This cycle is the locus of singularities of L→ W . Its
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∗L).

We fix an integer k >> 0 and identify two germs of
Lagrangian submanifolds if the degree of their tangency at 0
is greater than k.
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Lagrangian Thom polynomials
Let L be a Lagrangian submanifold in the linear symplectic
space V = W ⊕W ∗ equipped with the standard symplectic
form.
Classically, in real symplectic geometry, the Maslov class is
represented by the cycle

Σ = {x ∈ L : dim(TxL ∩W
∗) > 0}.

This cycle is the locus of singularities of L→ W . Its
cohomology class is integral, and mod 2 equals w1(T

∗L).

We fix an integer k >> 0 and identify two germs of
Lagrangian submanifolds if the degree of their tangency at 0
is greater than k.
We obtain the space of k-jets of Lagrangian submanifolds,
denoted J k(V ).
Every germ of a Lagrangian submanifold of V is the image of
W via a certain germ symplectomorphism.
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J k(V ) = Aut(V )/P ,

where Aut(V ) is the group of k-jet symplectomorphisms,
and P is the stabilizer of W (k is fixed).
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where Aut(V ) is the group of k-jet symplectomorphisms,
and P is the stabilizer of W (k is fixed).

Of course, LG(V ) is contained in J k(V ).
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J k(V ) = Aut(V )/P ,

where Aut(V ) is the group of k-jet symplectomorphisms,
and P is the stabilizer of W (k is fixed).
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J k(V ) = Aut(V )/P ,

where Aut(V ) is the group of k-jet symplectomorphisms,
and P is the stabilizer of W (k is fixed).

Of course, LG(V ) is contained in J k(V ).

One has also J k(V )→ LG(V ) s.t. L 7→ T0L (which is not a
vector bundle for k ≥ 3).

Let H be the subgroup of Aut(V ) consisting of holomorphic
symplectomorphisms preserving the fibration V → W . Two
Lagrangian jets are Lagrangian equivalent if they belong to
the same orbit of H.

A Lagrange singularity class is any closed pure dimensional
algebraic subset of J k(V ) which is invariant w.r.t. the action
of H.
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A Lagrange singularity class Σ ⊂ J k(V ) defines the
cohomology class

[Σ] ∈ H∗(J k(V ),Z) ∼= H∗(LG(V ),Z) .
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Suppose that this class is equal to
∑

I αI Q̃I(R
∗) , where the

sum runs over strict partitions I ⊂ ρ and αI ∈ Z (it is
important here to use the bundle R∗).
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A Lagrange singularity class Σ ⊂ J k(V ) defines the
cohomology class

[Σ] ∈ H∗(J k(V ),Z) ∼= H∗(LG(V ),Z) .

Suppose that this class is equal to
∑

I αI Q̃I(R
∗) , where the

sum runs over strict partitions I ⊂ ρ and αI ∈ Z (it is
important here to use the bundle R∗).

Then T Σ :=
∑

I αI Q̃I is called the Thom polynomial
associated with the Lagrange singularity class Σ.

Theorem. (MM+PP+AW, 2007) For any Lagrange

singularity class Σ, the Thom polynomial T Σ is a

nonnegative combination of Q̃-functions.
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Proposition. For a strict partition I ⊂ ρ, there exists
only one strict partition I ′ ⊂ ρ and |I ′| = dimLG(V )− |I| ,

for which Q̃I(R
∗) · ΩI ′ 6= 0. (I ′ complements I in ρ).
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Proposition. For a strict partition I ⊂ ρ, there exists
only one strict partition I ′ ⊂ ρ and |I ′| = dimLG(V )− |I| ,

for which Q̃I(R
∗) · ΩI ′ 6= 0. (I ′ complements I in ρ).

Lemma. Let π : E → X be a globally generated bundle on
a proper homogeneous variety X. Let C be a cone in E,
and let Z be any algebraic cycle in X of the complementary
dimension. Then the intersection [C] · [Z] is nonnegative.
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Proposition. For a strict partition I ⊂ ρ, there exists
only one strict partition I ′ ⊂ ρ and |I ′| = dimLG(V )− |I| ,

for which Q̃I(R
∗) · ΩI ′ 6= 0. (I ′ complements I in ρ).

