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Abstract

The Wronski determinant (Wronskian), usually introduced in standard courses in Ordinary Dif-
ferential Equations (ODE), is a very useful tool in algebraic geometry to detect ramification loci of
linear systems. The present survey aims to describe some ”materializations” of the Wronskian and
of its close relatives, the generalized Wronskians, in algebraic geometry. Emphasis will be put on the
relationships between Schubert Calculus and ODE.
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Introduction

Let f := (f0, f1, . . . , fr) be an (r + 1)-tuple of holomorphic functions in one complex vari-
able. The Wronskian of f is the holomorphic function W (f) obtained by taking the determi-
nant of the Wronski matrix whose entries of the j-th-row, 0 ≤ j ≤ r, are the j-th derivatives
of (f0, f1, . . . , fr). The first appearance of Wronskians dates back to 1812, introduced by
J. M. Hoene–Wronski (1776–1853) in the treatise [27] – see also [43]. The ubiquity of the
Wronskian in nearly all the branches of mathematics, from analysis to algebraic geometry,
from number theory to combinatorics, up to the theory of infinite dimensional dynamical
systems, is definitely surprising if compared with its elementary definition. The present
survey aims to outline links between some different Wronskian materializations to make
evident their common root. The emphasis will be put on the mutual relationships among
linear Ordinary Differential Equations (ODEs), the theory of ramification loci of linear
systems (e.g. Weierstrass points on curves) and the intersection theory of complex Grass-
mann varieties, ruled by the famous Calculus [49] elaborated in 1886 by H. C. H. Schubert
(1848–1911), to which the Italians M. Pieri (1860–1913) and G. Z. Giambelli (1879–1953)
contributed too – see [23, 39].

The notion of Wronskian belongs to mathematicians’ common background because
of its most popular application, which provides a method (sketched in Section 2) to find
a particular solution of a non-homogeneous linear ODE. It relies on the following key
property of the Wronskian of a fundamental system of solutions of a linear homogeneous
ODE: the derivative of the Wronskian is proportional to the Wronskian itself, whose proof is due
to J. Liouville (1809–1882) and N. H. Abel (1802–1829). This apparently innocuous prop-
erty should be considered as the first historical appearance of Schubert Calculus. To see
it, one must embed the Wronski determinant into a full family of generalized Wronskians,
already used in 1939 by F. H. Schmidt [48] to study Weierstrass points and, in recent times
and with the same motivation, by C. Towse in [50]. For a sample of applications to number
theory see also [3] and [34].

If λ = (λ0 ≥ λ1 ≥ . . . ≥ λr) is a partition, the generalized Wronskian Wλ(f) is the
determinant of the matrix whose j-th row, for 0 ≤ j ≤ r, is the row of the derivatives
of order j + λr−j of (f0, f1, . . . , fr). Clearly W (f) = W0(f), where 0 stands for the null
partition (0, . . . , 0). The derivative of W (f), appeared in the proof of Liouville’s–Abel’s
theorem, is the first example of a generalized Wronskian, W(1)(f), corresponding to the
partition (1, 0, . . . , 0). The bridge to Schubert Calculus is our generalization of Liouville’s
and Abel’s theorem (see [21]): Giambelli’s formula for generalized Wronskians holds. More pre-
cisely, if f is a fundamental system of solutions of a linear ODE with constant coefficients,
then Wλ(f) is proportional to the usual Wronski determinant, Wλ(f) = ∆λ(h̄)W0(f),
where ∆λ(h̄) is the Schur polynomial associated to a sequence h̄ = (h0, h1, . . .) of ex-
plicit polynomial expressions in the coefficients of the given ODE and to the partition λ
– see Section 7. If the characteristic polynomial of the linear differential equation splits
into the product of distinct linear factors, then hj is nothing else than the j-th complete
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symmetric polynomial in its roots.

Let us now change the landscape for a while. Take a smooth complex projective curve
C of genus g ≥ 0 and an isomorphism class L ∈ Picd(C) of line bundles of degree d on
C. A gr

d on C is a pair (V, L), where V is a point of the Grassmann variety G(r + 1,H0(L))
parameterizing of (r + 1)-dimensional vector subspaces of the global holomorphic sec-
tions of L. If v = (v0, v1, . . . , vr) is a basis of V, the Wronskian W (v) is a holomorphic

section of the bundle Lg,r,d := L⊗r+1 ⊗K⊗ r(r+1)
2 – see Section 3. It can be constructed by

gluing together local Wronskians W (f), where f = (f0, f1, . . . , fr) is an (r + 1)-tuple of
holomorphic functions representing the basis v in some open set of C that trivializes L.
As changing the basis of V amounts to multiply W (v) by a non-zero complex number, one
obtains a well defined point W (V ) := W (v) (modC∗) in PH0(Lg,r,d) called the Wronskian
of V . The Wronski map G(r + 1,H0(L)) → PH0(Lg,r,d) mapping V to W (V ) is a holomor-
phic map; two extremal cases show that, in general, it is neither injective nor surjective.
Indeed, if C is hyperelliptic and L ∈ Pic2(C) is the line bundle defining its unique g1

2 ,
then G(2,H0(L)) is just a point, and the Wronski map to PH0(Lg,1,2) is trivially injective
and not surjective. On the other hand, if C = P1 and L = OP1(d), then the Wronski map
G(r + 1,H0(OP1(d))) → PH0(L0,r,d) is a finite surjective morphism whose degree is equal
to the Plücker degree of the Grassmannian G(r + 1, d + 1), thence in this case the Wronski
map is not injective, cf. [9].

The problem of determining the pre-image of an element of PH0(L0,r,d) through the
Wronski map defined on G(r + 1,H0(OP1(d))) leads to an intriguing mixing of Geometry,
Analysis and Representation Theory. It turns out that certain non-degenerate elements of
G(r + 1,H0(OP1(d))), defined through suitable intermediate Wronskians, correspond to the
so-called Bethe vectors appeared in representation theory of the Lie algebra slr+1(C). The
correspondence goes through critical points of a remarkable rational function related to
Knizhnikov-Zamolodchikov equation on correlation functions of the conformal field the-
ory, [36, 45, 46, 47]. Interestingly, the critical points of the mentioned rational function in
the case r = 1 were examined in the XIX century, in works of Heine and Stieltjes on sec-
ond order Fuchsian differential equations having a polynomial solution of a prescribed
degree. Schubert calculus on Grassmannians has been introduced even before. However,
the relationship between these items - in the case r = 1 - was conceived a decade ago
in [44, 47].

In the real framework, the relationship between Wronskians, Schubert calculus and
rational curves was discovered and studied by L. Goldberg, A. Eremenko& A. Gabrielov,
V. Karlhamov & F. Sottile, and others – see [24, 10, 11, 29] and references therein.

More links between linear differential equations, projective curves and Schubert vari-
eties appeared in a local context in the investigations of M. Kazarian on singularities of
the boundary of fundamental systems of solutions of linear differential equations, [28].

Here, we take another point of view. A. Nigro proposes to extend the notion of rami-
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fication locus of a linear system on a curve to that of ramification locus of a holomorphic
section of a Grassmann bundle [38]. The construction was motivated by the following ob-
servation (see also [8]): Let Γtriv(ρr,d) be the set of all the sections γ : C → G(r + 1, JdL)
such that the pull back of the tautological bundle Sr over G(r+1, JdL) is trivial. Then each
gr
d := (V, L) induces a holomorphic section γV ∈ Γtriv(ρr,d), via the bundle monomor-

phism C × V → JdL (cf. Section 5.3). The point is that the space Γtriv(ρr,d) is larger
than the space of linear systems, and so the theory becomes richer. A distinguished sub-
variety indwells in G(r + 1, JdL), called Wronski subvariety in [38]. It is a Cartier divisor
which occurs as the zero locus of a certain Wronski section W. The Wronskian of any
section γ ∈ Γtriv(ρr,d) is defined to be W0(γ) := γ∗W (modC∗); if γ = γV for some
V ∈ G(r + 1,H0(L)), it coincides with the usual Wronskian of V – see Section 5. In
particular, ifM is a line bundle defining the unique g1

2 over a hyperelliptic curve of genus
g ≥ 2, the extended Wronski map Γtriv(ρ1,2) → PH0(M⊗2 ⊗K) is dominant (see [8]), its
behavior is closer to the surjectivity of the Wronski map defined on the space of gr

ds on P1.
The latter, in this case, coincides with Γtriv(ρr,d) modulo identification of V with γV .

In general, the construction works as follows. Let % : F → X be a vector bundle of
rank d + 1 and %r,d : G(r + 1, F ) → X be the Grassmann bundle of (r + 1)-dimensional
subspaces of fibers of %. Consider 0 → Sr → %∗r,dF → Qr → 0, the universal exact se-
quence over G, and denote by ∆λ(ct(Qr − %∗r,dF )) the Schur polynomial, associated to the
partition λ, in the coefficients of the Chern polynomial of Qr − %∗r,dF . As is well known
(see e.g. [15, Ch. 14]), the Chow group A∗(G) of cycles modulo rational equivalence is a
free A∗(X)-module generated by B := {∆λ(ct(Qr−%∗r,dF ))∩[G] |λ ∈ P(r+1)×(d−r)}, where
P(r+1)×(d−r) denotes the set of the partitions λ such that λ0 ≤ d−r, and ·∩ [G] denotes the
cap product with the fundamental class of G. Let F• := (Fi)d≥i≥0 be a filtration of F• by
quotient bundles, such that Fi has rank i. Schubert varieties {Ωλ(F•) |λ ∈ P(r+1)×(d−r)}
associated to F• (the definition is in Section 4.4) play the role of generalized Wronski subvari-
eties. In particular Ω(1)(F•) is what in [38] was called the F•-Wronski subvariety of G. It is a
Cartier divisor, that is the zero locus of a sectionW of the bundle

∧r+1 %∗r,dFr+1⊗
∧r+1 S∨r

over G. We say that W is the F•-Wronskian. If γ : X → G is a holomorphic section,
its Wronskian is, by definition, W0(γ) := γ∗W ∈ H0(

∧r+1 F ⊗ ∧r+1 γ∗S∨r ). Its class in
A∗(X) is nothing else than γ∗[Ω(1)(F•)]∩ [G]. The generalized Wronski class of γ in A∗(X) is
γ∗[Ωλ(F•)] ∩ [X], which is the class of γ−1(Ωλ(F•)), provided that the codimension of the
locus coincides with the expected codimension |λ| := λ0 + . . . + λr. Recall that [Ωλ(F•)]
can be easily computed as an explicit linear combination of the elements of the basis B
above, for instance by the recipe indicated in Section 4, especially Theorem 4.13.

Let now εi := ci(Sr) ∈ A∗(G) be the Chern classes of the tautological bundle Sr → G.
Consider a basis v := (v0, v1, . . . , vr) of solutions of the differential equation

y(r+1) − ε1y
(r) + . . . + (−1)r+1εr+1y = 0, (1)

taken in the algebra (A∗(G) ⊗ Q)[[t]] of formal power series in an indeterminate t with
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coefficients in the Chow ring of G with rational coefficients. In Section 7.12 we show that,
for each partition λ ∈ P(d−r)×(r+1),

∆λ(ct(Qr − ρ∗r,dF )) =
Wλ(v)
W0(v)

,

i.e. each element of the A∗(X)-basis of the Chow ring of G is the quotient of generalized
Wronskians associated to a fundamental system of solutions of an ordinary linear ODE
with constant coefficients taken in A∗(G). This will be a consequence of Giambelli’s formula
for generalized Wronskians, proven in [21], which so provides another clue of the ubiquity
of Wronskians in mathematics.

The survey was written with an eye on a wide range of readers, not necessarily ex-
perts in algebraic geometry. We thank the referees for substantial efforts to improve the
presentation.

