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Abstract

The Wronski determinant (Wronskian), usually introduced in standard courses in Ordinary Dif-
ferential Equations (ODE), is a very useful tool in algebraic geometry to detect ramification loci of
linear systems. The present survey aims to describe some “materializations” of the Wronskian and
of its close relatives, the generalized Wronskians, in algebraic geometry. Emphasis will be put on the
relationships between Schubert Calculus and ODE.
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Introduction

Let f := (fo, f1,..., fr) be an (r + 1)-tuple of holomorphic functions in one complex vari-
able. The Wronskian of f is the holomorphic function W (f) obtained by taking the determi-
nant of the Wronski matrix whose entries of the j-th-row, 0 < j < r, are the j-th derivatives
of (fo, f1,--., fr). The first appearance of Wronskians dates back to 1812, introduced by
J. M. Hoene-Wronski (1776-1853) in the treatise [27] — see also [43]. The ubiquity of the
Wronskian in nearly all the branches of mathematics, from analysis to algebraic geometry,
from number theory to combinatorics, up to the theory of infinite dimensional dynamical
systems, is definitely surprising if compared with its elementary definition. The present
survey aims to outline links between some different Wronskian materializations to make
evident their common root. The emphasis will be put on the mutual relationships among
linear Ordinary Differential Equations (ODEs), the theory of ramification loci of linear
systems (e.g. Weierstrass points on curves) and the intersection theory of complex Grass-
mann varieties, ruled by the famous Calculus [49] elaborated in 1886 by H. C. H. Schubert
(1848-1911), to which the Italians M. Pieri (1860-1913) and G. Z. Giambelli (1879-1953)
contributed too — see [23,39].

The notion of Wronskian belongs to mathematicians” common background because
of its most popular application, which provides a method (sketched in Section 2) to find
a particular solution of a non-homogeneous linear ODE. It relies on the following key
property of the Wronskian of a fundamental system of solutions of a linear homogeneous
ODE: the derivative of the Wronskian is proportional to the Wronskian itself, whose proof is due
to J. Liouville (1809-1882) and N. H. Abel (1802-1829). This apparently innocuous prop-
erty should be considered as the first historical appearance of Schubert Calculus. To see
it, one must embed the Wronski determinant into a full family of generalized Wronskians,
already used in 1939 by F. H. Schmidt [48] to study Weierstrass points and, in recent times
and with the same motivation, by C. Towse in [50]. For a sample of applications to number
theory see also [3] and [34].

IfX= (A > A > ... > )\)is a partition, the generalized Wronskian Wx(f) is the
determinant of the matrix whose j-th row, for 0 < j < r, is the row of the derivatives
of order j + A\._; of (fo, f1,..., fr). Clearly W(f) = Wy(f), where 0 stands for the null
partition (0,...,0). The derivative of W (f), appeared in the proof of Liouville’s—Abel’s
theorem, is the first example of a generalized Wronskian, Wy)(f), corresponding to the
partition (1,0, ...,0). The bridge to Schubert Calculus is our generalization of Liouville’s
and Abel’s theorem (see [21]): Giambelli’s formula for generalized Wronskians holds. More pre-
cisely, if f is a fundamental system of solutions of a linear ODE with constant coefficients,
then Wy (f) is proportional to the usual Wronski determinant, Wx(f) = Ax(h)Wy(f),
where Ax(h) is the Schur polynomial associated to a sequence h = (hg, h1,...) of ex-
plicit polynomial expressions in the coefficients of the given ODE and to the partition A
- see Section 7. If the characteristic polynomial of the linear differential equation splits
into the product of distinct linear factors, then h; is nothing else than the j-th complete



symmetric polynomial in its roots.

Let us now change the landscape for a while. Take a smooth complex projective curve
C of genus g > 0 and an isomorphism class L € Pic?(C) of line bundles of degree d on
C. A g}yon C'is a pair (V, L), where V is a point of the Grassmann variety G(r + 1, H°(L))
parameterizing of (r 4+ 1)-dimensional vector subspaces of the global holomorphic sec-

tions of L. If v = (vg,v1,...,v,) is a basis of V, the Wronskian W (v) is a holomorphic
section of the bundle £, , 4 := L% @ K ®*5™ _ gee Section 3. It can be constructed by

gluing together local Wronskians W (f), where f = (fo, f1,..., fr) is an (r + 1)-tuple of
holomorphic functions representing the basis v in some open set of C' that trivializes L.
As changing the basis of I amounts to multiply W (v) by a non-zero complex number, one
obtains a well defined point W (V) := W (v) (mod C*) in PH?(L,,,.4) called the Wronskian
of V. The Wronski map G(r + 1, HY(L)) — PHY(L,,4) mapping V to W (V) is a holomor-
phic map; two extremal cases show that, in general, it is neither injective nor surjective.
Indeed, if C is hyperelliptic and L € Pic?(C) is the line bundle defining its unique g3,
then G(2, H(L)) is just a point, and the Wronski map to PHY(L, ; ») is trivially injective
and not surjective. On the other hand, if C = P! and L = Op:1(d), then the Wronski map
G(r+1,H%Opi(d))) — PH®(Lo,4) is a finite surjective morphism whose degree is equal
to the Pliicker degree of the Grassmannian G(r + 1,d + 1), thence in this case the Wronski
map is not injective, cf. [9].

The problem of determining the pre-image of an element of PH%(L . 4) through the
Wronski map defined on G(r + 1, H%(Op1(d))) leads to an intriguing mixing of Geometry,
Analysis and Representation Theory. It turns out that certain non-degenerate elements of
G(r +1,H°(Op1(d))), defined through suitable intermediate Wronskians, correspond to the
so-called Bethe vectors appeared in representation theory of the Lie algebra si,41(C). The
correspondence goes through critical points of a remarkable rational function related to
Knizhnikov-Zamolodchikov equation on correlation functions of the conformal field the-
ory, [36,45]46,47]. Interestingly, the critical points of the mentioned rational function in
the case r = 1 were examined in the XIX century, in works of Heine and Stieltjes on sec-
ond order Fuchsian differential equations having a polynomial solution of a prescribed
degree. Schubert calculus on Grassmannians has been introduced even before. However,
the relationship between these items - in the case r = 1 - was conceived a decade ago
in [44,47].

In the real framework, the relationship between Wronskians, Schubert calculus and
rational curves was discovered and studied by L. Goldberg, A. Eremenko& A. Gabrielov,
V. Karlhamov & F. Sottile, and others — see [24},10, 11, 29] and references therein.

More links between linear differential equations, projective curves and Schubert vari-
eties appeared in a local context in the investigations of M. Kazarian on singularities of
the boundary of fundamental systems of solutions of linear differential equations, [28].

Here, we take another point of view. A. Nigro proposes to extend the notion of rami-



fication locus of a linear system on a curve to that of ramification locus of a holomorphic
section of a Grassmann bundle [38]. The construction was motivated by the following ob-
servation (see also [8]): Let I'triv(pr,q) be the set of all the sections v : C' — G(r + 1, J ar)
such that the pull back of the tautological bundle S, over G(r+1, J%L) is trivial. Then each
gy = (V, L) induces a holomorphic section vy € I'¢riv(prq), via the bundle monomor-
phism C x V — JL (cf. Section5.3). The point is that the space I'tyiy(prq) is larger
than the space of linear systems, and so the theory becomes richer. A distinguished sub-
variety indwells in G(r + 1, J 1), called Wronski subvariety in [38]. It is a Cartier divisor
which occurs as the zero locus of a certain Wronski section W. The Wronskian of any
section v € I'iriv(prq) is defined to be Wy(y) = v*W (mod C*); if v = 7y for some
V € G(r + 1,H°(L)), it coincides with the usual Wronskian of V - see Section 5. In
particular, if M is a line bundle defining the unique g3 over a hyperelliptic curve of genus
g > 2, the extended Wronski map I'iriv(p12) — PH Y(M®2? @ K) is dominant (see [8]), its
behavior is closer to the surjectivity of the Wronski map defined on the space of g/js on P!
The latter, in this case, coincides with I'yyiv(py 4) modulo identification of V with vy

In general, the construction works as follows. Let o : /' — X be a vector bundle of
rank d + 1 and ¢, 4 : G(r + 1, F) — X be the Grassmann bundle of (r + 1)-dimensional
subspaces of fibers of p. Consider 0 — S, — g; " — 9, — 0, the universal exact se-
quence over G, and denote by Ax(c:(Q, — o) ;F')) the Schur polynomial, associated to the
partition X, in the coefficients of the Chern f)olynomial of Q, — ¢! ,F. Asis well known
(see e.g. [15, Ch. 14]), the Chow group A.(G) of cycles modulo rational equivalence is a
free A*(X)-module generated by B := {Ax(c:(Qr — 0 4F))N[G] [ A € Pr+Dx(d=m)1 where
Pr+1)x(d=) denotes the set of the partitions A such that \g < d —r, and - N [G] denotes the
cap product with the fundamental class of G. Let F, := (F})4>;>0 be a filtration of F, by
quotient bundles, such that F; has rank i. Schubert varieties {Qx(Fs) | A € Pr+Dx(d=)}
associated to F, (the definition is in Section 4.4) play the role of generalized Wronski subvari-
eties. In particular €2(;)(F,) is what in [38] was called the Fo-Wronski subvariety of G. It is a
Cartier divisor, that is the zero locus of a section W of the bundle /\TJrl o Fri1® /\r+1 SY
over G. We say that W is the F,-Wronskian. If v : X — Gis a holofnorphic section,
its Wronskian is, by definition, Wy(v) := v*W € HOA"™ F @ A" 4*SY). Its class in
A4(X) is nothing else than v*[Q1)(F%)] N [G]. The generalized Wronski class of v in A.(X) is
v*[Q2A(Fe)] N [X], which is the class of y~1(Qx(Fy)), provided that the codimension of the
locus coincides with the expected codimension |A| := Ao + ... + A,. Recall that [Qx(F,)]
can be easily computed as an explicit linear combination of the elements of the basis B
above, for instance by the recipe indicated in Section 4, especially Theorem 4.13.

