
Notes on the life and work of Alexander Grothendieck �Piotr Pragacz��When I was a child I loved going to school. The sameinstructor taught us reading, writing and arithmetic,singing (he played upon a little violin to accompany us),the archaeology of prehistoric man and the discoveryof �re. I don't recall anyone ever being bored at school.There was the magic of numbers and the magic of words,signs, and sounds . . . .A. Grothendieck: Récoltes et SemaillesAbstractThis is a story of Alexander Grothendieck � a man who has changedthe face of mathematics during some 20 years of his work on functionalanalysis and algebraic geometry. Last year he turned 75. This paper,written in April 2004, is based on a talk presented at the Hommage àGrothendieck session of Impanga1, held at the Banach Centre in Warsaw(January 2004).Alexander Grothendieck was born in Berlin in 1928. His father, AlexanderShapiro (1890�1942) was a Russian Jew from a Hassidic town on a now Russian-Ukrainian-Belorussian border. He was a political activist � an anarchist involvedin all the major European revolutions during 1905�1939. In the 20's and 30'she lived mostly in Germany, operating in the left-wing movements against moreand more powerful Nazis, and working as a street photographer. In Germany, hemet Hamburg-born Hanka Grothendieck (1900�1957). (The name Grothendieckcomes from plattdeutsch, a Northern German dialect.) Hanka Grothendieckworked on and o� as a journalist, but her true passion was writing. On March28, 1928 she gave birth to their son Alexander.�Translated from the Polish by Janusz Adamus. This paper was originally published inWiadomo±ci Matematyczne (Ann. Soc. Math. Pol.) vol. 40 (2004). We thank the Editorsof this journal for permission to reprint the paper.��Partially supported by Polish KBN grant No. 2 P03A 024 23.1Impanga is an algebraic geometry group, operating since 2000 at the Institute of Math-ematics of the Polish Academy of Sciences. This session hosted the talks of: M. Chaªupnik,Grothendieck topologies and étale cohomology, T. Maszczyk, Toposes and the unity of math-ematics, J. Gorski, Grothendieck stacks on Mazovia plains, O. K�edzierski, Why the derivedcategories?, A. Weber, The Weil conjectures, G. Banaszak, l-adic representations, P. Kraso«,Mordell-Weil groups of Abelian varieties. 1



During 1928�1933 Alexander lived with his parents in Berlin. After Hitler'srise to power, Alexander's parents immigrated to France, leaving their son (forabout 5 years) with the Heydorns, a surrogate family in Hamburg, where hewent to a primary and secondary school. In 1939 Alexander joined his parentsin France. His father was soon interned by the French Vichy police in theVernet camp in the Pyrenees, and then handed out to the Nazis occupiers. Hewas murdered in the German concentration camp Auschwitz-Birkenau in 1942.

Very young Alexander GrothendieckHanka and Alexander Grothendieck did not survive the occupation withoutproblems. In the years 1940�1942 they were interned � as �undesirable dangerousforeigners� � in the Rieucros camp near Mende in southern France. Hanka waslater transferred to the Gurs camp in the Pyrenees, whilst Alexander was allowedto continue his education in Collège Cévenol in a Cévennes Mountains town ofChambon-sur-Lignon in the southern Massif Central. The college, run by localProtestants under the leadership of Pastor Trocmé, was a sanctuary to manychildren (mainly Jews) whose lives were endangered during the war.Already then, Alexander asked himself a question that showed the unique-ness of his mind: How to accurately measure the length of a curve, area of asurface, or volume of a solid? Continuing the re�ection on these problems dur-ing his university studies in Montpellier (1945�1948), he independently obtainedresults equivalent to Lebesgue's measure and integration theory. As expressedby J. Dieudonné in [D], the university in Montpellier � in Grothendieck's days� wasn't a �proper place� for studying great mathematical problems . . . . Inthe fall of 1948 Grothendieck arrived in Paris, where he spent a year attend-ing courses in the famous École Normale Supérieure (ENS), the �birthplace� ofmost of the French mathematical elite. In particular, he took part in Cartan'slegendary seminar, that year devoted to algebraic topology. (More informationabout this period of Grothendieck's life, his parents, and France of those days,can be found in [C2].) 2