1 Wronskians, in General

1.1 In the next two sections letK be either the real field R or the complex field C together
with their usual euclidean topologies. If U ⊆ K is an open connected subset ofK, we shall
write O(U) for the K-algebra of regular K-valued functions defined over U : here regular
means either C∞ differentiable if K = R or complex holomorphic if K = C. Let

v := (v0, v1, . . . , vr) ∈ O(U)r+1. (2)

If t is a local parameter on U , we denote by D : O(U) → O(U) the usual derivation d/dt.
The Wronski matrix associated to the (r+1)-tuple (2) is the matrix valued regular function:

WM(v) :=




v
Dv

...
Drv


 =




v0 v1 . . . vr

Dv0 Dv1 . . . Dvr
...

...
. . .

...
Drv0 Drv1 . . . Drvr


 .

The determinant W0(v) := det(WM(v)) is the Wronskian of v := (v0, v1, . . . , vr). It will be
often written in the form:

W0(v) := v ∧Dv ∧ . . . ∧Drv. (3)

In this paper, however, we want to see Wronskians as a part of a full family of natural
functions generalizing them. They will be called, following the few pieces of literature
where they have already appeared ([3], [50]) generalized Wronskians.
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1.2 Generalized Wronskians. Let r ≥ 0 be an integer. A partition λ of length r + 1 is an
(r + 1)-tuple of non-negative integers in the non-increasing order:

λ : λ0 ≥ λ1 ≥ . . . ≥ λr ≥ 0. (4)

The weight of λ = (λ0, λ1, . . . , λr) is |λ| :=
∑r

i=0 λj , that is λ is a partition of the integer
|λ|. In this paper we consider only partitions of length r + 1. To each partition one may
associate a Young–Ferrers diagram, an array of left justified rows, with λ0 boxes in the
first row, λ1 boxes in the second row, . . . , and λr boxes in the (r + 1)-th row. We denote
by P(r+1)×(d−r) the set of all partitions whose Young diagram is contained in the (r + 1)×
(d− r) rectangle, i.e. the set of all partitions λ such that

d− r ≥ λ0 ≥ λ1 ≥ . . . ≥ λr ≥ 0.

If the last r−h entries of λ ∈ P(r+1)×(d−r) are zeros, then we write simply λ = (λ0, λ1, . . . , λh),
omitting the last zero parts. For more on partitions see [33].

1.3 Definition. Let v as in (2) and λ as in (4). The generalized Wronski matrix associated to
v and to the partition λ is, by definition,

WMλ(v) :=




Dλrv
D1+λr−1v

...
Dr+λ0v


 :=




Dλrv0 Dλrv1 . . . Dλrvr

D1+λr−1v0 D1+λr−1v1 . . . D1+λr−1vr
...

...
. . .

...
Dr+λ0v0 Dr+λ0v1 . . . Dr+λ0vr


 .

The λ-generalized Wronskian is the determinant of the generalized Wronski matrix:

Wλ(v) := detWMλ(v) .

Coherently with (3) we shall write the λ-generalized Wronskian in the form:

Wλ(v) := Dλrv ∧D1+λr−1v ∧ . . . ∧Dr+λ0v. (5)

The usual Wronskian corresponds to the partition of 0, that is W (v) ≡ W0(v).

1.4 Remark. Notation (3) and (5) is convenient because the derivative of any generalized
Wronskian can be computed via Leibniz’s rule with respect to the product “∧”:

D(Wλ(v)) = D(Dλrv ∧D1+λr−1v ∧ . . . ∧Dr+λ0v) =

=
∑

i0 + i1 + . . . + ir = 1
ij ≥ 0

Di0+λrv ∧D1+i1+λr−1v ∧ . . . ∧Dr+ir+λ0v.

A simple induction shows that any derivative of Wλ(v) is a Z-linear combination of gen-
eralized Wronskians. Recall, as in Section 1.2, that partitions can be described via Young–
Ferrers diagrams, and that a standard Young tableau is a numbering of the boxes of the
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Young–Ferrers diagram of λ with integers 1, . . . , |λ| arranged in an increasing order in
each column and each row [16].

The following observation has convinced us that the Schubert calculus can be recast
in terms of Wronskians, see Section 7.

1.5 Theorem. We have
DhW (v) =

∑

|λ|=h

cλWλ(v) ,

where cλ is the number of the standard Young tableaux of the Young–Ferrers diagram λ.

The coefficients cλ’s and their interpretation in terms of Schubert calculus are very well
known; in particular, they can be calculated by the hook formula:

cλ =
|λ|!

k1 · . . . · k|λ|
,

where the kj ’s, 1 ≤ j ≤ |λ|, are the hook lengths of the boxes of λ, see [16, p. 53].

2 Wronskians and Linear ODEs

Wronskians are usually introduced when dealing with linear Ordinary Differential Equa-
tions (ODEs).

2.1 We use notation of Section 1.1. For a(t) = (a1(t), . . . , ar+1(t)) ∈ O(U)r+1 and f ∈
O(U), consider the linear ODE

Dr+1x− a1(t)Drx + . . . + (−1)r+1ar+1(t)x = f (6)

and the corresponding linear differential operator Pa(D) ∈ EndK(O(U)),

Pa(D) := Dr+1 − a1(t)Dr + . . . + (−1)r+1ar+1(t). (7)

The set of solutions, Sf,a, of (6) is an affine space modelled over Kr+1 : if xp is a particular
solution , then

Sf,a = xp + kerPa(D) .

The celebrated Cauchy theorem ensures that given a column c = (cj)0≤j≤r ∈ Kr+1, there
exists a unique element xc ∈ kerPa(D) such that Djf(0) = cj , for all 0 ≤ j ≤ r. Assume
now that v as in (2) is a basis of kerPa(D). A particular solution of (6) can be found
through the method of variation of arbitrary constants. Assume that

c = c(t) =




c0(t)
c1(t)

...
cr(t)


 ∈ O(U)r+1 ,
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and look for a solution of (6) of the form

xp := (v · c)(t) = v(t) · c(t) =
r∑

i=0

ci(t)vi(t) ,

where ‘·” stands for the usual row-by-column product. The condition that Djv·Dc = 0 for
all 0 ≤ j ≤ r means that Djxp = Djv·c for all 0 ≤ j ≤ r and Dr+1xp = Dr+1v·c+Drv·Dc.
The equality

Pa(D)xp = f

implies, by substitution, the equation

Drv ·Dc = f.

The unknown functions c = c(t) must then satisfy the differential equations:

WM(v)




Dc0

Dc1
...

Dcr


 =




0
0
...
f


 .

The key remark is that the Wronski matrix is invertible in O(U). Thus we get a system of
first order ODEs,

Dc = (WM(v))−1 ·




0
0
...
f


 ,

which can be solved by usual methods.
To show the invertibility, one usually shows that if the Wronski matrix does not vanish

at some point of U , then it does vanish nowhere on U (recall that U is a connected open
set). Assume W0(v)(P ) 6= 0 for some P ∈ U . Let us choose a local parameter t on U
which is 0 at P , identifying the open set U with a connected neighborhood of the origin.
Computing the derivative of the Wronskian one discovers the celebrated

2.2 Liouville’s Theorem ([4, p. 195, §27.6]). The Wronskian W = W0(v) satisfies the differ-
ential equation:

DW = a1W. (8)

The proof of Theorem 2.2 is as follows. By defining Dv as the row whose entries are
the derivatives of the entries of v, one notices that

Pa(D)v = (Pa(D)v0, Pa(D)v1, . . . , Pa(D)vr) = 0 .
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Thence Dr+1v = a1(t)Drv − a2(t)Dr−1v + . . . + (−1)rar+1(t)v and one gets

DW0(v) = D(v ∧Dv ∧ . . . ∧Drv) = v ∧Dv ∧ . . . ∧Dr−1v ∧Dr+1v

= v ∧Dv ∧ . . . ∧ (a1(t)Drv − a2(t)Dr−1v + . . . + (−1)rv) =
= a1(t)v ∧Dv ∧ . . . ∧Drv = a1(t)W0(v).

The Wronskian then takes the form (Abel’s formula):

W0(v) = W0(v)(0) · exp(
∫ t

0
a(u)du), (9)

where W0(v)(0) denotes the value of the Wronskian at t = 0. Equation (9) shows that if
W (v)(0) 6= 0 then W (v)(t) 6= 0 for all t ∈ U . We shall see in Section 7 why the proof
of Liouville’s theorem is a first example of the Schubert Calculus formalism governing the
intersection theory on Grassmann Schemes.

2.3 Generalized Wronkians of Solutions of ODEs. Using generalized Wronskians as in 1.2,
Liouville’s theorem (8) can be rephrased as

W(1)(v) = a1(t)W0(v) ,

and generalized as follows.

2.4 Proposition. Let 1k := (1, 1, . . . , 1) be the primitive partition of the integer 1 ≤ k ≤ r+1.
If v := (v0, v1, . . . , vr) is a basis of kerPa(D) then

W(1k)(v) = ak(t)W (v). (10)

Indeed, consider (7). If v ∈ kerPa(D), then it is aK-linear combination of v0, v1, . . . , vr,
and hence the Wronskian of these r + 2 functions vanishes:

W (v, v0, v1, . . . , vr) = 0.

By expanding the Wronskian along the first column one obtains

W (v)Dr+1v −W(1)(v)Drv + . . . + (−1)r+1W(1r+1)(v)v = 0, (11)

and combining with Pa(D) = 0 this implies

r+1∑

k=1

(−1)k(W(1k)(v)− ak(t)W (v))Dkv = 0. (12)

For general v ∈ kerPa(D), the (r + 1)-tuple (v, Dv, . . . , Drv) is linearly independent, and
then (12) implies (10) for all 1 ≤ k ≤ r + 1.
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2.5 A natural question arises: Can we conclude that any generalized Wronskian Wλ(v)
associated to a basis of kerPa(D) is a multiple of the Wronskian W0(v)? The answer is
obviously yes. In fact whenever one encounters one exterior factor in the generalized
Wronskian of the form Dj+λr−jv with j + λr−j ≥ r + 1, one uses the differential equation
to express Dj+λr−jv as a linear combination of lower derivatives of the vector v, with
coefficients polynomial expressions in a and its derivatives,

Wλ(v) = Gλ(a, Da, D2a, . . .)W (v).

The coefficient Gλ(a, Da, D2a, . . .) assumes a particular interesting form in the case the
coefficients a of the equation are constant (so Dia = 0, for i > 0). We will address this case
in Section 7.

3 Wronski Sections of Line Bundles

3.1 A holomorphic vector bundle of rank d + 1 on a smooth complex projective variety X is
a holomorphic map % : F → X , where complex manifold F is locally a product of X and
a complex (d + 1)-dimensional vector space, cf. [25, page 69]. For P ∈ X , we denote by
FP := %−1(F ) ⊂ F the fiber.

Consider the vector space H0(F ) := H0(X, F ) of global holomorphic sections of F
(omitting the base variety when clear from the context). For s ∈ H0(X, F ) we will denote
the value of s at P ∈ X by s(P ) ∈ FP . The image of s in the stalk of the sheaf of sections of
F at P will be denoted by sP .

A line bundle over X is a vector bundle of rank 1. The set of isomorphism classes of line
bundles on X is a group under the tensor product; this group is denoted by Pic(X). If
π : X → S is a proper flat morphism, then we define a relative line bundle as an equivalence
class of line bundles on X , where L1 and L2 are declared equivalent if L1 ⊗ L−1

2
∼= π∗N ,

for some N ∈ Pic(S). The group of isomorphism classes of relative line bundles on X is
denoted by Pic(X/S) := Pic(X)/π∗Pic(S).