Let now ¢; := ¢;(S,) € A*(G) be the Chern classes of the tautological bundle S, — G.
Consider a basis v := (vg, v1, . . ., v,) of solutions of the differential equation

y(7‘+1) — Ely(r) 4+ ...+ (—1)T+1€r+1y = O, (1)

taken in the algebra (A*(G) ® Q)[[t]] of formal power series in an indeterminate ¢ with



coefficients in the Chow ring of G with rational coefficients. In Section 7.12 we show that,
for each partition A € P@-7)x(r+1),

Wa(v)
WO (V) ’

AN(e(Qr — p1gF)) =

i.e. each element of the A*(X)-basis of the Chow ring of G is the quotient of generalized
Wronskians associated to a fundamental system of solutions of an ordinary linear ODE
with constant coefficients taken in A*(G). This will be a consequence of Giambelli’s formula
for generalized Wronskians, proven in [21], which so provides another clue of the ubiquity
of Wronskians in mathematics.

The survey was written with an eye on a wide range of readers, not necessarily ex-
perts in algebraic geometry. We thank the referees for substantial efforts to improve the
presentation.

1 Wronskians, in General

1.1 In the next two sections let K be either the real field R or the complex field C together
with their usual euclidean topologies. If U C K is an open connected subset of K, we shall
write O(U) for the K-algebra of reqular K-valued functions defined over U: here regular
means either C'*° differentiable if K = R or complex holomorphic if K = C. Let

v = (vg,v1,...,0,) € OU) L. ()

If t is a local parameter on U, we denote by D : O(U) — O(U) the usual derivation d/dt.
The Wronski matrix associated to the (r +1)-tuple (2) is the matrix valued regular function:

A% Vo U1 ce Up

Dv D Dv ... Dv
wM) = 7V = 0 T o
D"v D'vg D" ... DTu,

The determinant Wy(v) := det(W M (v)) is the Wronskian of v := (vg,v1,...,v,). It will be
often written in the form:

Wo(v) :=vADvA...AND"v. 3)

In this paper, however, we want to see Wronskians as a part of a full family of natural
functions generalizing them. They will be called, following the few pieces of literature
where they have already appeared ([3], [50]) generalized Wronskians.



1.2 Generalized Wronskians. Let » > 0 be an integer. A partition X of length r 4 1 is an
(r + 1)-tuple of non-negative integers in the non-increasing order:

A > >...>2 AN >0. (4)

The weight of X = (Ao, A1,..., Ap) is |A| := Y1, Aj, that is A is a partition of the integer
|Al. In this paper we consider only partitions of length r + 1. To each partition one may
associate a Young-Ferrers diagram, an array of left justified rows, with Ay boxes in the
first row, A; boxes in the second row, ..., and A, boxes in the (r + 1)-th row. We denote
by P(r+1)x(d=7) the set of all partitions whose Young diagram is contained in the (r + 1) x
(d — r) rectangle, i.e. the set of all partitions A such that

d—r>X> A\ >...> )\ >0.

If the last r—h entries of A € PU+1)x(4=7) are zeros, then we write simply A = (Ao, A1, . .., An),
omitting the last zero parts. For more on partitions see [33].

1.3 Definition. Let v as in (2) and X as in (4). The generalized Wronski matrix associated to
v and to the partition X is, by definition,

DMv D*rayg D vy ... Dl
D1+/\T*1V DH_)"'*IUO DH—)"”*lUl . DH')"'*lUT
WMx(v) := ) = . . .
Drtioy DT+)\0UO Dr—i-/\ovl o Dr—i—)\ovr

The A-generalized Wronskian is the determinant of the generalized Wronski matrix:
Wix(v) := det WM (v).
Coherently with (3) we shall write the A-generalized Wronskian in the form:
Wa(v) := D*v A DY A=y A A DTy, )

The usual Wronskian corresponds to the partition of 0, that is W (v) = Wy(v).

1.4 Remark. Notation (3) and (5) is convenient because the derivative of any generalized

Wronskian can be computed via Leibniz’s rule with respect to the product “A”:
D(Wa(v)) = D(DvADY A=ty ADHroy) =

= E DotAry A DTty A A Drtir Aoy,
o+t +... .+ =1
ij >0

A simple induction shows that any derivative of Wx(v) is a Z-linear combination of gen-
eralized Wronskians. Recall, as in Section (1.2, that partitions can be described via Young-
Ferrers diagrams, and that a standard Young tableau is a numbering of the boxes of the
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Young-Ferrers diagram of A with integers 1,...,|A| arranged in an increasing order in
each column and each row [16].

The following observation has convinced us that the Schubert calculus can be recast
in terms of Wronskians, see Section 7.

1.5 Theorem. We have

where cy, is the number of the standard Young tableaux of the Young—Ferrers diagram X. .

The coefficients cy’s and their interpretation in terms of Schubert calculus are very well
known; in particular, they can be calculated by the hook formula:

Al!

cN=—""""—"-"—,
R N

where the k;’s, 1 < j < ||, are the hook lengths of the boxes of A, see [16, p. 53].

2 Wronskians and Linear ODEs

Wronskians are usually introduced when dealing with linear Ordinary Differential Equa-
tions (ODEs).

2.1 We use notation of Section 1.1. For a(t) = (a1(t),...,a,4+1(t)) € OU) "t and f €
O(U), consider the linear ODE

Dte —a(t)D"z+ ...+ (1) a1 (D) = f (6)
and the corresponding linear differential operator P,(D) € Endx(O(U)),
Pa(D) := D™ —ay()D" + ...+ (=1)" a1 (1) 7)

The set of solutions, Sy 5, of (6) is an affine space modelled over K+l if xp is a particular
solution , then
Sta = xp +ker Po(D).

The celebrated Cauchy theorem ensures that given a column ¢ = (¢;)o<j<, € K", there
exists a unique element x. € ker P,(D) such that D7 f(0) = ¢;, forall 0 < j < r. Assume
now that v as in (2) is a basis of ker P,(D). A particular solution of (6) can be found
through the method of variation of arbitrary constants. Assume that

c=c(t) = . c oU)+,



and look for a solution of (6) of the form

2y i= (Vo)) = v(t) - olt) = Y cilt)ui(t)
i=0
where *-” stands for the usual row-by-column product. The condition that D’v-Dc = 0 for
all0 < j < rmeans that D'z, = D’v-cforall0 < j <rand D"z, = D"*lv.c+D"v-Dc.
The equality
Fa(D)ap = f

implies, by substitution, the equation
D'v-Dc=/f.

The unknown functions ¢ = c¢(¢) must then satisfy the differential equations:

Dcy 0
Dc 0
wMe) | L =
Dc, f

The key remark is that the Wronski matrix is invertible in O(U). Thus we get a system of

first order ODEs,
0

Dc= (WM(v))™*. ? :

f
which can be solved by usual methods.
To show the invertibility, one usually shows that if the Wronski matrix does not vanish
at some point of U, then it does vanish nowhere on U (recall that U is a connected open
set). Assume Wy(v)(P) # 0 for some P € U. Let us choose a local parameter ¢ on U

which is 0 at P, identifying the open set U with a connected neighborhood of the origin.
Computing the derivative of the Wronskian one discovers the celebrated

2.2 Liouville’s Theorem ([4, p. 195, §27.6]). The Wronskian W = Wy(v) satisfies the differ-
ential equation:
DW = a;W. (®)

The proof of Theorem 2.2/is as follows. By defining Dv as the row whose entries are
the derivatives of the entries of v, one notices that

Pa(D)v = (Pa(D)vo, Pa(D)u1, ..., Pa(D)v,) = 0.



Thence D" "lv = a1 () D"v — az(t)D""'v + ... + (=1)"a,+1(t)v and one gets

DWy(v) = D(VADVA...AD'V)=vADvVA...AD 'vADTly
= VADVA...A(a1(t)D"Vv —as(t)D" v+ ...+ (=1)"v) =
= a1(t)vADvA...AND"v=a(t)Wy(v).

The Wronskian then takes the form (Abel’s formula):

Wi(v) = Wo(w)(0) - exp( [ " a(u)du), ©)

where W;(v)(0) denotes the value of the Wronskian at t = 0. Equation (9) shows that if
W(v)(0) # 0 then W(v)(t) # 0 for allt € U. We shall see in Section 7 why the proof
of Liouville’s theorem is a first example of the Schubert Calculus formalism governing the
intersection theory on Grassmann Schemes.

2.3 Generalized Wronkians of Solutions of ODEs. Using generalized Wronskians asin/1.2,
Liouville’s theorem (8) can be rephrased as

W) (v) = ar()Wo(v)

and generalized as follows.

2.4 Proposition. Let 1¥ := (1,1,...,1) be the primitive partition of the integer 1 < k < r+1.
If v := (vo,v1,...,v,) is a basis of ker Py (D) then

Wary(v) = ar(t)W(v). (10)

Indeed, consider (7). If v € ker P,(D), then it is a K-linear combination of vy, vy, ..., v,
and hence the Wronskian of these r + 2 functions vanishes:

W (v, vg,v1,...,0,) = 0.
By expanding the Wronskian along the first column one obtains
W(v)D" 'y = Wiy (v)D v + ... 4 (=1)" T Wgriny (v)o = 0, (11)
and combining with P, (D) = 0 this implies

r41

D (D Winy(v) — ax ()W (v)) D*v = 0. (12)
k=1

For general v € ker P,(D), the (r + 1)-tuple (v, Dv, ..., D"v) is linearly independent, and
then (12) implies (10) forall 1 <k <r 4 1.



2.5 A natural question arises: Can we conclude that any generalized Wronskian W(v)
associated to a basis of ker P, (D) is a multiple of the Wronskian Wy (v)? The answer is
obviously yes. In fact whenever one encounters one exterior factor in the generalized
Wronskian of the form DIt v with j 4+ \,— j > 1+ 1, one uses the differential equation
to express D’**—iv as a linear combination of lower derivatives of the vector v, with
coefficients polynomial expressions in a and its derivatives,

Wi(v) = Ga(a, Da, D?a,.. )W (v).

The coefficient Gx(a, Da, D?a,...) assumes a particular interesting form in the case the
coefficients a of the equation are constant (so D*a = 0, for i > 0). We will address this case
in Section 7.

3 Wronski Sections of Line Bundles

3.1 A holomorphic vector bundle of rank d + 1 on a smooth complex projective variety X is
a holomorphic map ¢ : F' — X, where complex manifold F is locally a product of X and
a complex (d + 1)-dimensional vector space, cf. [25, page 69]. For P € X, we denote by
Fp:= o Y(F) C F the fiber.