Lemma. Let π : E → X be a globally generated bundle on
a proper homogeneous variety X. Let C be a cone in E,
and let Z be any algebraic cycle in X of the complementary
dimension. Then the intersection [C] · [Z] is nonnegative.

Lemma. We have a natural isomorphism

NGJ
k ∼=

k+1⊕

i=3

Symi(R∗) .
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Suppose that Σ is a Lagrange singularity class.
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Suppose that Σ is a Lagrange singularity class.
Let i : G →֒ J be the inclusion, and denote by

i∗ : H∗(J ,Z)→ H∗(G,Z)

the induced map on cohomology rings.
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Suppose that Σ is a Lagrange singularity class.
Let i : G →֒ J be the inclusion, and denote by

i∗ : H∗(J ,Z)→ H∗(G,Z)

the induced map on cohomology rings.
We have to examine the coefficients αI of the expression

i∗[Σ] =
∑

αI Q̃I(R
∗) .

Let us fix now a strict partition I ⊂ ρ. The coefficient αI is
equal to i∗[Σ] · ΩI ′.
Let

C = CG∩ΣΣ ⊂ NGJ

be the normal cone of G ∩ Σ in Σ. Denote by j : G →֒ NGJ
the zero-section inclusion.
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By deformation to the normal cone, we have in A∗G the
equality

i∗[Σ] = j∗[C] ,

where i∗ and j∗ are the pull-back maps of the corresponding
Chow groups.
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By deformation to the normal cone, we have in A∗G the
equality

i∗[Σ] = j∗[C] ,

where i∗ and j∗ are the pull-back maps of the corresponding
Chow groups.

It follows that
αI = [C] · ΩI ′

(intersection in NGJ ). The bundle R∗ is globally generated;
therefore the vector bundle NGJ is globally generated.

The Lagrangian Grassmannian G = LG(V ) is a homogeneous
space with respect to the action of the symplectic group
Sp(V ). The lemma applied to the bundle NGJ → G, entails
[C] · ΩI ′ nonnegative.
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Some Legendrian geometry
Fix n ∈ N. Let W be a vector space of dimension n, and let
ξ be a vector space of dimension one.
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V := W ⊕ (W ∗ ⊗ ξ).

– standard symplectic space equipped with the twisted
symplectic form ω ∈ Λ2V ∗ ⊗ ξ. Have Lagrangian
submanifolds (germs through the origin).
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submanifolds of α, i.e. the manifolds of dimension n with
tangent spaces contained in Ker(α).
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Some Legendrian geometry
Fix n ∈ N. Let W be a vector space of dimension n, and let
ξ be a vector space of dimension one.

V := W ⊕ (W ∗ ⊗ ξ).

– standard symplectic space equipped with the twisted
symplectic form ω ∈ Λ2V ∗ ⊗ ξ. Have Lagrangian
submanifolds (germs through the origin).
Standard contact space equipped with the contact form α,

V ⊕ ξ = W ⊕ (W ∗ ⊗ ξ)⊕ ξ .

Legendrian submanifolds of V ⊕ ξ are maximal integral
submanifolds of α, i.e. the manifolds of dimension n with
tangent spaces contained in Ker(α).
Any Legendrian submanifold in V ⊕ ξ is determined by its
Lagrangian projection to V and any Lagrangian submanifold
in V lifts to V ⊕ ξ. Singularities and positivity – p. 27/37



We shall work with pairs of Lagrangian submanifolds and try
to classify all the possible relative positions.
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Two Lagrangian submanifolds, if they are in generic position,
intersect transversally. The singular relative positions can be
divided into Legendrian singularity classes.
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Lagrangian submanifolds.
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We shall work with pairs of Lagrangian submanifolds and try
to classify all the possible relative positions.