3.2 In the attempt to keep the paper self-contained, we recall a few basic notions about
line bundles on a smooth projective complex curve. From now on, we denote the curve by
C. It will often be identified with a compact Riemann surface, i.e. with a complex manifold
of complex dimension 1 equipped with a holomorphic atlas A := {(Uα, zα) |α ∈ A},
where zα is a local coordinate on an open Uα. In this context, denote by OC the sheaf
of holomorphic functions on C: for (Uα, zα) ∈ A the sheaf OC(Uα) is the C-algebra of
complex holomorphic functions in zα.

The canonical line bundle of C is the line bundle K → C whose transition functions are
the derivatives of the coordinate changes,

καβ : Uα ∩ Uβ −→ C∗ , καβ = dzα/dzβ .

10



The holomorphic functions {καβ} obviously form a cocycle: καβκβγ = καγ . A global holo-
morphic section ω ∈ H0(C,K) is a global holomorphic differential, i.e. a collection {fα dzα},
where fα ∈ O(Uα) and fα|Uα∩Uβ

= καβfβ |Uα∩Uβ
. We shall write fα dzα = ω|Uα

. The integer

g = h0(K) := dimCH0(K) is the genus of the curve.

3.3 Jets of line bundles. Let π : X −→ S be a proper flat family of smooth projective
curves of genus g ≥ 1 parameterized by some smooth scheme S. Let X ×S X → S be the
2-fold fiber product of X over S and let p, q : X×S X → X be the projections onto the first
and the second factor respectively. Denote by δ : X → X×S X be the diagonal morphism
and by I the ideal sheaf of the diagonal in X ×S X. The relative canonical bundle of the
family π is by definition Kπ := δ∗(I/I2). For each L ∈ Pic(X/S), see 3.1, and each h ≥ 0
let

JhL := p∗

(
OX×SX

Ih+1
⊗ q∗L

)
(13)

be the bundle of jets (or principal parts) of L of order h. As X is smooth, JhL is a vector
bundle on X of rank h + 1.

By definition, J0L = L. Set, by convention, J−1L = 0 – the vector bundle of rank 0.
The fiber of JhL over P ∈ X – a complex vector space of dimension h+1 – will be denoted
by Jh

PL. The obvious exact sequence

0 −→ Ih

Ih+1
−→ OX×SX

Ih+1
−→ OX×SX

Ih
−→ 0,

gives rise to an exact sequence (See [31, p. 224] for details):

0 −→ L⊗Kh+1
π −−→JhL

th,h−1−−−→ Jh−1L −→ 0. (14)

If π0 : C → {pt} is a trivial family over a point, i.e. reduced to a single curve, and if L is
any line bundle, then the exact sequence (14) for JhL remains the same: in this case the
relative canonical bundle coincides with the canonical bundle of the curve.

3.4 In notation of Section 3.2, let v = (vα) be a non-zero holomorphic section of a line
bundle L, i.e. vα ∈ O(Uα) and vα = `αβ ·vβ on Uα∩Uβ , where {`αβ} are transition functions.
Let (Uα, zα) be a coordinate chart of C trivializing L. Denote by Dα : O(Uα) → O(Uα) the
derivation d/dzα and by Dj

α the j-th iterated of Dα. Then

Dhv =








vα

Dαvα
...

Dh
αvα


 |α ∈ A





(15)

is a section of JhL – see [8]. It may thought of as a global derivative of order h of the section
v. In fact it is a local representation of v together with its first h derivatives.

The truncation morphism occurring in (14), th,h−1 : JhL → Jh−1L, is defined in such
a way that th,h−1(Dhv(P )) = (Dh−1v)(P ). See [8] for further details.
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3.5 One says that v ∈ H0(L) vanishes at P ∈ C with multiplicity at least h + 1 if
(Dhv)(P ) = 0. Concretely, if vα ∈ OC(Uα) is the local representation of v in the open
set Uα, then v vanishes at P ∈ Uα with multiplicity at least h + 1 if vα vanishes at P to-
gether with all of its first h derivatives. The fact that Dhv is a section of JhL says that the
definition of vanishing at a point P does not depend on the open set Uα containing it.

We also say that the order of v at P is h ≥ 0 if Dh−1v(P ) = 0 and Dhv(P ) 6= 0. To each
0 6= v ∈ H0(L) one may attach a divisor on C:

(v) =
∑

P∈C

(ordP v)P . (16)

The sum (16) is finite because v is locally a holomorphic function and hence its zeros are
isolated and the compactness of C implies that they are finitely many. The degree of v
is

∑
P∈C ordP v ≥ 0. This number does not depend on a holomorphic section of L, and

by definition is the degree of L. The degree of the canonical bundle is 2g − 2 [1, p. 8].
The set of isomorphism classes of line bundles of degree d is denoted by Picd(C). If
π : X −→ S is a smooth proper family of smooth curves of genus g, then Picd(X/S)
denotes the relative line bundles of relative degree d. A bundle L ∈ Pic(X/S) has relative
degree d if deg(L|Xs

) = d for each s ∈ S.

3.6 If U is a (finite dimensional complex) vector space, G(k, U) will denote the Grass-
mannian parameterizing the k-dimensional vector subspaces of U . Let gr

d(L) be a point
on chart C of G(r + 1,H0(L)), where L ∈ Picd(C). We write gr

d for gr
d(L) and some

L ∈ Picd(C). If E =
∑

eP P is an effective divisor on C, and V is a gr
d(L), let

V (−E) := {v ∈ V | ordP v ≥ eP },

Clearly V (−E) is a vector subspace in V ; it is not empty because it contains at least the
zero section. If dimV (−P ) = r for all P ∈ C, then the gr

d(L) is said to be base point free. It
is very ample if dimC V (−P −Q) = r− 1 for all (P, Q) ∈ C×C. If V is base point free and
v := (v0, v1, . . . , vr) is a basis of V , the map





φv : C −→ Pr

P 7−→ (v0(P ) : v1(P ) : . . . : vr(P ))
(17)

is a morphism whose image is a projective algebraic curve of degree d. Although the com-
plex value of a section at a point is not well defined, the ratio of two sections is. Thus the
map (17) is well defined. If V is very ample, (17) is an embedding, i.e. a biholomorphism
onto its image.

3.7 Let ω := (ω0, ω1, . . . , ωg−1) be a basis of H0(K). The map

φω := (ω0 : ω1 : . . . : ωg−1) : C → Pg−1

12



sending P 7→ (ω0(P ) : ω1(P ) : . . . : ωg−1(P )) is the canonical morphism, that is, its image
in Pg−1 is a curve of degree 2g − 2. If the canonical morphism is not an embedding, the
curve is called hyperelliptic.

3.8 Definition. Let V be a gr
d(L). A point P ∈ C is a V -ramification point if there exists

0 6= v ∈ V such that Drv(P ) = 0, i.e. iff there exists a non-zero v ∈ V vanishing at P with
multiplicity r + 1 at least.

Ramification points of a gr
d can be detected as zero loci of suitable Wronskians. Let

v := (v0, v1, . . . , vr)

be a basis of V and let vi,α : Uα → C be holomorphic functions representing the restriction
of the section vi to Uα, for 0 ≤ i ≤ r. If P ∈ Uα is a V -ramification point, let v =

∑r
i=0 aivi

be such that Drv(P ) = 0. The last condition translates into the following linear system:

WMα(v)




a0

a1
...

ar


 :=




v0,α v1,α . . . vr,α

Dαv0,α Dαv1,α . . . Dαvr,α
...

...
. . .

...
Dr

αv0,α Dr
αv1,α . . . Dr

αvr,α







a0

a1
...

ar


 =




0
0
...
0


 . (18)

It admits a non-trivial solution if and only if the determinant

W0(vα) = vα ∧Dαvα ∧ . . . ∧Dr
αvα ∈ OC(Uα)

vanishes at P . It is easy to check that on Uα ∩ Uβ one has (see e.g. [14, Ch. 2-18] or [8])

W0(vα) = `αβ
r+1(καβ)

r(r−1)
2 W0(vβ),

and thus the data {W0(vα) |α ∈ A} glue together to give a global holomorphic section

W0(v) ∈ H0(C, L⊗r+1 ⊗K⊗ r(r+1)
2 ), (19)

said to be the Wronskian of the basis v of V. The Wronskian of any such a basis cannot
vanish identically. Indeed, write the section W0(v) as

W0(v) := Drv0 ∧ . . . ∧Drvr,

where Drv is as in (15), i.e. Drvj is locally represented by the j-th row of the matrix (18).
Assume that W0(vα) vanished everywhere along the smooth connected curve C. Then
the sections Drvj , for 0 ≤ j ≤ r, corresponding to the columns of the matrix (18), are
linearly dependent, that is, up to a basis renumbering,

Drv0 = a1Drv1 + . . . + arDrvr ∈ H0(JrL).
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However Dr : H0(L) → H0(JrL) is a section associated to the surjection H0(JrL) →
H0(L), induced by the truncation map JrL → L → 0 (see e.g. [8, Section 2.7]) and one
would get the non-trivial linear relation

v0 = a1v1 + . . . + arvr ∈ H0(L),

against the assumption that (v0, v1, . . . , vr) is a basis of V .
As a consequence the ramification locus of the given gr

d occurs in codimension 1. The
construction does not depend on the choice of a basis v of V . Indeed, if u were another
one, then u = Av for some invertible A ∈ Glr+1(C), and thence W0(u) = det(A)W0(v).
Thus any basis of V defines the same point of PH0(L⊗r+1 ⊗K⊗ r(r+1)

2 ), which we denote
by W0(V ).

3.9 The Wronski Map. We have so constructed a map:




G(r + 1,H0(L)) −→ PH0(L⊗r+1 ⊗K⊗ r(r+1)
2 )

V 7−→ W0(V )
(20)

which associates to each gr
d(L) its Wronskian W0(V ). Adopting the same terminology

used in the literature when C = P1 and L := OP1(d) (see e.g. [10], [11]), the map (20) will
be called Wronski map. Its behavior depends on the curve and on the choice of the linear
system. It is, in general, neither injective nor surjective as the following two extremal
cases show. If C = P1, the unique bundle of degree d is OP1(d), K = OP1(−2) and the the
Wronski map

G(r + 1,H0(OP1(d))) −→ PH0(OP1((r + 1)(d− r))),

in this case defined between two varieties of the same dimension, is a finite surjective
morphism of degree equal to the Plücker degree of the Grassmannian G(r + 1, d + 1). In
particular it is not injective – see [9, 46] and [10, 11] over the real numbers. At a general
point of PH0(OP1((r + 1)(d − r))) (represented by a form of degree (r + 1)(d − r)) there
correspond as many distinct linear systems V as the degree of the Grassmannian. For a
closer analysis of the fibers of such a morphism see [45].

On the other hand if C is hyperelliptic and M ∈ Pic2(C) is the line bundle defining
its unique g1

2 , Cf. Section 3.7, then G(2,H0(M)) is just a point and the Wronski map:

G(2, H0(M)) → PH0(M⊗2 ⊗K)

is trivially injective and not surjective, as by Riemann-Roch formula h0(M⊗2 ⊗K) > 1.
Later on we shall see how to make the situation more uniform, by enlarging in a nat-

ural way the notion of linear system on a curve. It will be one of the bridges connecting
this part of the survey with the first one, regarding Wronskians of differential equations.
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3.10 The V -weight of a point. Let V be a gr
d and P ∈ C. The V -weight at P is:

wtV (P ) := ordP W0(V ) = ordP W0(v),

for some basis v of V . The total weight of the V -ramification points is:

wtV =
∑

P∈C

wtV (P ),

where the above sum is clearly finite. The total weight coincides with the degree of the

bundle L⊗r+1 ⊗K⊗ r(r+1)
2 , i.e. the degree of its first Chern class:

wtV =
∫

C
c1(L⊗r+1 ⊗K⊗ r(r+1)

2 ) ∩ [C] =

= (r + 1)
∫

C
(c1(L) ∩ [C]) +

r(r + 1)
2

∫
c1(K) ∩ [C] =

= (r + 1)d + (g − 1)r(r + 1), (21)

which is the so-called Brill–Segre formula. For example, a smooth plane curve of degree
d can be thought of as an abstract curve (compact Riemann surface) embedded in P2 via
some V ∈ G(3,H0(L)) for some L ∈ Picd(C):

(v0 : v1 : v2) : C −→ P2

where v := (v0, v1, v2) is a basis of V . The V -ramification points correspond, in this case, to
flexes of the image of C in P2. According to the genus-degree formulae, the total number
of flexes, keeping multiplicities into account, is given by (21) for r = 2

f = 3d(d− 2),

which is one of the famous Plücker formulas for plane curves.