Consider the vector space H*(F) := H°(X, F) of global holomorphic sections of F
(omitting the base variety when clear from the context). For s € H°(X, F) we will denote
the value of s at P € X by s(P) € Fp. The image of s in the stalk of the sheaf of sections of
F at P will be denoted by sp.

A line bundle over X is a vector bundle of rank 1. The set of isomorphism classes of line
bundles on X is a group under the tensor product; this group is denoted by Pic(X). If
7 : X — Sisaproper flat morphism, then we define a relative line bundle as an equivalence
class of line bundles on X, where £; and L, are declared equivalent if £; ® £, Lo px N,
for some N € Pic(S). The group of isomorphism classes of relative line bundles on X is
denoted by Pic(X/S) := Pic(X)/7*Pic(S).

3.2 In the attempt to keep the paper self-contained, we recall a few basic notions about
line bundles on a smooth projective complex curve. From now on, we denote the curve by
C. It will often be identified with a compact Riemann surface, i.e. with a complex manifold
of complex dimension 1 equipped with a holomorphic atlas 2 := {(U,, z4) | € A},
where z, is a local coordinate on an open U,. In this context, denote by O¢ the sheaf
of holomorphic functions on C: for (Uy, z,) € 2 the sheaf O¢(U,) is the C-algebra of
complex holomorphic functions in z,.

The canonical line bundle of C'is the line bundle K’ — C whose transition functions are
the derivatives of the coordinate changes,

kag : Ua NUg — C* | Kog = dzq/dzs.
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The holomorphic functions {x.g} obviously form a cocycle: kogkgy = Kay- A global holo-
morphic section w € H°(C, K) is a global holomorphic differential, i.e. a collection {f, dz,},
where f, € O(U,) and fa|UamUB = Haﬁfﬁ‘UaﬂUﬁ' We shall write f dzq = w),,_. The integer
g = h(K) := dim¢c H°(K) is the genus of the curve.

3.3 Jets of line bundles. Let 7 : X — S be a proper flat family of smooth projective
curves of genus g > 1 parameterized by some smooth scheme S. Let X xg X — S be the
2-fold fiber product of X over S and let p,q : X xg X — X be the projections onto the first
and the second factor respectively. Denote by § : X — X x g X be the diagonal morphism
and by 7 the ideal sheaf of the diagonal in X xg X. The relative canonical bundle of the
family 7 is by definition K := §*(Z/Z?). For each L € Pic(X/S), see3.1, and each h > 0
let

0 :
JL = p. < Tst g g c) (13)

be the bundle of jets (or principal parts) of L of order h. As X is smooth, J"L is a vector
bundle on X of rank A + 1.

By definition, J 0L = L. Set, by convention, J —1£ = 0 - the vector bundle of rank 0.
The fiber of J"L over P € X —a complex vector space of dimension h+ 1 - will be denoted
by J&L. The obvious exact sequence

h
yA Oxxgx Oxxgx
z’h—&-l Ih—i—l Ih

0—

— 0,

gives rise to an exact sequence (See [31, p. 224] for details):

th,h—1

0 — L® KM JC Jh=le —o. (14)

If my : C' — {pt} is a trivial family over a point, i.e. reduced to a single curve, and if L is
any line bundle, then the exact sequence (14) for J"L remains the same: in this case the
relative canonical bundle coincides with the canonical bundle of the curve.

3.4 In notation of Section 3.2, let v = (v,) be a non-zero holomorphic section of a line
bundle L, i.e. v, € O(U,) and vy = £y5-v3 on U,NUg, where {{,3} are transition functions.
Let (U, 2o ) be a coordinate chart of C trivializing L. Denote by D, : O(U,) — O(U,) the
derivation d/dz, and by DY, the j-thiterated of D,. Then

Vo
D=1 | jaca (15)
Déva
is a section of J" L — see [8]. It may thought of as a global derivative of order h of the section
v. In fact it is a local representation of v together with its first 1 derivatives.

The truncation morphism occurring in (14), 3 -1 : J hr, — Jh=1L, is defined in such
away that t, 1 (Dpv(P)) = (Dp—1v)(P). See [8] for further details.
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3.5 One says that v € H°(L) vanishes at P € C with multiplicity at least h + 1 if
(Dpv)(P) = 0. Concretely, if v, € Oc(U,) is the local representation of v in the open
set U,, then v vanishes at P € U, with multiplicity at least h + 1 if v, vanishes at P to-
gether with all of its first h derivatives. The fact that Dj,v is a section of J" L says that the
definition of vanishing at a point P does not depend on the open set U, containing it.

We also say that the order of v at P is h > 0 if Dj_;v(P) = 0 and Dpv(P) # 0. To each
0 # v € H°(L) one may attach a divisor on C:

(v) = Z (ordpv)P . (16)

peC

The sum (16) is finite because v is locally a holomorphic function and hence its zeros are
isolated and the compactness of C' implies that they are finitely many. The degree of v
is ) pec ordpv > 0. This number does not depend on a holomorphic section of L, and
by definition is the degree of L. The degree of the canonical bundle is 2¢g — 2 [1, p. 8].
The set of isomorphism classes of line bundles of degree d is denoted by Pic(C). If
7 : X — S is a smooth proper family of smooth curves of genus g, then Pic?(X/S)
denotes the relative line bundles of relative degree d. A bundle £ € Pic(X/S) has relative
degree d if deg(L|, ) = d foreach s € S.

3.6 If U is a (finite dimensional complex) vector space, G(k,U) will denote the Grass-
mannian parameterizing the k-dimensional vector subspaces of U. Let g/;(L) be a point
on chart C of G(r + 1, H°(L)), where L € Pic?(C). We write g/ for g’;(L) and some
L € Pic(C).If E =Y epP is an effective divisor on C, and V is a ¢;(L), let

V(=FE):={veV]ordpv > ep},

Clearly V(—E) is a vector subspace in V; it is not empty because it contains at least the
zero section. If dim V(—P) = r for all P € C, then the g;(L) is said to be base point free. It
is very ample if dim¢ V(—P — Q) =r—1forall (P,Q) € C x C. If V is base point free and
v := (vo,v1,...,v,) is a basis of V, the map

{¢V:C—> P"

P +— (vg(P):v1(P):...:v(P))

(17)

is a morphism whose image is a projective algebraic curve of degree d. Although the com-
plex value of a section at a point is not well defined, the ratio of two sections is. Thus the
map (17) is well defined. If V' is very ample, (17) is an embedding, i.e. a biholomorphism
onto its image.

3.7 Letw := (wg,w1,...,wy—1) be a basis of H°(K). The map

buw = (Wo:wi ... wy1):C —PI7!
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sending P — (wo(P) : wi(P) : ... : wg—1(P)) is the canonical morphism, that is, its image
in P9~! is a curve of degree 2g — 2. If the canonical morphism is not an embedding, the
curve is called hyperelliptic.

3.8 Definition. Let V be a g,(L). A point P € C is a V-ramification point if there exists
0 # v € V such that D,v(P) = 0, i.e. iff there exists a non-zero v € V vanishing at P with
multiplicity r + 1 at least.

Ramification points of a g}, can be detected as zero loci of suitable Wronskians. Let
v = (v, V1,...,0p)

be a basis of V and let v; o, : U, — C be holomorphic functions representing the restriction
of the section v; to Uy, for 0 < i < r. If P € U, is a V-ramification point, let v = >\ a;v;
be such that D, v(P) = 0. The last condition translates into the following linear system:

ap V0, V1,« . Ur.a ag 0
aq DaUO,a Davl,a . Davr,a aq 0

WMa(v) [ . | = : . , . =11 a9
ar Dlvoe Dihvia ... Dhvrg ar 0

It admits a non-trivial solution if and only if the determinant
Wo(va) =Va ADova A...ANDvy € Oc(U,)

vanishes at P. It is easy to check that on U, N U one has (see e.g. [14, Ch. 2-18] or [8])

r(r—1)

WO(Va):EaBTH("aB) 2 Wo(vp),

and thus the data {Wy(v,) | @ € A} glue together to give a global holomorphic section

r(r+1)

Wo(v) € HY(C, LT @ K® 2 ), (19)

said to be the Wronskian of the basis v of V. The Wronskian of any such a basis cannot
vanish identically. Indeed, write the section Wy (v) as

Wo(v) := Dyvg A ... A Dyuy,

where D, v is as in (15), i.e. D,v; is locally represented by the j-th row of the matrix (18).
Assume that Wy(v,) vanished everywhere along the smooth connected curve C. Then
the sections D,v;, for 0 < j < r, corresponding to the columns of the matrix (18), are
linearly dependent, that is, up to a basis renumbering,

Dyvg = a1Dyvi + ... + a, Dy, € HO(J'L).
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However D, : HY(L) — HY(J"L) is a section associated to the surjection H(J"L) —
HO(L), induced by the truncation map J"L — L — 0 (see e.g. [8, Section 2.7]) and one
would get the non-trivial linear relation

v =a1v1 + ...+ av, € HU(L),

against the assumption that (vo, v1, ..., v,) is a basis of V.

As a consequence the ramification locus of the given g, occurs in codimension 1. The
construction does not depend on the choice of a basis v of V. Indeed, if u were another
one, then u = Av for some invertible A € Gi,11(C), and thence Wy(u) = det(A)Wy(v).

Thus any basis of V' defines the same point of PHY(L®" 1 @ K® s ), which we denote

3.9 The Wronski Map. We have so constructed a map:
G(T 4 1,HO(L)) SN PHO(L®T+1 ® K®7T(T2+l))
(20)
V — Wo (V)

which associates to each g};(L) its Wronskian Wy(V'). Adopting the same terminology
used in the literature when C' = P! and L := Op:1(d) (see e.g. [10], [11]), the map (20) will
be called Wronski map. Its behavior depends on the curve and on the choice of the linear
system. It is, in general, neither injective nor surjective as the following two extremal
cases show. If C' = P!, the unique bundle of degree d is Opi(d), K = Op1(—2) and the the
Wronski map

G(r +1, H(Op1 (d)) — PHO(Op ((r + 1)(d — 1)),

in this case defined between two varieties of the same dimension, is a finite surjective
morphism of degree equal to the Pliicker degree of the Grassmannian G(r + 1,d + 1). In
particular it is not injective — see [9,46] and [10, 11] over the real numbers. At a general
point of PH?(Op1((r + 1)(d — r))) (represented by a form of degree (r + 1)(d — r)) there
correspond as many distinct linear systems V' as the degree of the Grassmannian. For a
closer analysis of the fibers of such a morphism see [45].