Two Lagrangian submanifolds, if they are in generic position,
intersect transversally. The singular relative positions can be
divided into Legendrian singularity classes.

The group of symplectomorphisms of V acts on the pairs of
Lagrangian submanifolds.

Lemma. Any pair of Lagrangian submanifolds is
symplectic equivalent to a pair (L1, L2) such that L1 is a
linear Lagrangian subspace and the tangent space T0L2 is
equal to W .

Singularities and positivity – p. 28/37



We shall work with pairs of Lagrangian submanifolds and try
to classify all the possible relative positions.

Two Lagrangian submanifolds, if they are in generic position,
intersect transversally. The singular relative positions can be
divided into Legendrian singularity classes.

The group of symplectomorphisms of V acts on the pairs of
Lagrangian submanifolds.

Lemma. Any pair of Lagrangian submanifolds is
symplectic equivalent to a pair (L1, L2) such that L1 is a
linear Lagrangian subspace and the tangent space T0L2 is
equal to W .

Get 2 types of submanifolds: linear subspaces,

Singularities and positivity – p. 28/37



We shall work with pairs of Lagrangian submanifolds and try
to classify all the possible relative positions.

Two Lagrangian submanifolds, if they are in generic position,
intersect transversally. The singular relative positions can be
divided into Legendrian singularity classes.

The group of symplectomorphisms of V acts on the pairs of
Lagrangian submanifolds.

Lemma. Any pair of Lagrangian submanifolds is
symplectic equivalent to a pair (L1, L2) such that L1 is a
linear Lagrangian subspace and the tangent space T0L2 is
equal to W .

Get 2 types of submanifolds: linear subspaces,
the submanifolds which have the tangent space at the
origin equal to W ; they are the graphs of the differentials of
the functions f : W → ξ satisfying df(0) = 0 and d2f(0) = 0
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Let J k(W, ξ) be the set of pairs (L1, L2) of k-jets of
Lagrangian submanifolds of V such that L1 is a linear space
and T0L2 = W .
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Let J k(W, ξ) be the set of pairs (L1, L2) of k-jets of
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Let π : J k(W, ξ)→ LG(V, ω) be the projection.
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Let J k(W, ξ) be the set of pairs (L1, L2) of k-jets of
Lagrangian submanifolds of V such that L1 is a linear space
and T0L2 = W .

Let π : J k(W, ξ)→ LG(V, ω) be the projection.
Clearly, π is a trivial vector bundle with the fiber equal to:⊕k+1

i=3 Symi(W ∗)⊗ ξ.
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We are interested in a larger group than the group of
symplectomorphisms, the group of contact automorphisms of
V ⊕ ξ.
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Lagrangian submanifolds of V such that L1 is a linear space
and T0L2 = W .

Let π : J k(W, ξ)→ LG(V, ω) be the projection.
Clearly, π is a trivial vector bundle with the fiber equal to:⊕k+1

i=3 Symi(W ∗)⊗ ξ.

We are interested in a larger group than the group of
symplectomorphisms, the group of contact automorphisms of
V ⊕ ξ.
By a Legendre singularity class we mean a closed algebraic
subset Σ ⊂ J k(Cn,C) invariant with respect to holomorphic

contactomorphisms of C2n+1.
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Let J k(W, ξ) be the set of pairs (L1, L2) of k-jets of
Lagrangian submanifolds of V such that L1 is a linear space
and T0L2 = W .

Let π : J k(W, ξ)→ LG(V, ω) be the projection.
Clearly, π is a trivial vector bundle with the fiber equal to:⊕k+1

i=3 Symi(W ∗)⊗ ξ.