3.11 Wronskians on Gorenstein Curves. Let C be an irreducible plane curve of degree d
with δ nodes and κ cusps. Using the extension of the Wronskian of a linear system defined
on a Gorenstein curve, due to Widland and Lax [51], the celebrated Plücker formula

f = 3d(d− 2)− 6δ − 8κ

can be obtained from the tautological identity (See [17] for details):

](smooth V –ramification points) =
=](ramification points) - ](singular ramification points).

For more on jets and Wronskians on Gorenstein curves see [12] and [13].
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3.12 The V -weight of a point P coincides with the weight of its order partition. We say that
n ∈ N is a V -order at P ∈ C if there exists v ∈ V such that ordP v = n. Each point possesses
only r + 1 distinct V -orders. In fact n is a V -order if dimV (−nP ) > dimV (−(n + 1)P ).
We have the following sequence of inequalities:

r+1 = dimV ≥ dimV (−P ) ≥ dimV (−2P ) ≥ . . . ≥ dimV (−dP ) ≥ dimV (−(d+1)P ) = 0

The last dimension is zero because the unique section of V vanishing at P with multiplic-
ity d + 1 is zero. At each step the dimension does not drop more than one unit and then
there must be precisely r + 1 jumps. If

0 ≤ i0 < i1 < . . . < ir ≤ d

is the order sequence at some P ∈ C, the V -order partition at P is

λ(P ) = (ir − r, ir−1 − (r − 1), . . . , i1 − 1, i0).

One may choose a basis (v0, v1, . . . , vr) of V such that ordP vj = ij . The use of such a basis
shows that the Wronskian W0(v) vanishes at P with multiplicity

wtV (P ) =
r∑

j=0

(ij − j) = |λ(P )|

The following result is due to [41] (unpublished) and to [50].

3.13 Proposition. Partition λ is the V -order partition at P ∈ C if and only if Wµ(vα)(P ) = 0,
for all µ 6= λ such that |µ| ≤ |λ|, and Wλ(vα)(P ) 6= 0 (here vα is any local representation of a
basis of V around P ).

In this case W0(V ) vanishes at P with multiplicity exactly |λ|.
3.14 A more intrinsic way to look at Wronskians and ramification points, which can be
generalized to the case of families of curves, is as follows. For V ∈ G(r + 1,H0(L)) one
considers the vector bundle map

Dr : C × V −→ JrL (22)

defined by Dr(P, v) = Drv(P ) ∈ Jr
P L. Both bundles have rank r + 1 and since V has only

finitely many ramification points, there is a non-empty open subset of C where the map
Dr has the maximal rank r + 1. Then P ∈ C is a V -ramification point if rkPDr ≤ r. The
rank of Dr is smaller than the maximum if and only if the determinant map of (22)

∧r+1Dr : OC −→
∧r+1 JrL
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vanishes at P. The section
∧r+1Dr ∈ H0(

∧r+1 JrL) = H0(L⊗r+1 ⊗K⊗ r(r+1)
2 ) is precisely

the Wronski section, which vanishes precisely where the map Dr drops rank. If v = a0v0 +
. . .+arvr, with respect to the basis v = (v0, v1, . . . , vr) of V , then Drv = a0Drv0+a1Drv1+
. . . + arDrvr. On a trivializing open set Uα of C one has the expression:

(Drv)|Uα
=




a0v0,α + a1v1,α + . . . + arvr,α

a0Dαv0,α + a1Dαv1,α + . . . + arDαvr,α
...

a0D
r
αv0,α + a1D

r
αv1,α + . . . + arD

r
αvr,α


 = W0(vα) ·




a0

a1
...

ar


 .

In other words, the local representation of the map Dr is:

W0(vα) : Uα × Cr+1 −→ Uα × Cr+1

from which:
det(Dr |Uα

) = vα ∧Dαvα ∧ . . . ∧Dr
αvα,

i.e.
∧r+1Dr is represented by the Wronskian W0(v). Changing the basis v of V , the Wron-

ski section gets multiplied by a non-zero complex number and hence:

r+1∧
Dr modC∗ = W0(V ) ∈ PH0(L⊗r+1 ⊗K⊗ r(r+1)

2 )

i.e. precisely the Wronskian associated to the linear system V.

3.15 How do generalized Wronskians come into play in this picture? Here the question
is more delicate. We have already mentioned that if the V -order partition of a point P is
λ(P ) then the generalized Wronskians Wµ(V ) must vanish for all µ such that |µ| < |λ(P )|
and Wλ(P ) 6= 0. It is however well known that the general gr

d on a general curve C has
only simple ramification points, i.e. all the points have weight 1. This says that if a gr

d

has a ramification point with weight bigger than 1, the generalized Wronskians do not
impose independent conditions, as the locus occurs in codimension 1 while the expected
codimension is bigger than 1.

To look for more geometrical content one can move along two directions. The first,
that we just sketch here, consists in considering families of curves.

Let π : X −→ S be a proper flat family of smooth curves of genus g and let (V,L) be
a relative gr

d, i.e. V is a locally free subsheaf of π∗L and L ∈ Picd(X/S). One can then
study the ramification locus of the relative gr

d which fiberwise cuts the ramification locus
of Vs ∈ G(r + 1,H0(L|Xs

)) through the degeneracy locus of the map

Dr : π∗V −→ Jr
πL,

where Jr
πL denotes the jets of L along the fibers (see e.g. [22]). The map above induces a

section OX →
∧r+1 Jr

πL⊗
∧r+1 π∗V , which is the relative Wronskian W0(V) of the family.
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Because of the exact sequence (14):

r+1∧
Jr

πL ⊗
r+1∧

π∗V = L⊗r+1 ⊗K
⊗ r(r+1)

2
π ⊗

r+1∧
π∗V .

In this case the class in A∗(X) of the ramification locus of V is

[Z(W0(V))] = c1(L⊗r+1 ⊗K
⊗ r(r+1)

2
π )− π∗c1(V) .

A second approach to enrich the phenomenology of ramification points consists in
keeping the curve fixed and varying the linear system. This is the only possible approach
with curves of genus 0: all the smooth rational curves are isomorphic, and all the gr

ds, with
base points or not, are parameterized by the Grassmannian G(r+1,H0(OP1(d))). Here the
situation is as nice as one would desire: all what may potentially occur it occurs indeed.
For instance, if λ1, . . . ,λh are partitions such that

∑ |λi| = (r+1)(d−r) (= the total weight
of the ramification points of a gr

d) and P1, . . . , Ph are arbitrary points on P1 one can count
the number of all of the linear system such that the V order partition at Pi is precisely
λi. However if C has higher genus, such a kind of analysis is not possible anymore. For
instance the general curve C of genus g ≥ 2 has only simple Weierstrass points, i.e. all
have weight 1, but each curve carries one and only one canonical system. The picture
holding for linear systems on the projective line can be generalized in the case of higher
genus curves provided one updates the notion of gr

d(L) to that of a section of a Grassmann
bundle, a path which was first indicated in [19] and then further developed in [38] and [8].
Go to the next two sections for a sketch of the construction.

4 Wronskians of Sections of Grassmann Bundles (in general)

This section is a survey of the contruction appeared in [38], partly published in [8], with
some applications in [19].

4.1 Let %d : F → X be a vector bundle of rank d + 1 over a smooth complex projective
variety X of dimension m ≥ 0. For each 0 ≤ r ≤ d, let %r,d : G(r + 1, F ) → X be the
Grassmann bundle of (r + 1)-dimensional subspaces of the fibers of F . For r = 0 we shall
write %0,d : P(F ) −→ X , where P(F ) := G(1, F ) is the projective bundle associated to F .
The bundle G(r + 1, F ) carries universal exact sequence (cf. [15, Appendix B.5.7]):

0 −→ Sr
ιr−→ %∗r,dF −→ Qr −→ 0, (23)

where Sr is the universal subbundle of %∗r,dF and Qr is the universal quotient bundle.
Let

Γ(%r,d) := {holomorphic γ : X → G(r + 1, F ) | %r,d ◦ γ = idX}
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be the set of holomorphic sections of %r,d. The choice of γ ∈ Γ(%r,d) amounts to specify a
vector sub-bundle of F of rank r + 1. In fact the pull-back γ∗Sr via γ ∈ Γ(%r,d) is a rank
r + 1 subbundle of F . Conversely, given a rank r + 1 subbundle V of F , one may define
the section γV ∈ Γ(%r,d) by γV(P ) = VP ∈ G(r + 1, FP ). The set Γ(%r,d) is huge and may
have a very nasty behavior: even the case when X = P1 and F = JdOP1(d), is far from
being trivial. In fact it is related with the small quantum cohomology of Grassmannians,
see [2]. A first simplification is to fix ξ ∈ Pic(X) to study the space

Γξ(%r,d) = {γ ∈ Γ(%r,d) |
∧r+1 γ∗Sr = ξ}.

Again, if ξ = OP1(n) and F = JdOP1(d), then Γn(%r,d) := ΓOP1 (n)(%r,d) can be identified
with the space of the holomorphic maps P1 → G(r + 1, d + 1) of degree n, compactified
in [2] via a Quot-scheme construction. We shall see the easiest case (n = 0) in Section 6.
In the following, for our limited purposes, we shall restrict the attention to the definitely
simpler set

Γtriv(%r,d) := {γ ∈ Γ(%r,d) | γ∗Sr is a trivial rank (r + 1) subbundle of F → X}.

4.2 Proposition. The set Γtriv(%r,d), if non empty, can be identified with an open set of the
Grassmannian G(r + 1,H0(F )).

Proof. If γ ∈ Γtriv(%r,d), there is an isomorphism φ : X × Cr+1 → γ∗Sr. Then ψ :=
γ∗(ιr) ◦ φ : X × Cr+1 → F is a bundle monomorphism. Let σi : X → F defined by
σi(P ) = ψ(P, ei). It is clearly a holomorphic section of F . Furthermore σ0, σ1, . . . , σr span
an (r + 1)-dimensional subspace Uγ of H0(F ) which does not depend on the choice of
the isomorphism φ. Thus γ∗Sr is isomorphic to X × Uγ and γ(P ) = {u(P ) |u ∈ Uγ} ∈
G(r+1, FP ). Conversely, if U ∈ G(r+1,H0(F )), one constructs a vector bundle morphism
φ : X × U → F via (P, u) 7→ u(P ). This morphism drops rank if

∧r+1 φ = 0, this is a
closed condition and so there is an open set U ⊆ G(r + 1, F ) such that for U ∈ U , the map
φU makes X × U into a vector subbundle of F . One so obtains a section γU by setting
γU (P ) = UP ∈ G(r + 1, FP ). The easy check that γUγ = γ and that UγU = U is left to the
reader.