On the other hand if C is hyperelliptic and M € Pic?(C) is the line bundle defining
its unique g3, Cf. Section3.7, then G(2, H(M)) is just a point and the Wronski map:

G(2, H(M)) — PHO(M®? @ K)

is trivially injective and not surjective, as by Riemann-Roch formula h°(M®? @ K) > 1.
Later on we shall see how to make the situation more uniform, by enlarging in a nat-

ural way the notion of linear system on a curve. It will be one of the bridges connecting

this part of the survey with the first one, regarding Wronskians of differential equations.
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3.10 The V-weight of a point. Let V be a g, and P € C. The V-weight at P is:
wty (P) = ordpWo(V') = ordpWy(v),

for some basis v of V. The total weight of the V-ramification points is:

wty = Z WtV(P)v

PeC

where the above sum is clearly finite. The total weight coincides with the degree of the
r(r+1)

bundle L1 ® K® 2, i.e. the degree of its first Chern class:

r(r+1)

why = / (L @ K25y n (0] =
C

— (r+1)/c(c1(L)m[C])+r(r;1)/cl(K)m[C]:

= (r+1d+(g—Dr(r+1), (21)

which is the so-called Brill-Segre formula. For example, a smooth plane curve of degree
d can be thought of as an abstract curve (compact Riemann surface) embedded in P? via
some V € G(3, H(L)) for some L € Pic?(C):

(vo : v1 1 vg) : C — P2

where v := (vg, v1, v2) is a basis of V. The V-ramification points correspond, in this case, to
flexes of the image of C in P2. According to the genus-degree formulae, the total number
of flexes, keeping multiplicities into account, is given by (21) for r = 2

f=3d(d—2),

which is one of the famous Pliicker formulas for plane curves.

3.11 Wronskians on Gorenstein Curves. Let C be an irreducible plane curve of degree d
with § nodes and « cusps. Using the extension of the Wronskian of a linear system defined
on a Gorenstein curve, due to Widland and Lax [51]], the celebrated Pliicker formula

f=3d(d—2)— 65 — 8k
can be obtained from the tautological identity (See [17] for details):

f(smooth V-ramification points) =
=f(ramification points) - #(singular ramification points).
P g P

For more on jets and Wronskians on Gorenstein curves see [12] and [13].
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3.12 The V-weight of a point P coincides with the weight of its order partition. We say that
n € Nisa V-order at P € C'if there exists v € V such that ordpv = n. Each point possesses
only r + 1 distinct V-orders. In fact n is a V-order if dim V(—nP) > dim V(—(n + 1)P).
We have the following sequence of inequalities:

r+1=dimV > dimV(=P) > dimV(-2P) > ... > dim V(—dP) > dim V(—(d+1)P) = 0

The last dimension is zero because the unique section of V' vanishing at P with multiplic-
ity d + 1 is zero. At each step the dimension does not drop more than one unit and then
there must be precisely r + 1 jumps. If

0<ip<inn<...<i.<d
is the order sequence at some P € C, the V-order partition at P is
A(P) = (ip — 7, ip—1 — (r—1),...,11 — 1,4p).

One may choose a basis (v, v1, . .., v,) of V such that ordpv; = i;. The use of such a basis
shows that the Wronskian W (v) vanishes at P with multiplicity

r

wty (P) =) (i; = j) = [A(P)|

j=0
The following result is due to [41] (unpublished) and to [50].

3.13 Proposition. Partition X is the V-order partition at P € C if and only if W,,(v4)(P) =0,
forall p # X such that || < |A|, and Wx(vy)(P) # 0 (here v, is any local representation of a
basis of V around P).

In this case Wy (V') vanishes at P with multiplicity exactly |A|.

3.14 A more intrinsic way to look at Wronskians and ramification points, which can be
generalized to the case of families of curves, is as follows. For V € G(r + 1, H’(L)) one
considers the vector bundle map

D,:CxV — JL (22)

defined by D,.(P,v) = D,v(P) € JpL. Both bundles have rank r + 1 and since V has only
finitely many ramification points, there is a non-empty open subset of C' where the map
D, has the maximal rank r 4+ 1. Then P € C'is a V-ramification point if rkpD, < r. The
rank of D, is smaller than the maximum if and only if the determinant map of (22)

NTD,:0c — NTHIL
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r(r4+1)

vanishes at P. The section \"*' D, € HOA" J'L) = HY(L® ! © K® =2 ) is precisely
the Wronski section, which vanishes precisely where the map D, drops rank. If v = agvg +
...+a,v,, with respect to the basis v = (vg, v1,...,v,) of V, then D,v = agD,vo+ a1 Dyvi +
...+ a,D,v,. On a trivializing open set U, of C one has the expression:

Vo, + A1V1,q + ... + QrUr o agp
aODaUO,a + alDavl,a +...+ arDaUr,a al

(D), = | = Wo(va) -
agD}vo.o +a1D{v1 o + ...+ ar Doy o ar

In other words, the local representation of the map D, is:
Wo(va) : Uy x C T — U, x C™ 11

from which:
det(DNUQ) =vVa ADyvo A... ADlvg,

ie. A"t D, is represented by the Wronskian Wy(v). Changing the basis v of V, the Wron-
ski section gets multiplied by a non-zero complex number and hence:

r+1
A Dy modC* = Wy(V) € PHO(LE™ @ KO )

i.e. precisely the Wronskian associated to the linear system V.

3.15 How do generalized Wronskians come into play in this picture? Here the question
is more delicate. We have already mentioned that if the V-order partition of a point P is
A(P) then the generalized Wronskians W, (V') must vanish for all p such that || < [A(P)|
and Wx(P) # 0. It is however well known that the general g, on a general curve C has
only simple ramification points, i.e. all the points have weight 1. This says that if a g,
has a ramification point with weight bigger than 1, the generalized Wronskians do not
impose independent conditions, as the locus occurs in codimension 1 while the expected
codimension is bigger than 1.

To look for more geometrical content one can move along two directions. The first,
that we just sketch here, consists in considering families of curves.

Let 7 : X — S be a proper flat family of smooth curves of genus g and let (V, £) be
a relative g%, i.e. V is a locally free subsheaf of 7.£ and £ € Pic?(X/S). One can then
study the ramification locus of the relative g, which fiberwise cuts the ramification locus
of Vs € G(r + 1, H(L, ., )) through the degeneracy locus of the map

Dy 7"V — JL,

where J; L denotes the jets of L along the fibers (see e.g. [22]). The map above induces a
section Ox — N\ J7L @ A" 7V, which is the relative Wronskian Wy (V) of the family.
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Because of the exact sequence (14):

r+1 r+1 ®T(T+1) r+1
NTiLe Nov=L""ek: 2 o \rV.

In this case the class in A, (X) of the ramification locus of V is

r(r+1)

[Z(Wo(V))] = a1 (L¥ T © Ky ) =71 (V).

A second approach to enrich the phenomenology of ramification points consists in
keeping the curve fixed and varying the linear system. This is the only possible approach
with curves of genus 0: all the smooth rational curves are isomorphic, and all the g;s, with
base points or not, are parameterized by the Grassmannian G(r+1, H°(Opy(d))). Here the
situation is as nice as one would desire: all what may potentially occur it occurs indeed.
For instance, if A1, ..., Ay, are partitions such that ) | |A;| = (r+1)(d—r) (= the total weight
of the ramification points of a g);) and P1,. .., P, are arbitrary points on P! one can count
the number of all of the linear system such that the V' order partition at P; is precisely
Ai. However if C has higher genus, such a kind of analysis is not possible anymore. For
instance the general curve C of genus g > 2 has only simple Weierstrass points, i.e. all
have weight 1, but each curve carries one and only one canonical system. The picture
holding for linear systems on the projective line can be generalized in the case of higher
genus curves provided one updates the notion of ¢;(L) to that of a section of a Grassmann
bundle, a path which was first indicated in [19] and then further developed in [38] and [8].
Go to the next two sections for a sketch of the construction.

4 Wronskians of Sections of Grassmann Bundles (in general)
This section is a survey of the contruction appeared in [38], partly published in [8], with
some applications in [19].

41 Let gq : F — X be a vector bundle of rank d + 1 over a smooth complex projective
variety X of dimension m > 0. Foreach 0 < r < d,let 9,4 : G(r + 1,F) — X be the
Grassmann bundle of (r + 1)-dimensional subspaces of the fibers of F'. For » = 0 we shall
write o4 : P(F) — X, where P(F') := G(1, F) is the projective bundle associated to F'.
The bundle G(r + 1, F') carries universal exact sequence (cf. [15, Appendix B.5.7]):

0— S, - 0paF — Qr — 0, (23)

where S, is the universal subbundle of or 4 F and Q, is the universal quotient bundle.
Let

T'(0r.4) == {holomorphicy: X — G(r +1,F)|gra0vy = idx}
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be the set of holomorphic sections of g, 4. The choice of v € I'(g, 4) amounts to specify a
vector sub-bundle of F' of rank r + 1. In fact the pull-back v*S, via v € I'(g, 4) is a rank
r 4+ 1 subbundle of F. Conversely, given a rank r + 1 subbundle V of F, one may define
the section vy € I'(¢0r,4) by W (P) = Vp € G(r + 1, Fp). The set I'(¢, 4) is huge and may
have a very nasty behavior: even the case when X = P! and F' = J9Op:(d), is far from
being trivial. In fact it is related with the small quantum cohomology of Grassmannians,
see [2]. A first simplification is to fix £ € Pic(X) to study the space

Te(ora) = {7 €T(0ra) | AT S, = €.

Again, if £ = Op1(n) and F = J9Op1(d), then T, (0,.4) := Lo, (n)(0r,a) can be identified
with the space of the holomorphic maps P! — G(r + 1,d + 1) of degree n, compactified
in [2] via a Quot-scheme construction. We shall see the easiest case (n = 0) in Section 6.
In the following, for our limited purposes, we shall restrict the attention to the definitely
simpler set

eriv(0ra) := {7y € I'(0ra) | 7*Sy is a trivial rank (r 4 1) subbundle of ' — X}.

4.2 Proposition. The set I'vriv(0r,q), if non empty, can be identified with an open set of the
Grassmannian G(r + 1, HY(F)).