We are interested in a larger group than the group of
symplectomorphisms, the group of contact automorphisms of
V ⊕ ξ.
By a Legendre singularity class we mean a closed algebraic
subset Σ ⊂ J k(Cn,C) invariant with respect to holomorphic

contactomorphisms of C2n+1.
Additionally, we assume that Σ is stable with respect to
enlarging the dimension of W .
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Jet bundle J k(W, ξ)
Let X be a topological space, W a complex rank n vector
bundle over X, and ξ a complex line bundle over X.
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Jet bundle J k(W, ξ)
Let X be a topological space, W a complex rank n vector
bundle over X, and ξ a complex line bundle over X.
Let τ : LG(V, ω)→ X denote the Lagrange Grassmann
bundle parametrizing Lagrangian linear submanifolds in Vx,
x ∈ X.
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bundle over X, and ξ a complex line bundle over X.
Let τ : LG(V, ω)→ X denote the Lagrange Grassmann
bundle parametrizing Lagrangian linear submanifolds in Vx,
x ∈ X. We have a relative version of the map:
π : J k(W, ξ)→ LG(V, ω) .

The space J k(W, ξ) fibers over X. It is equal to the
pull-back:

J k(W, ξ) = τ∗
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Jet bundle J k(W, ξ)
Let X be a topological space, W a complex rank n vector
bundle over X, and ξ a complex line bundle over X.
Let τ : LG(V, ω)→ X denote the Lagrange Grassmann
bundle parametrizing Lagrangian linear submanifolds in Vx,
x ∈ X. We have a relative version of the map:
π : J k(W, ξ)→ LG(V, ω) .

The space J k(W, ξ) fibers over X. It is equal to the
pull-back:

J k(W, ξ) = τ∗

(
k+1⊕

i=3

Symi(W ∗)⊗ ξ

)
.

Since any changes of coordinates of W and ξ induce
holomorphic contactomorphisms of V ⊕ ξ, any Legendre
singularity class Σ defines Σ(W, ξ) ⊂ J k(W, ξ).
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The tautological bundle over LG(V, ω) is denoted by RW,ξ, or
by R for short.
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The tautological bundle over LG(V, ω) is denoted by RW,ξ, or
by R for short.

The symplectic form ω gives an isomorphism V ∼= V ∗ ⊗ ξ.

There is a tautological sequence of vector bundles on
LG(V, ω): 0→ R→ V → R∗ ⊗ ξ → 0.

Consider the virtual bundle A := W ∗ ⊗ ξ −RW,ξ.

We have the relation A+ A∗ ⊗ ξ = 0.

The Chern classes ai = ci(A) generate the cohomology

H∗(LG(V, ω),Z) ∼= H∗(J k(W, ξ),Z) as an algebra over
H∗(X,Z).
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Let us fix an approximation of BU(1) =
⋃

n∈NPn, that is we

set X = Pn, ξ = O(1). Let W = 1n be the trivial bundle of
rank n.
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set X = Pn, ξ = O(1). Let W = 1n be the trivial bundle of
rank n.

Then H∗(LG(V, ω),Z) ∼= H∗(J k(W, ξ),Z) is isomorphic to
the ring of Legendrian characteristic classes for degrees
smaller than or equal to n.
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Let us fix an approximation of BU(1) =
⋃

n∈NPn, that is we

set X = Pn, ξ = O(1). Let W = 1n be the trivial bundle of
rank n.

Then H∗(LG(V, ω),Z) ∼= H∗(J k(W, ξ),Z) is isomorphic to
the ring of Legendrian characteristic classes for degrees
smaller than or equal to n.

The element [Σ(W, ξ)] of H∗(J k(W, ξ),Z), is called the
Legendrian Thom polynomial of Σ.
and is often denoted by T Σ. It is written in terms of the
generators ai and s = c1(ξ).
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Theorem. (MM+PP+AW 2010) There exists a
one-parameter family of bases (of the ring of Legendrian
characteristic classes) such that any Legendrian Thom

polynomial T Σ has a positive expansion in any basis from
the family.
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Theorem. (MM+PP+AW 2010) There exists a
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polynomial T Σ has a positive expansion in any basis from
the family.

Specialization to the Lagrangian case, yields the basis {Q̃I}.
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Theorem. (MM+PP+AW 2010) There exists a
one-parameter family of bases (of the ring of Legendrian
characteristic classes) such that any Legendrian Thom

polynomial T Σ has a positive expansion in any basis from
the family.