4.3 Assume now that F comes equipped with a system F• of bundle epimorphisms qij :
Fi −→ Fj , for each −1 ≤ j ≤ i ≤ d, such that Fd = F , where Fi has rank i + 1, qii = idFi

and qijqjk = qik for each triple d ≥ i ≥ j ≥ k ≥ −1. We set F−1 = 0 by convention. The
map qdj : F → Fj will be simply denoted by qj and {ker(qi)} gives a filtration of F by
subbundles of rank d− i. Let

∂i : Sr −→ %∗r,dFi

be the composition of the universal monomorphism Sr → %∗r,dF with the map qi. The
universal morphism ιr can be so identified with ∂d.
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4.4 For each λ ∈ P(r+1)×(d−r) the subscheme:

Ωλ(%∗r,dF•) = {Λ ∈ G(r + 1, F ) | rkΛ∂j+λr−j−1 ≤ j, 0 ≤ j ≤ r}, (24)

of G(r + 1, F ), is the λ-Schubert variety associated to the system F• and to the partition
λ. The Chow classes modulo rational equivalence {[Ωλ(%∗r,dF•)] |λ ∈ P(r+1)×(d−r)} freely
generate A∗(G(r + 1, F )) as a module over A∗(X) through the structural map %∗r,d.

4.5 For each 0 ≤ h ≤ d + 1, let Nh(F ) := ker(F
qd−h−−−→ Fd−h). It is a vector bundle of rank

h. One can define Schubert varieties according to such a kernel flag N•(F ) by setting, for
each partition λ of length at most r + 1:

Ωλ(%∗r,dN•(F )) = {Λ ∈ G(r + 1, F ) |Λ ∩Nd+1−(j+λr−j)(F ) ≥ r + 1− j} .

It is a simple exercise of linear algebra to show that

Ωλ(%∗r,dF•) = Ωλ(%∗r,dN•(F )).

Both descriptions are useful according to the purposes. The first description is more suited
to describe Weierstrass points as in Section 3 (it gives an algebraic generalization of the
rank sequence in a Brill-Nöther matrix, see [1, p. 154]), while the second is useful when
dealing with linear systems on the projective line (See Section 6 below).

4.6 Definition. The F•-Wronskian subvariety of G(r + 1, F ) is

W0(%∗r,dF•) := Ω(1)(%
∗
r,dF•).

By (24), the F•-Wronski variety W0(%∗r,dF•) of G(r + 1, F ) is the degeneracy scheme of
the natural map ∂r : Sr −→ %∗r,dFr, i.e. the zero scheme of the map

r+1∧
∂r :

r+1∧
Sr −→

r+1∧
%∗r,dFr.

The map

W0(%∗r,dF•) :=
r+1∧

∂r ∈ Hom(
r+1∧

%∗r,dSr,
r+1∧

%∗r,dFr) = H0(X,
r+1∧

%∗r,dFr ⊗
r+1∧

%∗r,dS∨r ), (25)

is the Wronski section (of the line bundle
∧r+1 %∗r,dFr⊗

∧r+1 %∗r,dS∨r ). The F•-Wronski variety
is then a Cartier divisor, because it is the zero scheme of the Wronski section (25). In
this setting, the Schubert subvariety Ωλ(%∗r,dF•) of G(r + 1, F ), associated to the partition
λ ∈ P(r+1)×(d−r), plays the role of a generalized Wronski subvariety associated to the
system F•.
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4.7 Among all such Schubert varieties associated to F• one can recognize some distin-
guished ones. It is natural to define the F•-base locus subvariety of G(r + 1, F ) as

B(%∗r,dF•) = Ω(1r+1)(%
∗
r,dF•);

and the F•-cuspidal locus subvariety as

C(%∗r,dF•) = Ω(1r)(%
∗
r,dF•).

Each Schubert subvariety Ωλ(%∗r,dF•) has codimension |λ| in G(r +1, F ). In particular, the
base locus variety B(%∗r,dF•) has codimension r + 1.

4.8 Let γ ∈ Γ(%r,d). The F•-ramification locus of γ is the subscheme γ−1(W0(%∗r,dF•)) of X ,
its F•-base locus is γ−1(B(%∗r,dF•)) and its F•-cuspidal locus is γ−1(C(%∗r,dF•)). The definition
of Wronski map defined on sections of Grassmann bundles equipped with filtrations, as in
Section 4.3, is very natural too.

4.9 Definition. For γ ∈ Γ(%r,d), the section

W0(γ) := γ∗(W0(%∗r,dF•)) ∈ H0(X,
r+1∧

Fr ⊗
r+1∧

γ∗S∨r )

will be called the F•-Wronskian of γ.

The class in A∗(X) of the ramification locus of γ is:

[Z(W0(γ))] = [γ−1(W0(%∗r,dF•))] = γ∗[W0(%∗r,dF•)] =

= c1(
r+1∧

Fr ⊗
r+1∧

γ∗S∨r ) ∩ [X] = (c1(Fr)− γ∗c1(Sr)) ∩ [X]. (26)

If X is a curve, the expected dimension of the ramification locus is 0 and so, when γ is not
entirely contained in the Wronski variety, the total weight wγ of the ramification points of
γ is by definition the degree of the cycle [γ−1(W0(%∗r,dF•))]:

wγ =
∫

X
(c1(Fr)− γ∗c1(S)) ∩ [X].

According to the definitions above, a point P ∈ X is a ramification point of γ ∈ Γ(%r,d) if
W0(γ)(P ) = 0, which amounts to say that the map γ∗∂r : γ∗Sr → Fr drops rank at P .

4.10 Definition. Fix ξ ∈ Pic(X). The holomorphic map:




Γξ(%r,d) −→ PH0(
∧r+1 Fr ⊗ ξ∨)

γ 7−→ W0(γ) modC∗

is the Wronski map defined on Γξ(%r,d).
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Indeed W0(γ) is a section of γ∗(
∧r+1 %∗r,dFr ⊗

∧r+1 S∨r ) =
∧r+1 Fr ⊗ ξ∨. The class of

the ramification locus of γ, as in (26), can be now expressed as:

[Z(W0(γ))] = (c1(Fr)− ξ)) ∩ [X] ∈ A∗(X).

4.11 The Extended Wronski Map. It is particularly easy to express the Wronskian of a
section γ ∈ Γtriv(%r,d). Let U ∈ G(r + 1, F ) such that γ = γU . The pull-back of the map
∂r : Sr −→ %∗r,dFr is

γ∗∂r : X × U −→ Fr. (27)

The Wronskian is the determinant of the map (27):

r+1∧
γ∗∂r :

r+1∧
(X × U) →

r+1∧
Fr.

Once a basis (u0, u1, . . . , ur) of U is chosen, the Wronskian

r+1∧
γ∗∂r ∈ H0(X,

r+1∧
Fr)

is represented by the holomorphic section X → ∧r+1 Fr given by:

P 7→ qr(u0)(P ) ∧ qr(u1)(P ) ∧ . . . ∧ qr(ur)(P ) ∈ ∧r+1 FP ,

where qr is the epimorphism introduced in 4.3. Changing basis the section gets multiplied
by a non-zero constant, and so the Wronski map

Γtriv(%r,d) −→ PH0(X,
∧r+1 Fr)

defined by γ 7→ W0(γ)mod C∗ ∈ PH0(X,
∧r+1 Fr) coincides with the map





G(r + 1, H0(F )) −→ PH0(X,
∧r+1 Fr)

U 7−→ qr(u0) ∧ qr(u1) ∧ . . . ∧ qr(ur) mod C∗

where u = (u0, u1, . . . , ur) is any basis of U .

4.12 Here is a quick review of intersection theory on G(r + 1, F ) which is necessary for
enumerative geometry purposes. First recall some basic terminology and notation. Let
a = a(t) =

∑
n≥0 antn be a formal power series with coefficients in some ring A and λ be

a partition as in (4). Set an = 0 for n < 0. The λ-Schur polynomial associated to a is, by
definition:

∆λ(a) = det(ai+λr−i−j)0≤i,j≤r =

∣∣∣∣∣∣∣∣∣

aλr aλr−1+1 . . . aλ0+r

aλr−1 aλr−1 . . . aλ0+r−1

...
...

. . .
...

aλr−r aλr−1−(r−1) . . . aλ0

∣∣∣∣∣∣∣∣∣
. (28)
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The Chern polynomial of a bundle E is denoted by ct(E). Write ct(Qr − %∗r,dF )) for the
ratio ct(Qr)/ct(%∗r,dF ) of Chern polynomials. According to the Basis Theorem [15, p. 268],
the Chow group A∗(G(r + 1, F )) is a free A∗(X)-module (via the structural morphism
%∗r,d : A∗(X) → A∗(G(r + 1, F ))) generated by

{∆λ(ct(Qr − %∗r,dF )) ∩ [G(r + 1, F )] |λ ∈ P(r+1)×(d−r) },

If r = 0, let
µi := (−1)ic1(S0)i ∩ [P(F )]

for each i ≥ 0. Then, by [15, Ch. 14], (µ0, µ1, . . . , µd) is an A∗(X)-basis of A∗(P(F )) and for
each j ≥ 0 the following relation, defining the Chern classes of F , holds:

µd+1+j + %∗0,dc1(F )µd+j + . . . + %∗0,dcd+1(F )µj = 0 . (29)

A main result of [20] says that
∧r+1 A∗(P(F )) can be equipped with a structure of A∗(G(r+

1, F ))-module of rank 1. It is generated by µ0 ∧ µ1 ∧ . . . ∧ µr in such a way that, for each
λ ∈ P(r+1)×(d−r),

∆λ(ct(Qr − %∗r,dF )) · µ0 ∧ µ1 ∧ . . . ∧ µr = µλr ∧ µ1+λr−1 ∧ . . . ∧ µr+λ0 . (30)

We shall see in the last section that ∆λ(ct(Qr−%∗r,dF )) are related to Wronskians associated
to a fundamental system of solutions of a suitable differential equation. Define now:

εi := [Ω(i)(%
∗
0,dF•)] ∈ A∗(P(F )), 0 ≤ i ≤ d,

where Ω(i)(%∗0,dF•) is nothing but the zero locus in codimension i of the map ∂i−1 : S0 →
Fi−1. Because of the relation:

εi =
i∑

j=0

%∗0,dcj(Fi−1)µi−j , (31)

it follows that (ε0, ε1, . . . , εd) is an A∗(X)-basis of A∗(P(F )) as well. For λ ∈ P(d+1)×(d−r)

let ελ := ελr ∧ ε1+λr−1 ∧ . . . ∧ εr+λ0 ∈ ∧r+1 A∗(P(F )). Again by [20], the set {ελ |λ ∈
P(r+1)×(d−r)} is an A∗(X)-basis of A∗(G(r + 1, F )). Denote by [Ωλ(%∗r,dF•)] the class in
A∗(G(r + 1, F )) of the F•-Schubert variety Ωλ(%∗r,dF•).

4.13 Theorem. The following equality holds:

[Ωλ(%∗r,dF•)] = [Ω(λr)(%
∗
0F•)] ∧ [Ω(1+λr−1)(%

∗
1F•)] ∧ . . . ∧ [Ω(r+λ0)(%

∗
1F•)] = ελ (32)

modulo the identification of A∗(G(r + 1, F )) with
∧r+1 A∗(P(F )).
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Equality (32) is an elegant and compact re-interpretation of the determinantal formula of Schubert
calculus proven by Kempf and Laksov in [30] to compute classes of degeneracy loci of maps of
vector bundles. For more general and deep investigations on this subject see [43]. Formula (32)
was basically discovered in [18] for trivial bundles. The present formulation is as in [38].

Let us sketch the proof of Theorem 4.13. Set µj := d− r − λr−j , then

µ := (µ0, µ1, . . . , µr) ∈ P(r+1)×(d−r).