Proof. If v € TI'triv(0rq), there is an isomorphism ¢ : X x Ct!l — ~*S,. Then ¢ :=
Y*(tr) o ¢ : X x C"™' — F is a bundle monomorphism. Let o; : X — F defined by
0;(P) = (P, e;). Itis clearly a holomorphic section of F. Furthermore 09,01, ..., 0, span
an (r + 1)-dimensional subspace U, of H(F) which does not depend on the choice of
the isomorphism ¢. Thus 7*S, is isomorphic to X x U, and v(P) = {u(P)|u € Uy} €
G(r+1, Fp). Conversely, if U € G(r+1, H°(F)), one constructs a vector bundle morphism
¢ : X x U — F via (P,u) — u(P). This morphism drops rank if \"*' ¢ = 0, this is a
closed condition and so there is an open set &/ C G(r + 1, F') such that for U € U, the map
¢u makes X x U into a vector subbundle of . One so obtains a section vy by setting
yw(P) =Up € G(r + 1, Fp). The easy check that 7y, = v and that U, = U is left to the
reader. .

4.3 Assume now that F' comes equipped with a system F, of bundle epimorphisms g;; :
F; — Fj, for each —1 < j < i < d, such that F; = F, where F; hasrank i 4 1, g;; = idF,
and ¢;jq;r = ¢, for each tripled > i > j > k > —1. We set F_; = 0 by convention. The
map qq; : F' — F; will be simply denoted by ¢; and {ker(q;)} gives a filtration of F' by
subbundles of rank d — i. Let

0;: S — 07 4F

be the composition of the universal monomorphism S, — oj ,F with the map ¢;. The
universal morphism ¢, can be so identified with J;.
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4.4 Foreach A € PUr+1)x(d=7) the subscheme:
QA(Q;'(-,dFO) - {A S G(T + 17 F) ‘ I'kAaj+)\T7j,1 S ja 0 S ] S T}, (24)

of G(r + 1, F), is the A-Schubert variety associated to the system F, and to the partition
A. The Chow classes modulo rational equivalence {[Q2x (¢ ;Fe)] | A € P (r+1)x(d=7)1 freely
generate A, (G(r + 1, F')) as a module over A*(X) through the structural map ¢; ;.

qd—
4.5 Foreach0 < h <d+1,let N,(F) := ker(F -, Fi_p). It is a vector bundle of rank
h. One can define Schubert varieties according to such a kernel flag N,(F') by setting, for
each partition A of length at most r + 1:

Qx(0raNe(F)) = {A € G(r + 1, F) [AN Nay1ja,_p)(F) 27 +1 -7}
It is a simple exercise of linear algebra to show that

Qx(oraFe) = Qx(0raNe(F)).

Both descriptions are useful according to the purposes. The first description is more suited
to describe Weierstrass points as in Section 3| (it gives an algebraic generalization of the
rank sequence in a Brill-Nother matrix, see [1, p. 154]), while the second is useful when
dealing with linear systems on the projective line (See Section 6/ below).

4.6 Definition. The F,-Wronskian subvariety of G(r + 1, F) is

Wo (o q4Fe) == Qy(oraFe)-

By (24), the F,-Wronski Varlety Wo(oy 4Fe) of G(r + 1, F) is the degeneracy scheme of
the natural map 0, : S, — Qh aFrie. the zero scheme of the map

r—+1 r+1 r—+1
/\ O /\ Sy — /\ 0y aFr

The map

r+1 r+1 r+1 r+1 r+1
Wo(oraFs) == \ 0 € Hom( N\ 0;4Sr, N\ 6haFv) = HOX, |\ 0;aFr @ |\ 6aSY). (25)

is the Wronski section (of the line bundle A"+ o 417 ® A 07 4Sy V). The F,-Wronski variety
is then a Cartier divisor, because it is the zero scheme of the Wronski section (25). In
this setting, the Schubert subvariety Q2 (¢ ;F.) of G(r + 1, F'), associated to the partition

A € PUH+Dx(A=1) plays the role of a generalized Wronski subvariety associated to the
system F,.
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4.7 Among all such Schubert varieties associated to F, one can recognize some distin-
guished ones. It is natural to define the F,-base locus subvariety of G(r + 1, F') as

B(oy aFe) = Qure1y(0r.qFe);

and the F,-cuspidal locus subvariety as

C(Q:f iFe) = Q(V)(Q;f ale).

Each Schubert subvarlety Qx(oy. 4F%) has codimension [A| in G(r + 1, F'). In particular, the
base locus variety B(¢;, ;F%) has ‘codimension r + 1.

4.8 Let~y € I'(0,q4). The Fo-ramification locus of +y is the subscheme ~~ (Qﬂo(gr gFe)) of X,
its Fy-base locus is v~ (B(o ;F,)) and its Fy-cuspidal locus is v~ (C(o ;F,)). The definition
of Wronski map defined on sections of Grassmann bundles equippedeith filtrations, as in
Section 4.3, is very natural too.

4.9 Definition. For v € I'(o, q), the section

r—+1 r+1
Wo(y) == 7" (Wo(efaFe)) € HY(X, \ Fr @ \7*S))

will be called the F,-Wronskian of 7.

The class in A, (X) of the ramification locus of 7 is:

[Z(Wo))] = [ (Woler gFe))] = 7" [Wo(or 4 Fe)] =
r+1 r+1
= a(N\Eo \VS)NIX] = (@F) —raS)N XL @6

If X is a curve, the expected dimension of the ramification locus is 0 and so, when y is not
entirely contained in the Wronski variety, the total weight w., of the ramification points of
7 is by definition the degree of the cycle [y~* (Wo(or 4F))]:

wy = [ ((F) = ($) Xl

According to the definitions above, a point P € X is a ramification point of v € I'(¢, q) if
Wo()(P) = 0, which amounts to say that the map 7*0, : v*S, — F) drops rank at P.

4.10 Definition. Fix £ € Pic(X). The holomorphic map:
{ Pe(ora) — IP)HO(/\T_H Fr®fY)

v —  Wy(y) mod C*

is the Wronski map defined on I'¢(orq).
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Indeed Wy () is a section of v*(A" oy qFr ® ANTSY) = N E, @ €Y. The class of
the ramification locus of +, as in (26), can be now expressed as:

[ZWo()] = (er(Fr) = €)) N [X] € Au(X).

411 The Extended Wronski Map. It is particularly easy to express the Wronskian of a
section v € I'triv(0rq). Let U € G(r + 1, F) such that v = ~y. The pull-back of the map
Op: S — oy 4Fr is

YO0 : X xU — F,. (27)

The Wronskian is the determinant of the map (27):
r+1 r+1 r+1
Avo: NXxU)— A\ F.
Once a basis (ug, u1, ..., u,) of U is chosen, the Wronskian

r+1 r+1
N0 e H' (X, \ F,)

is represented by the holomorphic section X — A"t

F, given by:
P QT(UU)(P) A QT‘(ul)(P) ARERRA QT(UT)(P) € /\r+1 Fp,

where g, is the epimorphism introduced in'4.3. Changing basis the section gets multiplied
by a non-zero constant, and so the Wronski map

Ftriv(QT,d) I PHO<X7 /\T+1 FT)
defined by ~ — Wy () mod C* € PH(X, \"*! F,) coincides with the map

G(r+1,H(F)) — PHO(X, A"t F))
U — qr(ug) A gr(u1) A... A gr(uy) mod C*
where u = (ug,u1,...,u,) is any basis of U.

4.12 Here is a quick review of intersection theory on G(r + 1, F') which is necessary for
enumerative geometry purposes. First recall some basic terminology and notation. Let
a=a(t) =) ,~oant" be a formal power series with coefficients in some ring A and X be
a partition as in (4). Set a,, = 0 for n < 0. The X-Schur polynomial associated to a is, by
definition:

a)\r a)\r_l_H . a)\o_,_,,
ay,.—1 ax,. 4 cee Q)gdr—1
Ax(a) = det(aipa,_;—jlo<ij<r = | . . : .- (28)
ax),—r a/\r_l_(r_l) a)g
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The Chern polynomial of a bundle £ is denoted by ¢,(€). Write ¢;(Q, — o} ;) for the
ratio ¢,(Qr)/ci(o; 4F") of Chern polynomials. According to the Basis Theorem [15, p. 268],
the Chow group A*(G(r + 1, F)) is a free A*(X)-module (via the structural morphism
o541 A" (X) — A*(G(r + 1, F))) generated by

{BA(e(Qr = 0aF)) N[G(r+1, P} A € PUFDXEY,

Ifr=0,let A } }
pt = (=1)"c1(So)" N [P(F)]

for each i > 0. Then, by [15, Ch. 14], (1%, u!, . .., u?) is an A*(X)-basis of A,(P(F)) and for
each j > 0 the following relation, defining the Chern classes of F, holds:

p 4 05 ger ()™ + .+ 0 gear1 (F)p! = 0. (29)

A main result of [20] says that A" ™' A, (P(F)) can be equipped with a structure of A*(G (r+

1, F))-module of rank 1. It is generated by u® A u! A ... A " in such a way that, for each
PN= fp(r+1)><(dfr)/

Ax(ei(Qr — 0y4F)) - PO ANt A AT = A A AL A (30)

We shall see in the last section that Ax(c;(Q, — o} ,F')) are related to Wronskians associated
to a fundamental system of solutions of a suitable differential equation. Define now:

¢ = [Qp)(e5.aFe)] € A(P(F)), 0<i<d,

where Q) ( 93, 4F%s) is nothing but the zero locus in codimension ¢ of the map 0,1 : Sop —
F;_4. Because of the relation:

i
€ =" 05aci(Fim )i, (31)
=0

it follows that (€%, ¢!, ..., e?) is an A*(X)-basis of A,(P(F)) as well. For A € P(d+1)x(d=7)
let X := M AeltA1 A AT e AT AL(P(F)). Again by [20], the set {e* | A €
Pr+x(d=1)} js an A*(X)-basis of A.(G(r + 1,F)). Denote by [Qx(o* ,F)] the class in
A (G(r + 1, F)) of the Fo-Schubert variety Qx(0; ;F%)- 7

413 Theorem. The following equality holds:
[Qa(0f.aFe)] = [0 (G F)] A Q10,1 (@TFOI A o A [Qrpag) (01 Fo)] = X (32)

modulo the identification of A.(G(r + 1, F)) with \"T1 A, (P(F)). .
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Equality (32) is an elegant and compact re-interpretation of the determinantal formula of Schubert
calculus proven by Kempf and Laksov in [30] to compute classes of degeneracy loci of maps of
vector bundles. For more general and deep investigations on this subject see [43]. Formula (32)
was basically discovered in [18] for trivial bundles. The present formulation is as in [38].