Specialization to the Lagrangian case, yields the basis {Q̃I}.

Details to appear in Journal of Differential Geometry
(accepted yesterday).
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Legendrian vs. classical
Proposition. For a nonempty stable Legendre singularity
class Σ, the Legendrian Thom polynomial is nonzero.
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Legendrian vs. classical
Proposition. For a nonempty stable Legendre singularity
class Σ, the Legendrian Thom polynomial is nonzero.

Kazarian: The classification of Legendre singularities is
parallel to the classification of critical point singularities w.r.t.
stable right equivalence. For a Legendre singularity class Σ
consider the associated singularity class of maps f :M → C
from n-dimensional manifolds to curves. We denote the
related Thom polynomial by TpΣ.
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class Σ, the Legendrian Thom polynomial is nonzero.

Kazarian: The classification of Legendre singularities is
parallel to the classification of critical point singularities w.r.t.
stable right equivalence. For a Legendre singularity class Σ
consider the associated singularity class of maps f :M → C
from n-dimensional manifolds to curves. We denote the
related Thom polynomial by TpΣ.
We have

TpΣ = T Σ · cn(T
∗M ⊗ f∗TC) .

We know that TpΣ is nonzero. The assertion follows from
the equation.
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Legendrian vs. classical
Proposition. For a nonempty stable Legendre singularity
class Σ, the Legendrian Thom polynomial is nonzero.

Kazarian: The classification of Legendre singularities is
parallel to the classification of critical point singularities w.r.t.
stable right equivalence. For a Legendre singularity class Σ
consider the associated singularity class of maps f :M → C
from n-dimensional manifolds to curves. We denote the
related Thom polynomial by TpΣ.
We have

TpΣ = T Σ · cn(T
∗M ⊗ f∗TC) .

We know that TpΣ is nonzero. The assertion follows from
the equation.
Also, the corresponding Lagrangian Thom polynomial is
nonzero.
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Green-Griffiths conjecture: Every projective algebraic variety
of general type contains a proper subvariety Y ⊂ X such that
all nonconstant entire holomorphic curves f : C→ X must
necessarily lie in Y .
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necessarily lie in Y .

McQuillen: for surfaces with the second Segre class
c21 − c2 > 0 the Green-Griffiths conjecture is true.
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all nonconstant entire holomorphic curves f : C→ X must
necessarily lie in Y .

McQuillen: for surfaces with the second Segre class
c21 − c2 > 0 the Green-Griffiths conjecture is true.

Siu: For a general hypersurface X in projective space, the
Green-Griffiths conjecture is true if deg(X) >> 0.
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Green-Griffiths conjecture: Every projective algebraic variety
of general type contains a proper subvariety Y ⊂ X such that
all nonconstant entire holomorphic curves f : C→ X must
necessarily lie in Y .

McQuillen: for surfaces with the second Segre class
c21 − c2 > 0 the Green-Griffiths conjecture is true.

Siu: For a general hypersurface X in projective space, the
Green-Griffiths conjecture is true if deg(X) >> 0.

Diverio, Merker, Rousseau: for a general hypersurface
X ⊂ Pn+1, the Green-Griffiths conjecture is true if

deg(X) > 2n
5

.
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Rimanyi conjecture: The Thom polynomials of Ai(r) have
positive expansion in the Chern class monomial basis.
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Rimanyi conjecture: The Thom polynomials of Ai(r) have
positive expansion in the Chern class monomial basis.

Theorem of Berczi: Assume that the Rimanyi conjecture
holds. Then for a general hypersurface X ⊂ Pn+1, the
Green-Griffiths conjecture is true if deg(X) > n6.
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Rimanyi conjecture: The Thom polynomials of Ai(r) have
positive expansion in the Chern class monomial basis.

Theorem of Berczi: Assume that the Rimanyi conjecture
holds. Then for a general hypersurface X ⊂ Pn+1, the
Green-Griffiths conjecture is true if deg(X) > n6.

Localization techniques, iterated residues
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THE END
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