Denote Aj := Nµr−j+j+1 (see Section 4.5), i.e Aj fits into the exact sequence

0 → Aj → F → Fd−(j+µr−j)−1 → 0.

Then 0 ( A0 ( A1 ( . . . ( Ar is a flag of subbundles of Fd. The Schubert variety

Ω(A0, A1, . . . , Ar) = {Λ ∈ G(r + 1, F ) |Λ ∩Ai ≥ i}

coincides with Ωλ(%∗r,dF•) defined by (24), as a simple check shows. Formula 7.9 in [32],
which translates the determinantal formula proven in [30], implies

[Ω(A0, A1, . . . , Ar)] = [Ω(A0)] ∧ [Ω(A1)] ∧ . . . ∧ [Ω(Ar)],

which is thence equivalent to (32).

5 Wronskians of Sections of Grassmann Bundles of Jets

5.1 The general framework of Section 4 shows that the notion of linear system can be
generalized into that of pairs (γ, F•), where F• is a vector bundle on X equipped with
a filtration and γ a section of the Grassmann bundle G(r + 1, F ). This picture can be
fruitfully applied in the case of (families of) smooth complex projective curves of genus
g ≥ 0. For the time being let C be any one such, and let L ∈ Picd(C). In this section we
shall denote by %d : JdL → C the bundle of jets of L → C up to the order d. Accordingly,
for each 0 ≤ r ≤ d, we shall denote %r,d : G(r + 1, JdL) → C the Grassmann bundle of
(r + 1)-dimensional subspaces of fibers of %. The natural filtration of JdL given by the
quotients JdL → J iL → 0 , for −1 ≤ i ≤ d, will be denoted J•L (setting J−1L = 0).

5.2 The kernel filtration of JdL

N•(L) : 0 ⊂ N1(L) ⊂ . . . ⊂ Nd(L) ⊂ Nd+1(L) = JdL (33)

is defined through the exact sequence of vector bundles 0 → Nh(L) → JdL → Jd−hL → 0,
where Nh(L) is a vector bundle of rank h. It will be also called the osculating flag – see
below and Section 6. The fiber of Nh(L) at P ∈ C will be denoted by Nh,P (L).
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As in the previous section, the λ-generalized Wronskian subvariety of G(r + 1, JdL) is
Ωλ(%∗r,dJ

•L), which has codimension |λ| in G(r +1, JdL). By virtue of Proposition 4.2, the
space Γtriv(%r,d) of sections γ of %r,d such that γ∗Sr is a trivial subbundle of JdL, can be
identified with an open subset of G(r + 1,H0(JdL)). Hence γ∗Sr is of the form C × U for
some U ∈ G(r + 1,H0(JdL)). As in section 4 we gain a Wronski map:

Γtriv(%r,d) −→ PH0(L⊗r+1 ⊗K⊗ r(r+1)
2 ), (34)

defined by γ 7→ W0(γ) (modC∗). As we said, this map is the restriction to the open subset
Γtriv(%r,d) ⊆ G(r + 1,H0(JdL)) of the determinant map

G(r + 1,H0(JdL)) → PH0(L⊗r+1 ⊗K⊗ r(r+1)
2 ),

sending U to tr(u0) ∧ tr(u1) ∧ . . . ∧ tr(ur) (modC∗), where (u0, u1, . . . , ur) is a basis of U
and tr denotes the epimorphism JdL → JrL.

5.3 We notice now that each gr
d(L), i.e. V ∈ G(r + 1,H0(L)), can be seen in fact as an

element of Γtriv(%r,d), because Dd : C × V → JdL realizes C × V as a (trivial) vector
subbundle of JdL. Indeed DdV := {Ddv | v ∈ V } is an (r + 1)-dimensional subspace of
H0(JdL) because the map JdL → L → 0 induces the surjection H0(JdL) → H0(L) → 0,
see e.g. [8], and then Ddv = 0 implies v = 0.

We have thus an injective map G(r + 1,H0(L)) ↪→ Γtriv(%r,d) ⊆ G(r + 1,H0(JdL)),
sending V to γDdV , and

W0(γDdV ) := Dru0 ∧Dru1 ∧ . . . ∧Drur mod C∗ = W0(V )

which proves that our Wronski map defined on Γtriv(%r,d), which is in general strictly
larger than G(r +1,H0(L)), coincides with the Wronskian W0(V ) defined in section 3. We
are so in condition of defining generalized Wronskian subloci. Recall the natural evaluation
map

ev : C × Γtriv(%r,d) −→ G(r + 1, JdL)

sending (P, γ) 7→ γ(P ). If Ωλ(%∗r,dJ
•L) is a generalized Wronski variety of G(r + 1, JdL),

then ev−1(Ωλ(%∗r,dJ
•L)) cuts the locus of pairs (P, γ) such that γ(P ) ∈ Ωλ(J•L). We also

set evP (γ) = γ(P ), for each P ∈ C. It follows that the general section of any irreducible
component of ev−1

P (Ωλ(J•L)) is a section having λ as a ramification partition.

5.4 The map Dd,P : H0(L) → Jd
P L sending v 7→ Ddv(P ) is a vector space monomor-

phism. If V ∈ G(r + 1,H0(L)), then v ∈ V ∩D−1
d,pNh,P (L) if and only if Dhv(P ) = 0, i.e.

if and only if v vanishes at P with multiplicity at least h. This explains the terminology
osculating flag used in Section 5.2.

5.5 Example. More details about the present example are in [19]. Let π : X −→ S be a
proper flat family of smooth projective curves of genus g ≥ 2. The Hodge bundle of the
family is Eπ := π∗Kπ. The vector bundle map over X
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π∗Eπ → J2g−2Kπ

is injective and then it induces a section γK : X → G(g, J2g−2Kπ). In this case the cuspidal
locus of γK , which is by definition γ−1

K (Ω1g−1(J•K)), coincides with the locus in X of the
Weierstrass points of the hyperelliptic fibers of π. With the notation as in 4.12 and 4.13,
its class in Ag−1(X) is given by

[γ−1
K (Ω1g−1(J•K)] = γ∗K [Ω1g−1(J•K)] = γ∗K(ε0 ∧ ε2 ∧ . . . ∧ εg)

and can be easily computed through a straightforward computation (see [19, Section 3],
where the computation was performed for g = 4). Since on each hyperelliptic fiber there
are precisely 2g + 2 Weierstrass points, the class of the hyperelliptic locus in Ag−2(S) is
given by

[H] =
1

2g + 2
· π∗γ∗K(ε0 ∧ ε2 ∧ . . . ∧ εg) ,

which yields precisely the formula displayed in [37, p. 314].

5.6 If C = P1 and L = OP1(d), then Γtriv(%r,d) coincides in this case with G(r + 1,H0(L))
and our picture allows to rephrase in an elegant way the situation exposed in the first part
of [9]. The Wronski map Γtriv(%r,d) → PH0(OP1((r+1)(d−r))) coincides with (20), modulo
the identification of Γtriv(%r,d) with G(r + 1,H0(OP1(d))). In other words, when C is not
rational, the theory exposed up to now is a generalization of the theory of linear systems
on the projective line, for which we want to spend some additional words in a separate
section.

6 Linear Systems on P1 and the Intermediate Wronskians

In the case of linear systems gr
d defined on the projective line, the picture outlined in

Section 5 gets simpler. However, even this case is particularly rich of nice geometry inter-
acting with other parts of mathematics.

For the sake of brevity, denote by Ld the invertible sheaf OP1(d), i.e. the unique
line bundle on P1 of a fixed degree d. The elements of a basis x := (x0, x1) of H0(L1)
can be regarded as homogeneous coordinates (x0 : x1) on P1. Furthermore H0(Ld) =
SymdH0(L1), i.e. H0(Ld) can be identified with the C-vector space generated by the
monomials {xi

0x
d−i
1 }0≤i≤d, and a gr

d on P1 is a point of G(r + 1,H0(Ld)). Any basis
v := (v0, v1, . . . , vr) of V ∈ G(r + 1,H0(Ld)) defines a rational map

ϕV : P1 → Pr , P 7→ (v0(P ) : v1(P ) : . . . : vr(P )) . (35)

If V has no base points (that is, if dimV (−P ) = dimV −1 for each P ∈ P1), then the image
of (35) is a non-degenerated (that is, not contained in any hyperplane) rational curve of
degree d in Pr. In particular, if r+1 = dimH0(Ld), then V = H0(Ld) and ϕV (P1) is nothing
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else than the rational normal curve of degree d. Each curve of degree d in Pr can be seen as
the rational normal curve in PH0(Ld) composed with a projection PH0(Ld) → Pr whose
center is a complementary linear subvariety of V ∈ G(r + 1,H0(Ld)) (see e.g. [9], [29]).

Keeping the notation of Section 5, let %d : JdLd → P1 be the bundle of d-jets of Ld.
Then Dd : P1 ×H0(Ld) → JdL (cf. (22) is an injective morphism between vector bundles
of the same rank, that is, an isomorphism. In particular, the map

{Dd,P : H0(Ld) −→ Jd
P Ld

P 7−→ Ddv(P )
(36)

is an isomorphism of vector spaces, for each P ∈ P1. We define the osculating flag at P of
H0(Ld),

F•,P : 0 ⊂ F1,P ⊂ . . . ⊂ Fd,P ⊂ Fd+1,P = Jd
P L,

by setting (cf. 5.2)
Fh,P = D−1

d,p(Nh,P (L)) ⊆ H0(Ld).

In other words, v ∈ V ∩ Fh,P if and only if v vanishes at P with multiplicity at least
h, that is, Dhv(P ) = 0. In fact, Fh,P may be identified with the vector subspace of the
homogeneous polynomials of H0(Ld) that vanish at P with multiplicity at least h. Yet
another interpretation of Fh,P is the set of all hyperplanes of PH0(Ld) intersecting the
rational normal curve in PH0(Ld)) at P with multiplicity at least d− h.

6.1 The Riemann-Roch formula shows that h0(Ld) = h0(JdLd); thus the injective “deriva-
tive map” Dd : H0(Ld) → H0(JdLd) is an isomorphism which itself induces a biholomor-
phism:

G(r + 1,H0(Ld)) → G(r + 1,H0(JdLd)).

So one concludes that Γtriv(%r,d) = G(r + 1,H0(JdLd)) ∼= G(r + 1,H0(Ld)) parameterizes
all the gr

d’s on P1 (with base points or not). In particular it is compact.
For V ∈ G(r + 1,H0(Ld)), denote by γV the corresponding element of Γtriv(%r,d). The

evaluation morphism P1 × G(r + 1,H0(Ld)) → G(r + 1, JdLd) maps (P, V ) to γV (P ) ∈
G(r + 1, Jd

P Ld).

6.2 By 6.1, the Wronski map γ 7→ W0(γ) (see (34)) coincides with the Wronski map (20) of
Section 3.9:

G(r + 1,H0(Ld)) → PH0(L(r+1)(d−r)) , V 7→ W0(V ). (37)

It is a finite surjective morphism (see e.g. [9], [29], [45]). Its degree Nr,d is precisely the
Plücker degree of the Grassmannian G(r + 1, d + 1):

Nr,d =
∫

σ
(r+1)(d−r)
(1) ∩ [G(r + 1, d + 1)] =

1!2! . . . r! · (r + 1)(d− r)!
(d− r)!(d− r + 1)! · . . . · d!

.

Thus, given a homogeneous polynomial W of degree (d− r)(r +1) in two indeterminates
(x0, x1), there are at most Nr,d distinct gr

d’s having W as a Wronskian. The number Nr,d
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was calculated by Schubert himself in 1886, cf. [49] and [15, p. 274]. In the case of real
rational curves, the degree of the Wronski map was obtained by L. Goldberg for r = 1
([24]), and for any r ≥ 1 by A. Eremenko and A. Gabrielov ([10]). For more considerations
on real Wronski map see also [29].