Let us sketch the proof of Theorem 4.13. Set 1; := d —r — A\._;, then

on = (NO,Ml, - 7Mr) c ’P(T+1)><(d—r).
Denote A; := N, _.1j+1 (see Section4.5), i.e A; fits into the exact sequence

0—Aj—F— Fg 1 — 0.

j+ﬂr7j)*
Then 0 C Ay C A1 € ... C A, is a flag of subbundles of F;. The Schubert variety
Q(AOaAla'“aAr) = {A S G(T+1,F)|AOAl > Z}

coincides with Q( oy .F.) defined by (24), as a simple check shows. Formula 7.9 in [32],
which translates the determinantal formula proven in [30], implies

[€©2(Ag, A1, Ap)] = [Q(A)] A [QAD] A - A [QU(AL)],

which is thence equivalent to (32). .

5 Wronskians of Sections of Grassmann Bundles of Jets

5.1 The general framework of Section 4 shows that the notion of linear system can be
generalized into that of pairs (v, F,), where F, is a vector bundle on X equipped with
a filtration and v a section of the Grassmann bundle G(r + 1, F'). This picture can be
fruitfully applied in the case of (families of) smooth complex projective curves of genus
g > 0. For the time being let C be any one such, and let L € Pic?(C). In this section we
shall denote by g4 : JYL — C the bundle of jets of L — C up to the order d. Accordingly,
for each 0 < r < d, we shall denote g, 4 : G(r + 1, JL) — C the Grassmann bundle of
(r + 1)-dimensional subspaces of fibers of g. The natural filtration of J?L given by the
quotients JYL — J'L — 0, for —1 < i < d, will be denoted J*L (setting J 'L = 0).

5.2 The kernel filtration of JIL
No(L):0C Ni(L) C ... C Ny(L) C Ngy1(L) = JOL (33)

is defined through the exact sequence of vector bundles 0 — N, (L) — J dr, — ji=hp, 0,
where N, (L) is a vector bundle of rank h. It will be also called the osculating flag — see
below and Section 6. The fiber of N}, (L) at P € C will be denoted by N}, p(L).
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As in the previous section, the A-generalized Wronskian subvariety of G(r + 1, J%L) is
Qx(oy. 4J°L), which has codimension [A|in G(r +1, J 4[,). By virtue of Proposition 4.2, the
space I'triv(0r,q) of sections 7 of g, 4 such that v*S, is a trivial subbundle of J a7, can be
identified with an open subset of G(r + 1, H°(J?L)). Hence 7*S, is of the form C x U for
some U € G(r + 1, H°(J4L)). As in section 4 we gain a Wronski map:

r 'r+1)

Tiriv(0rd) — PHY (LT @ K¥72 ), (34)

defined by v — Wy () (mod C*). As we said, this map is the restriction to the open subset
Ceriv(org) € G(r +1, HOY(JL)) of the determinant map

G(r+ 1, H(JL)) — PHO(LE™! @ K™%,
sending U to t,(ug) A t,(u1) A ... A tr(u,) (mod C*), where (ug,u1,...,u,) is a basis of U
and ¢, denotes the epimorphism J?L — J"L.

5.3 We notice now that each g5(L), i.e. V € G(r + 1, H°(L)), can be seen in fact as an
element of I'triv(0r4), because Dy : C' x V. — JeI realizes C' x V as a (trivial) vector
subbundle of J?L. Indeed D,V := {Dgv|v € V} is an (r + 1)-dimensional subspace of
HO(JYL) because the map J¢L — L — 0 induces the surjection H(J9L) — H°(L) — 0,
see e.g. [8], and then Dyv = 0 implies v = 0.

We have thus an injective map G(r + 1, H*(L)) < Triv(0ra) € G(r + 1, HO(JL)),
sending V' to yp,v, and

Wo(’}/pdv) := D,uo A Dyui A ... A\ Dyu, mod C* = W()(V)

which proves that our Wronski map defined on I'triv(0r4), which is in general strictly
larger than G(r + 1, H°(L)), coincides with the Wronskian Wy (V) defined in section 3. We
are so in condition of defining generalized Wronskian subloci. Recall the natural evaluation
map

ev: C X Tipiv(0rg) — G(r+1,JL)

sending (P, ) — v(P). If Qx (¢} ;J°L) is a generalized Wronski variety of G(r + 1, JeL),
then ev™1(Qx(of 4 J°L)) cuts the locus of pairs (P,v) such that v(P) € Qx(J*L). We also
setevp(y) = 7(]’3), for each P € C. It follows that the general section of any irreducible
component of ev 5! (Qx(J*L)) is a section having X as a ramification partition.

54 The map Dyp : H(L) — JEL sending v — Dyuv(P) is a vector space monomor-
phism. If V € G(r + 1, H°(L)), thenv € V N D th( ) if and only if D"v(P) = 0, i.e.
if and only if v vanishes at P with multiplicity at least h. This explains the terminology
osculating flag used in Section 5.2.

5.5 Example. More details about the present example are in [19]. Let 7 : X — S be a
proper flat family of smooth projective curves of genus g > 2. The Hodge bundle of the
family is E, := 7, K. The vector bundle map over X
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T E, — JY9 2K,

is injective and then it induces a section v : X — G(g, J*¥2K). In this case the cuspidal
locus of ¢, which is by definition vz (Q1-1(J*K)), coincides with the locus in X of the
Weierstrass points of the hyperelliptic fibers of 7. With the notation as in 4.12/and 4.13,
its class in A97!(X) is given by

[7}}1(919—1(=].K)] =Y [Q-1(J°K)| = ’y}}(eo ANEN...A €7)

and can be easily computed through a straightforward computation (see [19, Section 3],

where the computation was performed for g = 4). Since on each hyperelliptic fiber there

are precisely 2g + 2 Weierstrass points, the class of the hyperelliptic locus in A972(S) is
given by

1

=5

g+ 2

which yields precisely the formula displayed in [37, p. 314].

5.6 1f C =P and L = Op:i(d), then I'tri4 (0, 4) coincides in this case with G(r + 1, H°(L))
and our picture allows to rephrase in an elegant way the situation exposed in the first part
of [9]. The Wronski map Uyyiy(0r.4) — PHO(Op1((r+1)(d—r))) coincides with (20), modulo
the identification of T'yriv(0rq) With G(r + 1, H%(Opi1(d))). In other words, when C is not
rational, the theory exposed up to now is a generalization of the theory of linear systems
on the projective line, for which we want to spend some additional words in a separate
section.

T (EONEN L NE),

6 Linear Systems on P! and the Intermediate Wronskians

In the case of linear systems g, defined on the projective line, the picture outlined in
Section 5 gets simpler. However, even this case is particularly rich of nice geometry inter-
acting with other parts of mathematics.

For the sake of brevity, denote by L, the invertible sheaf Opi(d), i.e. the unique
line bundle on P! of a fixed degree d. The elements of a basis x := (x¢,z1) of H(L,)
can be regarded as homogeneous coordinates (zo : z1) on PL. Furthermore H%(L;) =
Sym?H (L), i.e. H°(Ly) can be identified with the C-vector space generated by the
monomials {z)2% "}o<i<4, and a g on P! is a point of G(r + 1, H°(Ly)). Any basis
v = (vo,v1,...,v,) of V € G(r + 1, H(Ly)) defines a rational map

oy : PP, P (v(P):vi(P):...:v.(P)). (35)

If V has no base points (that is, if diim V(—P) = dim V — 1 for each P € P!), then the image
of (35) is a non-degenerated (that is, not contained in any hyperplane) rational curve of
degree din P". In particular, if r+1 = dim H°(L,), then V = H°(L,) and ¢y (P!) is nothing
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else than the rational normal curve of degree d. Each curve of degree d in P" can be seen as
the rational normal curve in PH%(L,;) composed with a projection PH(L,;) — P” whose
center is a complementary linear subvariety of V € G(r + 1, H(Ly)) (see e.g. [9], [29]).

Keeping the notation of Section 5, let g4 : J i1; — P! be the bundle of d-jets of Ly.
Then Dy : P! x H(Ly) — J2L (cf. (22) is an injective morphism between vector bundles
of the same rank, that is, an isomorphism. In particular, the map

{D(LP : HY(Lg) —  J&Lg (36)

r —  Dgu(P)

is an isomorphism of vector spaces, for each P € PL. We define the osculating flag at P of
H°(Lg),
.7:.713 :0C .7:1713 Cc...C fdyp C -7:d,+1,P = JgL,

by setting (cf. 5.2)
Fnp =Dy, (Nnp(L)) € H(La).

In other words, v € V N F, p if and only if v vanishes at P with multiplicity at least
h, that is, Dyv(P) = 0. In fact, 75 p may be identified with the vector subspace of the
homogeneous polynomials of H%(L,) that vanish at P with multiplicity at least h. Yet
another interpretation of 7, p is the set of all hyperplanes of PH?(L,) intersecting the
rational normal curve in PH?(L,)) at P with multiplicity at least d — h.

6.1 The Riemann-Roch formula shows that h°(Lg) = h°(J¢L,); thus the injective “deriva-
tive map” Dy : H°(Ly) — H°(J%Ly) is an isomorphism which itself induces a biholomor-
phism:

G(r+1,H(Ly)) — G(r + 1, H*(J4Ly)).

So one concludes that T'yriy(04) = G(r + 1, HY(J9Lg)) 2 G(r + 1, H°(L,)) parameterizes
all the g7;’s on P! (with base points or not). In particular it is compact.

For V € G(r +1,H"(L,)), denote by vy the corresponding element of I'riy(0r,4). The
evaluation morphism P! x G(r + 1, H(Lg)) — G(r + 1, J%Ly) maps (P, V) to yv(P) €
G(r+1,J%Ly).

6.2 By 6.1, the Wronski map v — Wy(7) (see (34)) coincides with the Wronski map (20) of

Section 3.9:
G(r+1,H(Lg)) = PH*(L(ry1ya—r) >, V= Wo(V). (37)

It is a finite surjective morphism (see e.g. [9], [29], [45]). Its degree N, 4 is precisely the
Pliicker degree of the Grassmannian G(r + 1,d + 1):

12!l (4 1)(d —r)!
!