6.3 For any partition λ ∈ P(r+1)×(d−r) define

Ωλ(P ) := Ωλ(F•,P ) ⊆ G(r + 1, H0(Ld)).

It is a Schubert variety of codimension |λ| in G(r + 1,H0(Ld)). If λ(V, P ) is the order
partition of V at P (see Section 3.12) then

V ∈ Ω◦λ(V,P )(P ) ⊆ Ωλ(V,P )(P ) ,

and P is a V -ramification point if and only if |λ(V, P )| > 0. The Wronskian W0(V ) of
V vanishes exactly at the V -ramification points. The total weight of the V -ramification
points equals the dimension of G(r + 1,H0(Ld)) (one can see that by putting g = 0 in
(21)).

Let {(P ,w)} := {(P0, w0), (P1, w1), . . . , (Pk, wk)) be a k+1-tuple of pairs where Pi ∈ P1

and wi’s are positive integers such that

k∑

i=1

wi = (r + 1)(d− r). (38)

Thus, in notation of Section 3.14, if

Dwi−1W0(V ) ∈ H0(Jwi−1L(r+1)(d−r))

vanishes at Pi, for every 0 ≤ i ≤ k, then P0, P1, . . . , Pk are exactly the ramification points
of V , each one of weight wtV (Pi) = wi = |λ(Pi, V )|. We have

V ∈ Ω◦λ(V,P0)(P0) ∩ Ω◦λ(V,P1)(P1) ∩ . . . ∩ Ω◦λ(V,Pk)(Pk) =
= Ωλ(V,P0)(P0) ∩ Ωλ(V,P1)(P1) ∩ . . . ∩ Ωλ(V,Pk)(Pk) . (39)

Condition (38) means that the ”expected dimension” of the intersection (39) is zero.
Intersections of Schubert varieties associated with the osculating flags of the normal ratio-
nal curve were first studied by D. Eisenbud and J. Harris in the eighties, [9]. In particular,
they showed that the intersection (39) is zero-dimensional indeed, and hence the number
of distinct elements in the intersection is at most

∫

G(r+1,H0(Ld))
σλ(P0,V ) · σλ(P1,V ) · . . . · σλ(Pk,V ) ∩ [G(r + 1,H0(Ld))] ,

where σλ is the Schubert cycle defined by the equality σλ∩ [G(r+1, H0(Ld))] = [Ωλ]. This
fact was used in [7] to deduce explicit formulas (and a list up to n = 40) for the number of
space rational curves of degree n− 3 having 2n hyperstalls at 2n prescribed points.
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6.4 Preimages of the Wronski Map. Notice that if P ∈ P1 is a base point of V , it occurs
in the V -ramification locus as well, and the Wronskian vanishes at it with weight (r + 1).
The set BP of linear systems having P as base point is a closed subset of G(r + 1,H0(Ld))
of codimension (r + 1). In fact BP := ev−1

P (B(%∗r,dJ
•Ld)), which is a closed subset of

codimension (r + 1) (cf. Section 4.7).
Let {(P ,w)} be as in 6.3. Denote by Gr,d(P ) the set of all V ∈ G(r + 1,H0(Ld)) whose

base locus contains no Pi, 0 ≤ i ≤ r. It is an open dense subset of codimension (r + 1),

Gr,d(P ) = G(r + 1,H0(Ld)) \ (BP0 ∪BP1 ∪ . . . ∪BPk
) .

Consider now a (k + 1)-tuple of partitions

~λ = (λ0, λ1, . . . ,λk) , |λj | = wj , 0 ≤ j ≤ k.

We shall write:
λj := λj,0 ≥ λj,1 ≥ . . . ≥ λj,r .

The elements of

I(~λ, P ) = Ωλ0(P0) ∩ Ωλ1(P1) ∩ . . . ∩ Ωλk
(Pk) ∩ Gr,d(P ) ⊂ G(r + 1, H0(Ld)) (40)

correspond to the base point free linear systems ramifying at P according to ~λ.
The problem of determining I(~λ, P ) leads to interesting analytic considerations re-

lated with Wronskians. Up to a projective change of coordinates, it is not restrictive to
assume that P0 = ∞ := (0 : 1). Using the coordinate x = x1/x0, the osculating flag at
∞ shall be denoted by F•,∞. Accordingly, the partition λ0 will be renamed λ∞. Notice
that Fj,∞ coincides with the vector space Polyj of the polynomials of degree at most j
in the variable x: in fact a polynomial P (x) (thought of as the affine representation of a
homogeneous polynomial of degree d in two variables) vanishes at ∞ with multiplicity j

if and only if it has degree d− j. For V ∈ I(~λ, P ), let

WV (x) :=
W0(V )

x
(r+1)(d−r)
0

be the representation of the W0(V ) in the affine open subset of P1 defined by x0 6= 0. The
degree of the polynomial WV (x) is less or equal than (r + 1)(d − r), because of possible
ramifications of V at ∞. We have

WV (x) = (x− z1)w1 · . . . · (x− zk)wk , (41)

where zi := x(Pi) are the values of the coordinate x at Pi ∈ P1;
∑k

i=1 wi = deg WV (x) ≤
(r + 1)(d− r).
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For a basis v = (v0, v1, . . . , vr) of V , consider fi := vi/xd
0 and write f = (f0, f1, . . . , fr).

According to (3), one writes WV (x) = f ∧Df ∧ . . . ∧Drf , where

Djf =
(

djfi

dxj

)

0≤i≤r

.

The space V can be realized as the solution space of the following differential equation

EV (g) =

∣∣∣∣∣∣∣∣∣∣

g f0 f1 . . . fr

Dg Df0 Df1 . . . Dfr
...

...
...

. . .
...

Drg Drf0 Drf1 . . . Drfr

Dr+1g Dr+1f0 Dr+1f1 . . . Dr+1fr

∣∣∣∣∣∣∣∣∣∣

= 0 . (42)

6.5 Intermediate Wronskians. For V ∈ I(~λ, P ), denote by V• the flag obtained by the
intersection of V and F•,∞:

V• = {V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vr = V } , dimVj = j + 1, (43)

all the polynomials in Vj have degree ≤ dj , where 0 ≤ d0 < d1 < . . . < dr ≤ d is the order
sequence of V at P0 (cf. Section 3.12). Recall that V has no base point and WV (x) as in
(41).

Define the j-th intermediate Wronskian of V as Wj(x) := WVj (x), the Wronskian of Vj ,
0 ≤ j ≤ r. In particular, the r-th intermediate Wronskian coincides with WV (x). Non-
vanishing properties of intermediate Wronskians have been recently investigated in an
analytic context in [5] and [6] to study factorizations of linear differential operators with
non-constant C-valued coefficients.

Intermediate Wronskians are important because every V ∈ G(r + 1, Polyd) is com-
pletely determined by the set of its intermediate Wronskians W0(x), . . . , Wr(x). Indeed,
the ODE (42) can be rewritten as follows:

d

dx

W 2
r (x)

Wr−1(x)Wr+1(x)
· . . . · d

dx

W 2
2 (x)

W3(x)W1(x)
d

dx
· W 2

1 (x)
W2(x)W0(x)

· d

dx

g(x)
W1(x)

= 0 .

By [40, Part VII, Section 5, Problem 62], one can take as a basis of V the following set of
r + 1 linearly independent solutions of (42):

g0(x) = W0(x) ,

g1(x) = W0(x)
∫ x W0W2

W 2
1

,

g2(x) = W0(x)
∫ x (

W0(ξ)W2(ξ)
W 2

1 (ξ)

∫ ξ W1W3

W 2
2

)
,

. . . . . . . . . . . . . . .

gr(x) = W0(x)
∫ x (

W0(ξ)W2(ξ)
W 2

1 (ξ)

∫ ξ (
W1(τ)W3(τ)

W 2
2 (τ)

∫ τ

. . .

∫ η Wr−1Wr+1

W 2
r

)
. . .

)
.
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Define now polynomials Z0(x), Z1(x), . . . , Zr(x) through the following formula:

Zi(x) =
k∏

j=1

(x− zj)mj(i), 0 ≤ i ≤ r , (44)

where
mj(i) = λj,r + λj,r−1 + . . . + λj,r−i, 1 ≤ j ≤ k.

In particular Zr(x) = WV (x).

6.6 Lemma ([46]) The ratio Tr−i(x) := Wi(x)/Zi(x) is a polynomial of degree

(i + 1)(d− i)−
i∑

l=0

λr−l,∞ −
k∑

j=1

mj(i). (45)

In particular, T0(x) = 1. Thus we have Wr−j(x) = Tj(x)Zr−j(x), 0 ≤ j ≤ r. The roots
of Tj(x) are said to be the additional roots of the (r − j)-th intermediate Wronskian. If (40)
contains more than one element, then the intermediate Wronskians of these elements all
differ by the additional roots.

6.7 Non-degenerate planes. ([46]) The intersection (40) contains some distinguished ele-
ments, called non-degenerate planes. Denote by ∆(f) the discriminant of a polynomial f(x)
and by Res(f, g) the resultant of polynomials f(x), g(x).

Definition. We call V ∈ I(~λ, P ) a non-degenerate plane if the polynomials T0(x), . . . , Tr−1(x)

i) do not vanish at the ramification points P1, . . . , Pk, i.e. Ti(zj) 6= 0 for all 0 ≤ i ≤ r − 1 and
all 1 ≤ j ≤ k;

ii) do not have multiple roots: ∆(Ti) 6= 0, for all 0 ≤ i ≤ r;
iii) For each 1 ≤ i ≤ r , Ti and Ti−1 have no common roots: Res(Ti, Ti−1) 6= 0.

6.8 Relative discriminants and resultants. Non-degenerate planes correspond to critical
points of a certain generating function which can be described in terms of relative discrimi-
nants and resultants. For fixed z = (z1, . . . , zk), any monic polynomial f(x) can be written
in a unique way as the product of two monic polynomials T (x) and Z(x) satisfying

f(x) = T (x)Z(x), T (zj) 6= 0, Z(x) 6= 0 for any x 6= zj , 1 ≤ j ≤ k. (46)

One defines the relative discriminant of f(x) with respect to z as being

∆z(f) =
∆(f)
∆(Z)

= ∆(T )(Res(Z, T ))2,

and the relative resultant of fi(x) = Ti(x)Zi(x), i = 1, 2, with respect to z as

Resz(f1, f2) =
Res(f1, f2)
Res(Z1, Z2)

= Res(T1, T2)Res(T1, Z2)Res(T2, Z1).
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If V is a non-degenerate plane in I(~λ, P ) given by (40), then the decomposition Wi(x) =
Tr−i(x)Zi(x) is exactly the same as displayed in (46). The generating function of I(~λ, P ) is
a rational function such that its critical points determine the non-degenerate elements in
such an intersection. Its expression is (see [46] ):

Φ
(~λ,z)

(T1, . . . , Tp−1) =
∆z(W0) · . . . ·∆z(Wr−1)

Resz(W1, W2) · . . . · Resz(Wr−1,Wr)
(47)

Part of the following theorem was originally obtained by A. Gabrielov (unpublished),
along his investigations of the Wronski map.

6.9 Theorem ( [46]) There is a one-to-one correspondence between the critical points with non-
zero critical values of the function Φ

(~λ,z)
(T0, . . . , Tr−1) and the non-degenerate planes in the in-

tersection I(~λ, P ) given by (40).

Namely, every such critical point defines the intermediate Wronskians, and hence a
non-degenerate plane, see 6.5. Conversely, for every non-degenerate plane one can cal-
culate the intermediate Wronskians, and the corresponding polynomials Ti(x) supply a
critical point with a non-zero critical value of the generating function (47).

6.10 Relation to Bethe vectors in the Gaudin model (see [36, 44, 46]). Once one re-writes
(47) in terms of unknown roots of the polynomials Tj ’s, the the generating function turns
into the master function associated with the Gaudin model of statistical mechanics.

In the Gaudin model, the partitions λj , 1 ≤ j ≤ k, of Section 6.4 are the highest weights
of slr+1-representations, and the j-th representation is marked by the point Pj . Recall that
λ∞ is the partition related to P0 := (0 : 1) ∈ P1, after renaming λ0, see Section 6.4. De-
note by λ∗∞ the partition dual to λ∞. Certain commuting linear operators, called Gaudin
Hamiltonians, act in the subspace of singular vectors of the weight λ∗∞ in the tensor prod-
uct of the slr+1-representations of the weights λ1, . . . , λk, and one looks for a common
eigenbasis of the Gaudin Hamiltonians.

The Bethe Ansatz is a method to look for common eigenvectors. It gives a family of
vectors of the required weight λ∗∞ meromorphically depending on a number of auxiliary
complex parameters. The Bethe system is a system of equations on these parameters, and
any member of the family that corresponds to a solution of the Bethe system is a common
singular eigenvector of the Gaudin Hamiltonians called the Bethe vector.

It turns out that the Bethe system coincides with the system on critical points with
non-zero critical value of the function Φ~λ,z,

. In other words, the auxiliary complex pa-
rameters are exactly the additional roots of the intermediate Wronskians! Thus every
non-degenerate plane of (40) defines a Bethe vector and vice versa.

This link has led to an essential progress in studies of the Gauidin model as well as in
algebraic geometry (e.g., Shapiro-Shapiro conjecture), see [35] and references therein.
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7 Linear ODEs and Wronski–Schubert Calculus

This last section surveys and announces the results of [21], an attempt to reconcile the first
part of this survey, regarding Wronskians of fundamental systems of solutions of linear
ODEs, with the geometry described in the last four sections. The main observation is that
Schubert cycles of a Grassmann bundle can bedescribed through wronskians associated
to a fundamental system of solutions of a linear ODE.

7.1 Let us work in the category of (not necessarily finitely generated) associative commu-
tative Q-algebras with unit. Let A be such a Q-algebra. We denote by A[T ] and A[[t]] the
corresponding A-algebras of polynomials and of formal power series, respectively (here t
and T are indeterminates over A). For φ =

∑
n≥0 antn ∈ A[[t]], we write φ(0) for the “con-

stant term” a0. If P (T ) ∈ A[T ] is a polynomial of degree r + 1, we denote by (−1)iei(P )
the coefficient of T r+1−i, for each 0 ≤ i ≤ r + 1; for instance, if P is monic, e0(P ) = 1, we
have:

P (T ) = T r+1 − e1(P )T r + . . . + (−1)r+1er+1(P ).

Let B be another Q-algebra. Each ψ ∈ HomQ(A,B) induces two obvious Q-algebra ho-
momorphisms, A[T ] → B[T ] and A[[t]] → B[[t]], the both are also denoted by ψ. The
former is defined by ei(ψ(P )) = ψ(ei(P )) and the latter by

∑
n≥0 antn 7→ ∑

n≥0 ψ(an)tn.

7.2 Let Er := Q[e1, e2, . . . , er+1] be the polynomial Q-algebra in the set of indeterminates
(e1, . . . , er+1). We call

Ur+1(T ) = T r+1 − e1T
r + . . . + (−1)r+1er+1

the universal monic polynomial of degree r + 1. Thus ei(Ur+1(T )) = ei for all 0 ≤ i ≤ r + 1.
Let h̄ := (h0, h1, h2, . . . , hr, hr+1, . . .) be the sequence in Er defined by the equality of

formal power series:

∑

n≥0

hntn =
1

1− e1t + . . . + (−1)r+1tr+1
= 1 +

∑

n≥1

(e1t− e2t
2 + . . . + (−1)rer+1t

r+1)n.

One gets h0 = 1, h1 = e1, h2 = e2
1 − e2, . . . . In general hn = det(ej−i+1)1≤i,j≤n (see [15,

p. 264]).
For any (r + 1)-tuple or sequence ā = (a0, a1, . . .) of elements of any Er-module, we

set
U0(a) = a0 , Ui(a) = ai − e1ai−1 + . . . + (−1)ieia0 , 1 ≤ i ≤ r. (48)

Although only a0, a1, . . . , ar appear in (48), we prefer to define Uj also for sequences. We
have Ui(h̄) = 0 for all 1 ≤ i ≤ r.

7.3 Let x := (x0, x1, . . . , xr) and f̄ := (fn)n≥0 be two sets of indeterminates over Q. Let

Er[x, f̄ ] := Er[x0, x1, . . . , xr; f0, f1, . . .]
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be the Q-polynomial algebra and Er[x, f̄ ][[t]] the corresponding algebra of formal power
series. Denote by D := d/dt the usual formal derivative of formal power series. Its j-th
iterated is:

Dj


∑

n≥0

an
tn

n!


 =

∑

n≥0

an+j
tn

n!
, am ∈ Er[x, f̄ ].

Evaluating the polynomial Ur+1 at D we get the universal differential operator:

Ur+1(D) = Dr+1 − e1D
r + . . . + (−1)r+1er+1.

Let f :=
∑

n≥0 fn
tn

n! ∈ Q[f̄ ][[t]] ⊆ Er[x, f̄ ][[t]]. Consider the universal Cauchy problem for
a linear ODE with constant coefficients:





Ur+1(D)y = f,

Diy(0) = xi, 0 ≤ i ≤ r.
(49)

We look for solution of (49) in Er[x, f̄ ][[t]].

7.4 Theorem. ([21]) Let
∑

n≥0 pn · tn ∈ Er[x, f̄ ][[t]] be defined by:

∑

n≥0

pntn =
U0(x) + U1(x)t + . . . + Ur(x)tr +

∑
n≥r+1 fn−r−1t

n

1− e1t + . . . + (−1)r+1er+1tr+1
, (50)

where Uj are as in (48). Then

g :=
∑

n≥0

pn
tn

n!
(51)

is the unique solution of the Cauchy problem (49).

The universality of Ur+1(D) means the following.

7.5 Theorem. Let A be aQ-algebra, P ∈ A[T ], φ =
∑

n≥0 φntn/n! ∈ A[[t]] and (b0, b1, . . . , br) ∈
Ar+1 any (r + 1)-tuple. Then the unique Q-algebra homomorphism, defined by xi 7→ bi, ei 7→
ei(P ) and fi 7→ φi, maps the universal solution g, as in (51), to the unique solution of the Cauchy
problem {

P (D)y = φ,
Diy(0) = bi , 0 ≤ i ≤ r.

(52)

For each 0 ≤ i ≤ r, let ψi : Er[x, f̄ ] → Er be the unique Er-algebra homomorphism
over the identity sending x 7→ (0, . . . , 0︸ ︷︷ ︸

i

, 1, h1, . . . , hr−i) and f̄ 7→ (0, 0, . . .).

7.6 Corollary. If ui := ψi(g) ∈ Er[[t]], where g is the unique solution of the universal Cauchy
problem (49), then u = (u0, u1, . . . , ur) is an Er-basis of kerUr+1(D).
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Proof. Using the same arguments as in Theorem 7.4, one shows that ui is a solution of
Ur+1(D)y = 0. Furthermore, if u := a0u0 + a1u1 + . . . + arur = 0, then u is the unique
solution of Ur+1(D)y = 0, with the zero initial conditions. Then by uniqueness u = 0, i.e.
(u0, . . . , ur) are linearly independent.

7.7 Corollary. Let A be any Q-algebra and P ∈ A[T ]. Let ψ : Er → A be the unique morphism
mapping ei 7→ ei(P ). Then (ψ(u0), ψ(u1), . . . , ψ(ur)) is an A-basis of kerP (D).

In other words, kerP (D) ∼= kerUr+1(D)⊗Er A.

7.8 Let n ≥ 0 be an integer and µ a partition of length at most r+1 with weight n. Denote
by

(
n
µ

)
the coefficient of xµ0

0 xµ1

1 . . . xµr

r in the expansion of (x0 + x1 + . . . + xr)n. With the
usual convention 0! = 1, one has

(
n

µ

)
=

n!
µ0!µ1! . . . µr!

.

In Section 4.12 Schur polynomials ∆µ(a) associated to partition µ and to (the coefficients
of) a formal power series a =

∑
n≥0 antn were defined, see (28). In our notation, the

coefficients form sequence ā = (a0, a1, . . . ); below we will write ∆µ(ā) instead of ∆µ(a).

7.9 Theorem. For each partition λ, the following equality holds:

Wλ(u) =
∑

n≥0

∑

|µ|=n

(
n

µ

)
∆λ+µ(h̄)

tn

n!
.

In particular, the ”constant term” is Wλ(u)(0) = ∆λ(h̄).

It is a straightforward combinatorial exercise made easy by the use of the basis u found
in 7.6. See [21] for details.

7.10 Proposition. Giambelli’s formula for Wronskians holds:

Wλ(u) = ∆λ(h̄) ·W0(u).

Proof. First of all, by Remark 2.5, Wλ(u) is proportional to W0(u), i.e. Wλ(u) = cλW0(u)
for some cλ ∈ Er. Next, two formal power series are proportional if and only if the coef-
ficients of the same powers of t are proportional, with the same factor of proportionality.
Finally,

cλ =
Wλ(u)(0)
W0(u)(0)

= ∆λ(h̄),

according to Theorem 7.9.

7.11 Corollary. Pieri’s formula for generalized Wronskians holds:
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hiWλ(u) =
∑

µ Wµ(u),

where the sum is over the partitions µ = (µ0, µ1, . . . , µr) such that |µ| = i + |λ| and

µ0 ≥ λ0 ≥ µ1 ≥ λ1 ≥ . . . ≥ µr ≥ λr .

It is well known that Giambelli’s and Pieri’s implies each other. See e.g. [15, Lemma A.9.4].

7.12 Let now %r,d : G → X be a Grassmann bundle, where G := G(r + 1, F ) and F is
a vector bundle of rank d + 1. As recalled in Section 4.12, A∗(G) is freely generated as
A∗(X)-module (see [15, Proposition 14.6.5]) by

∆λ(ct(Qr − %∗r,dF )) ∩ [G].

The exact sequence (23) implies that ct(Sr)ct(Qr) = ct(%∗r,dF ), which is equivalent to

1 = ct(Sr)
ct(Qr)

ct(%∗r,dF )
= ct(Sr)ct(Qr − %∗r,dF ).

Set εi = (−1)ici(Sr) and consider the differential equation

Dr+1y − ε1 ·Dry + . . . + (−1)r+1εr+1 · y = 0 . (53)

We look for solutions in (A∗(G) ⊗ Q)[[t]]. By Corollary (7.7) the unique morphism ψ :
Er → A∗(G)⊗Q, sending ei 7→ εi, maps the universal fundamental system (u0, u1, . . . , ur)
to v = (v0, v1, . . . , vr), where vi = ψ(ui) and, as a consequence, it maps hi to ci(Qr−%∗r,dF )
and Wλ(u) to Wλ(v). Then we have proven that

∆λ(ct(Qr − %∗r,dF )) =
Wλ(v)
W0(v)

.

In other words, the Chow group A∗(G) can be identified with the A∗(X)-module gener-
ated by the generalized Wronskians associated to the basis v of solutions of the differential
equation (53). In particular we have shown that the class [Ωλ(%∗r,dF•)] of the generalized
Wronski variety Ωλ(%∗r,dF•) is an A∗(X)-linear combination of ratios of generalized Wron-
skians associated to the basis v of (53), by virtue of (30), (31) and (32).
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