N’"’d:/a(rﬂ)(d_r)m[G(Hl’dﬂ)] T d=nd—r+1)

(1)

Thus, given a homogeneous polynomial W of degree (d — r)(r + 1) in two indeterminates
(20, 1), there are at most N, 4 distinct ¢);’s having W as a Wronskian. The number N, 4
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was calculated by Schubert himself in 1886, cf. [49] and [15, p. 274]. In the case of real
rational curves, the degree of the Wronski map was obtained by L. Goldberg for r = 1
([24]), and for any r > 1 by A. Eremenko and A. Gabrielov ([10]). For more considerations
on real Wronski map see also [29].

6.3 For any partition A € PU+1x(@=") define
QA(P) = QA(f.7p) - G(’I“ + 1, HO(Ld)).

It is a Schubert variety of codimension |A| in G(r + 1, H(Ly)). If A(V, P) is the order
partition of V" at P (see Section 3.12) then

Ve Q3v,p)(P) € Uaw,p)(P),

and P is a V-ramification point if and only if |A(V, P)| > 0. The Wronskian Wy (V') of
V vanishes exactly at the V-ramification points. The total weight of the V-ramification
points equals the dimension of G(r + 1, H(Ly)) (one can see that by putting g = 0 in

(21)).
Let {(P,w)} := {(Py,wo), (P1,w1),..., (P wg)) be ak+1-tuple of pairs where P; € P*
and w;’s are positive integers such that

k
> wi=(r+1)(d-r). (38)
=1

Thus, in notation of Section 3.14, if
Doy, 1 Wo(V) € H(J ' Ly 1)d—r))

vanishes at P;, for every 0 < i < k, then P, Py, ..., P, are exactly the ramification points
of V, each one of weight wty (P;) = w; = |A\(P;, V)|. We have

Vo€ Q) (Fo) N Q3w py(P1) N N3y py (Pr) =
= QA(V,PO)(PO) N Q)\(‘/’PI)(Pl) Nn...N Q)\(V,Pk)(Pk) . (39)

Condition (38) means that the “expected dimension” of the intersection (39) is zero.
Intersections of Schubert varieties associated with the osculating flags of the normal ratio-
nal curve were first studied by D. Eisenbud and ]J. Harris in the eighties, [9]. In particular,
they showed that the intersection (39) is zero-dimensional indeed, and hence the number
of distinct elements in the intersection is at most

/ TPy V) “ ONPLY) * - - - OABev) N [G(r + 1, HO(Lg))]
G(r+1,H(Ly))

where o is the Schubert cycle defined by the equality oxN[G(r+ 1, H(Ly))] = [Qx]. This
fact was used in [7] to deduce explicit formulas (and a list up to n = 40) for the number of
space rational curves of degree n — 3 having 2n hyperstalls at 2n prescribed points.
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6.4 Preimages of the Wronski Map. Notice that if P € P! is a base point of V, it occurs
in the V-ramification locus as well, and the Wronskian vanishes at it with weight (r + 1).
The set Bp of linear systems having P as base point is a closed subset of G(r + 1, H(L,))
of codimension (r + 1). In fact Bp = evp'(B(o 4J*La)), which is a closed subset of
codimension (7 + 1) (cf. Section 4.7). 7

Let {(P,w)} be as in6.3. Denote by G, 4(P) the setof all V € G(r + 1, H(Ly)) whose
base locus contains no P;, 0 < i < r. It is an open dense subset of codimension (r + 1),

gr,d(ﬁ) =G(r+ 17H0(Ld)) \ (BPO UBp U...U BPk) :

Consider now a (k + 1)-tuple of partitions

—

A= (A0 A1, Ak), A =wy, 057 <k

We shall write:
)\j = >\j,0 Z )\j,l Z Z )\j,r~

The elements of
I(X,P) = Qx (Po) N, (P) N ... N, (Pe) N Gra(P) C G(r+1,H(Ly)) (40)

correspond to the base point free linear systems ramifying at P according to X

The problem of determining I(X, P) leads to interesting analytic considerations re-
lated with Wronskians. Up to a projective change of coordinates, it is not restrictive to
assume that Py = oo := (0 : 1). Using the coordinate z = x/x¢, the osculating flag at
oo shall be denoted by F, . Accordingly, the partition Ay will be renamed A,. Notice
that F; o coincides with the vector space Poly; of the polynomials of degree at most j
in the variable z: in fact a polynomial P(z) (thought of as the affine representation of a
homogeneous polynomial of degree d in two variables) vanishes at co with multiplicity j
if and only if it has degree d — j. For V € I(X,B), let

Wo(V)

l_g"+1) (d—r)

Wy (x) =

be the representation of the W (V) in the affine open subset of P! defined by zy # 0. The
degree of the polynomial Wy (x) is less or equal than (r + 1)(d — r), because of possible
ramifications of V" at co. We have

Wy (x) = (x —21)" oo (T — 21) ", (41)

where z; := z(P;) are the values of the coordinate x at P; € P!; Zle w; = deg Wy (z) <
(r+1)(d—r).
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For a basis v = (vg, v1,...,v,) of V, consider f; := v;/zd and write f = (fo, f1,. .., fr)-
According to (3), one writes Wy (x) = f A Df A ... A D"f, where

) J f.
pig = (41 .
da 0<i<r

The space V' can be realized as the solution space of the following differential equation

g Jo fi R i
Dy D fo Dfy ... Df;
Ey(g)=| : : : | =0. (42)
Dg D'fy D'fi ... Df,
Dr—f—lg Dr—‘rlfo pDr+l fl ... Drt+t fr

6.5 Intermediate Wronskians. For V € I (X, P), denote by V, the flag obtained by the
intersection of V and F, :

Ve ={VhcVicVaC...CV, =V}, dimV;=j+1, (43)

all the polynomials in V; have degree < d;, where 0 < dy < d; < ... < d, < dis the order
sequence of V at P (cf. Section 3.12). Recall that V' has no base point and Wy (z) as in
(@1).

Define the j-th intermediate Wronskian of V as W;(z) := Wy, (), the Wronskian of V},
0 < j < r. In particular, the r-th intermediate Wronskian coincides with Wy (z). Non-
vanishing properties of intermediate Wronskians have been recently investigated in an
analytic context in [5] and [6] to study factorizations of linear differential operators with
non-constant C-valued coefficients.

Intermediate Wronskians are important because every V € G(r + 1,Poly,) is com-
pletely determined by the set of its intermediate Wronskians Wy(x), ..., W,(z). Indeed,
the ODE (42) can be rewritten as follows:

4 WAe) 4 W) 4 W) d g)
de Wr_1(x)Wegi(z) — da Ws(z)Wi(x) de Wa(x)Wo(z) dx Wi(z)

By [40, Part VII, Section 5, Problem 62], one can take as a basis of V' the following set of
r + 1 linearly independent solutions of (42):

go(x) = Wola),
r WoW:
() = Wle) [ S

o < v [ (S0 [35)

o) = i) [ (BAIO [F(W) [7 [ o)),
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Define now polynomials Zy(z), Z1(z), ..., Z,(z) through the following formula:
k .
Zi(x) = [[(z = z)™D, o0<i<r, (44)
j=1

where
m](z) =Njr N1+ N, 1 <5<k
In particular Z, () = Wy (z).
6.6 Lemma ([46]) The ratio T,,_;(x) := W;(z)/Z;(x) is a polynomial of degree

i k
i+ 1)(d—1) = > Armioo — >_my(i). (45)
1=0 J=1

In particular, To(x) = 1. Thus we have W,_;(z) = Tj(x)Z,—;(z), 0 < j < r. The roots
of T;(x) are said to be the additional roots of the (r — j)-th intermediate Wronskian. If (40)
contains more than one element, then the intermediate Wronskians of these elements all
differ by the additional roots.

6.7 Non-degenerate planes. ([46]) The intersection (40) contains some distinguished ele-
ments, called non-degenerate planes. Denote by A( f) the discriminant of a polynomial f(x)
and by Res(f, g) the resultant of polynomials f(z), g(z).

Definition. We call V € I(X, P) a non-degenerate plane if the polynomials Ty(x:), . .. , T ()

i) do not vanish at the ramification points P, ..., Py, ie. Ti(z;) # 0forall 0 <i <r —1and
all1 < j<k;

ii) do not have multiple roots: A(T;) # 0, forall 0 < i <r;
iii) Foreach1 < i < ,T; and T;_; have no common roots: Res(T;,T;—1) # O.

6.8 Relative discriminants and resultants. Non-degenerate planes correspond to critical
points of a certain generating function which can be described in terms of relative discrimi-
nants and resultants. For fixed z = (21, . . ., 2x), any monic polynomial f(x) can be written
in a unique way as the product of two monic polynomials 7'(z) and Z(z) satisfying

f(2) = T(@)Z(x), T(z)#0, Z(x) #0 foranya #2, 1<j<h  (46)

One defines the relative discriminant of f(x) with respect to z as being

_ A _ 2
Mulf) = R = A Bes(Z. 1))
and the relative resultant of f;(x) = T;(z)Z;(x), i = 1,2, with respect to z as
_ Res(f1,f2)
Resz(f1, f2) = Res(Z1.Z0) Res(T1, T2)Res(Th, Z2)Res(Ta, Z1).
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If V is a non-degenerate plane in (X, P) given by (40), then the decomposition W;(z) =
Tr—i(x)Z;(z) is exactly the same as displayed in (46). The generating function of I (X, P) is
a rational function such that its critical points determine the non-degenerate elements in
such an intersection. Its expression is (see [46] ):

A,(Wo) - .- Ag(Wr1)
Ty,...,Tp—1) = 47
1o Tpm) Res, (W1, Wa) - ... Resy(Wy_q, Wy) 47)
Part of the following theorem was originally obtained by A. Gabrielov (unpublished),
along his investigations of the Wronski map.

0(5.)(

6.9 Theorem ( [46]) There is a one-to-one correspondence between the critical points with non-
zero critical values of the function ® 5 Z)(To, ..., Ty_1) and the non-degenerate planes in the in-

tersection I(X, P) given by (40).

Namely, every such critical point defines the intermediate Wronskians, and hence a
non-degenerate plane, see 6.5. Conversely, for every non-degenerate plane one can cal-
culate the intermediate Wronskians, and the corresponding polynomials 7;(x) supply a
critical point with a non-zero critical value of the generating function (47).

6.10 Relation to Bethe vectors in the Gaudin model (see [36,44,46]). Once one re-writes
(47) in terms of unknown roots of the polynomials 7}s, the the generating function turns
into the master function associated with the Gaudin model of statistical mechanics.

In the Gaudin model, the partitions A;, 1 < j < k, of Section 6.4/are the highest weights
of sl,1-representations, and the j-th representation is marked by the point P;. Recall that
Ao is the partition related to Py := (0 : 1) € P!, after renaming Ao, see Section 6.4. De-
note by A% the partition dual to A. Certain commuting linear operators, called Gaudin
Hamiltonians, act in the subspace of singular vectors of the weight A% in the tensor prod-
uct of the sl,i-representations of the weights Aq,..., A;, and one looks for a common
eigenbasis of the Gaudin Hamiltonians.

The Bethe Ansatz is a method to look for common eigenvectors. It gives a family of
vectors of the required weight A%, meromorphically depending on a number of auxiliary
complex parameters. The Bethe system is a system of equations on these parameters, and
any member of the family that corresponds to a solution of the Bethe system is a common
singular eigenvector of the Gaudin Hamiltonians called the Bethe vector.

It turns out that the Bethe system coincides with the system on critical points with
non-zero critical value of the function ®5 . In other words, the auxiliary complex pa-
rameters are exactly the additional roots of the intermediate Wronskians! Thus every
non-degenerate plane of (40) defines a Bethe vector and vice versa.

This link has led to an essential progress in studies of the Gauidin model as well as in
algebraic geometry (e.g., Shapiro-Shapiro conjecture), see [35] and references therein.
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7 Linear ODEs and Wronski—-Schubert Calculus

This last section surveys and announces the results of [21], an attempt to reconcile the first
part of this survey, regarding Wronskians of fundamental systems of solutions of linear
ODEs, with the geometry described in the last four sections. The main observation is that
Schubert cycles of a Grassmann bundle can bedescribed through wronskians associated
to a fundamental system of solutions of a linear ODE.

7.1 Letus work in the category of (not necessarily finitely generated) associative commu-
tative Q-algebras with unit. Let A be such a Q-algebra. We denote by A[T] and A[[t]] the
corresponding A-algebras of polynomials and of formal power series, respectively (here ¢
and T are indeterminates over A). For ¢ = > . a,t™ € A[[t]], we write ¢(0) for the “con-
stant term” ag. If P(T) € A[T] is a polynomial of degree r + 1, we denote by (—1)%e;(P)
the coefficient of 7"+~ for each 0 < i < r + 1; for instance, if P is monic, eo(P) = 1, we
have:
P(T)=T"" —e(P)T" + ...+ (1) e, 1 (P).

Let B be another Q-algebra. Each ¢y € Homg(A, B) induces two obvious Q-algebra ho-
momorphisms, A[T] — B[T] and A[[t]] — BJ[t]], the both are also denoted by . The
former is defined by e;(¢¥(P)) = ¥(e;(P)) and the latter by >, - ant™ — >, 51 (an)t".

7.2 Let E, := Qley, €2, ..., e,41] be the polynomial Q-algebra in the set of indeterminates
(e1,...,€r41). We call

Ur+1(T) = TT+1 — €1TT + ...+ (—1)T+16r+1

the universal monic polynomial of degree r + 1. Thus e;(U,+1(T')) = ¢; forall 0 < i <r + 1.
Let h := (ho, k1, ha,...,hy, hei1,...) be the sequence in F, defined by the equality of
formal power series:

1
no__ _ o 2 _1\T" r+1\n
> ht" = P S P =1+ (et —eat’ +...+ (=) eppat™ )™,
n>0 n>1
One gets hg = 1, hy = e1, hoy = €% — ey, ... . In general h,, = det(ej_i+1)1<s,j<n (see [15,

p. 264]).
For any (r + 1)-tuple or sequence a = (aop, ai,...) of elements of any E,-module, we
set
Uo(a) = ag, Ul(a) :ai—elai,l—I—...+(—1)ieia0, 1<i<r (48)

Although only ag, a1, . .., a, appear in (48), we prefer to define U; also for sequences. We
have U;(h) =0forall1 < <r.

7.3 Letx := (zo,71,...,7,)and f := (f,)n>0 be two sets of indeterminates over Q. Let

ET[X,f] = Er[ﬂfo,Il, .. '71;7’;f0)f17 .. ]
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be the Q-polynomial algebra and E,[x, f][[t]] the corresponding algebra of formal power
series. Denote by D := d/dt the usual formal derivative of formal power series. Its j-th

iterated is:
. tn n _
D7 Zana :Zanﬂ-a, am € E.[x,f].
n>0 n>0

Evaluating the polynomial U, at D we get the universal differential operator:
Ur+1(D) =prtl — etD"+ ...+ (—1)T+16r+1.

Let f:= > ,o0 fal; € Q[f][[t]] € E:[x,f][[t]]. Consider the universal Cauchy problem for
a linear ODE with constant coefficients:

UT‘+1(D)y = fv
(49)
Diy(0) = xz;, 0<i<nr.
We look for solution of (49) in E,[x, f][[]].
7.4 Theorem. ([21]) Let >, -, pn - t" € Er[x, f][[t]] be defined by:
n>0pn N L—eit+ ...+ (=1)+le gt ’
where Uj are as in (48). Then
t’n
9= pnr (51)
n>0

is the unique solution of the Cauchy problem (49). .

The universality of U,,1(D) means the following.

7.5 Theorem. Let Abea Q-algebra, P € A[T|, ¢ =3, o ¢nt"/n! € A[[t]] and (bo, b1, ...,by) €
A" any (r + 1)-tuple. Then the unique Q-algebra homomorphism, defined by x; — b;, e; —
ei(P) and f; — ¢;, maps the universal solution g, as in (51), to the unique solution of the Cauchy
problem

PD)y = ¢,
{Diy(O) = b, 0<i<r (52)

For each 0 < i < 7, let ¢; : E.[x,f] — E, be the uniqug E,-algebra homomorphism
over the identity sending x — (0,...,0,1,hq,...,hy—;) and f — (0,0,...).
‘\',._/
7.6 Corollary. If u; := 1;(g) € E,[[t]], where g is the unique solution of the universal Cauchy
problem (49), then u = (ug, u1, . .., u,) is an E.-basis of ker U, 41 (D).
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Proof. Using the same arguments as in Theorem 7.4, one shows that u; is a solution of
Ur+1(D)y = 0. Furthermore, if u := agug + a1u1 + ... + a,u, = 0, then u is the unique
solution of U,4+1(D)y = 0, with the zero initial conditions. Then by uniqueness u = 0, i.e.
(uo, - .., u,) are linearly independent. .

7.7 Corollary. Let A be any Q-algebra and P € A[T. Let v : E, — A be the unique morphism
mapping e; — e;(P). Then (1 (ug), ¥ (u1), ..., (uy)) is an A-basis of ker P(D). n
In other words, ker P(D) = ker U,41(D) ®p, A.

7.8 Letn > 0Obean integer and p a partition of length at most r +1 with weight n. Denote

by ( ) the coefficient of zf) 3:11 ...z in the expansion of (zg + 1 + ... + z,)". With the

usual convention 0! = 1, one has
(n) B n!
p) polpr! .l

In Section 4.12/Schur polynomials A, (a) associated to partition p and to (the coefficients
of) a formal power series a = ano ant™ were defined, see (28). In our notation, the
coefficients form sequence a = (ag, a1, . . . ); below we will write A, (a) instead of A, (a).

7.9 Theorem. For each partition X, the following equality holds:
tn
=5 5 (1) Aneu
n20|pl=n "
In particular, the "constant term” is Wx(u)(0) = Ax(h). .

It is a straightforward combinatorial exercise made easy by the use of the basis u found
inl7.6. See [21] for details.

7.10 Proposition. Giambelli’s formula for Wronskians holds:
W)\(u) = AA(B) : Wo(u).

Proof. First of all, by Remark 2.5, W (u) is proportional to Wy(u), i.e. Wx(u) = exWp(u)
for some cy € E,. Next, two formal power series are proportional if and only if the coef-
ficients of the same powers of ¢ are proportional, with the same factor of proportionality.
Finally,

according to Theorem 7.9. n

7.11 Corollary. Pieri’s formula for generalized Wronskians holds:
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hiWa(u) = 32, Wu(u),
where the sum is over the partitions p = (1o, 1, - - - , fy) SUch that || = i + |A| and
MOZ/\OZ,UdZ)\lZ-HZMTZ/\T-

Itis well known that Giambelli’s and Pieri’s implies each other. See e.g. [15, Lemma A.9.4].

7.12 Let now g, 4 : G — X be a Grassmann bundle, where G := G(r + 1, F) and F'is
a vector bundle of rank d + 1. As recalled in Section 4.12, A,(G) is freely generated as
A*(X)-module (see [15, Proposition 14.6.5]) by

Ax(e(Qr — 07.4F)) N [G].
The exact sequence (23) implies that ¢;(S;)c:(Q,) = ct(g; 4F), which is equivalent to

o, ¥
1= a(s) (g(d}) = elS)er(Qr — o gF).

Set e; = (—1)’c;(S,) and consider the differential equation

Dty —e Diy+.. . +(=1)"e -y =0. (53)
We look for solutions in (A*(G) ® Q)[[t]]. By Corollary (7.7) the unique morphism ¢ :
E, — A*(G) ®Q, sending e; — ¢;, maps the universal fundamental system (ug, u1, . .., u,)
tov = (vg,v1,...,v,), where v; = ¢(u;) and, as a consequence, it maps h; to ¢;(Q, — Q;’dF)

and Wy (u) to Wx(v). Then we have proven that

Wix(v)

AA(CI‘/(QT - Qi,dF)) = W()(V)

In other words, the Chow group A,(G) can be identified with the A*(X)-module gener-
ated by the generalized Wronskians associated to the basis v of solutions of the differential
equation (53). In particular we have shown that the class [Qx (o} ;F%)] of the generalized
Wronski variety Qx (o ;F%) is an A*(X)-linear combination of ratios of generalized Wron-
skians associated to the basis v of (53), by virtue of (30), (31) and (32).
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