Grothendieck's interests, however, began focusing on functional analysis.Following Cartan's advice, in October 1949 he comes to Nancy, a centre offunctional analysis studies, where J. Dieudonné, L. Schwartz, and others runa seminar on Fréchet spaces and their direct limits. They encounter a numberof problems which they are unable to solve, and suggest Grothendieck to tryand attack them. The result surpasses all expectations. In less than a year,Grothendieck manages to solve all the problems by means of some very ingeniousconstructions. By the time of his doctorate, Grothendieck holds 6 papers, eachof which could make a very good doctoral thesis. The thesis, dedicated to hismother2: Produits tensoriels topologiques et espaces nucléaires��������HANKA GROTHENDIECK in Verehrung und Dankbarkeit gewidmetis ready in 1953. This dissertation, published in 1955 in the Memoirs of theAmer. Math. Soc. [18] 3, is generally considered one of the most importantevents in the post-war functional analysis4. The years 1950�1955 mark the pe-riod of Grothendieck's most intensive work on functional analysis. In his earlypapers (written at the age of about 22) Grothendieck poses many questionsconcerning the structure of locally convex linear topological spaces, particularlythe complete linear metric spaces. Some of them are related to the theory oflinear partial di�erential equations and analytic function spaces. The Schwartzkernel theorem leads Grothendieck to distinguishing the class of nuclear spaces5.Roughly speaking, the kernel theorem asserts that �decent� operators on distri-butions are distributions themselves, which Grothendieck expressed abstractlyas an isomorphism of certain injective and projective tensor products. The maindi�culty in introducing the theory of nuclear spaces is the problem of equiva-lence of two interpretations of kernels: as elements of tensor products, and aslinear operators (in the case of �nite dimensional spaces, matrices are in one-to-one correspondence with linear transformations). This leads to the so-calledapproximation problem (a version of which was �rst posed in S. Banach's famousmonograph [B]), whose deep study takes a considerable part of the Red Book.Grothendieck discovers many beautiful equivalences (some of the implicationswere earlier known to S. Banach and S. Mazur); in particular, he shows thatthe approximation problem is equivalent to problem 153 from the Scottish Book[Ma] posed by Mazur, and that, for re�exive spaces, the approximation property2Grothendieck was exceptionally attached to his mother, with whom he spoke in German.She wrote poems and novels (presumably her best known work is an autobiographical novelEine Frau).3A complete list of Grothendieck's mathematical publications is contained in [C-R], vol. 1,pp. xiii�xx. When citing a Grothendieck's publication here, we refer to an item on that list.4And called Grothendieck's (little) Red Book.5All his life Grothendieck has been a fervent paci�st. He believed that the term �nuclear�should only be used to describe abstract mathematical objects. During the Vietnam warhe taught a course on the theory of categories in a forest near Hanoi the same time thatAmericans were bombarding the city. 3



is equivalent to the so-called metric approximation property. Nuclear spaces arealso related to the following 1950 Dvoretzky�Rogers theorem (solving problem122 from [Ma]): In every in�nite dimensional Banach space, there exists an un-conditionally convergent series that is not absolutely convergent. Grothendieckshowed that the nuclear spaces are precisely those for which unconditional con-vergence is equivalent to the absolute convergence of a series (see [Ma, problem122 and remarks]). The fundamental importance of nuclear spaces comes fromthe fact that almost all non-Banach locally convex spaces naturally occurring inanalysis are nuclear. We mean here various spaces of smooth functions, distri-butions, or holomorphic functions with their natural topologies � in many casestheir nuclearity was shown by Grothendieck himself.Another important result of the Red Book is the equivalence of the productde�nition of nuclear spaces with their realization as inverse limits of Banachspaces with morphisms being nuclear or absolutely summable operators (whichGrothendieck calls left semi-integral operators). His study of various classesof operators (Grothendieck has been the �rst to de�ne them in a functorialway, in the spirit of the theory of categories) yields deep results that gave riseto the modern, so-called local theory of Banach spaces. The results are pub-lished in two important papers [22, 26] in Bol. Soc. Mat. São Paulo, duringhis stay in that city (1953�1955). He shows there, in particular, that opera-tors from a measure space into a Hilbert space are absolutely summable (a factanalytically equivalent to the so-called Grothendieck inequality), and makes aconjecture concerning a central problem in the theory of convex bodies, solvedby A. Dvoretzky in 1959. Many very di�cult questions posed in those paperswere later solved by: P. En�o (negative resolution of the approximation prob-lem, in 1972), B. Maurey, G. Pisier, J. Taskinen (�problème des topologies� onbounded sets in tensor products), U. Haagerup (non-commutative analogue ofGrothendieck's inequality for C�-algebras), J. Bourgain � a Fields medalist, andindirectly in�uenced the results of another �Banach� Fields medalist, T. Gowers.Supposedly, of all the problems posed by Grothendieck in functional analysis,there is only one left open to these days, see [PB, 8.5.19].To sum up, Grothendieck's contributions to functional analysis include: nu-clear spaces, topological tensor products, Grothendieck inequality, relations withabsolutely summable operators, and . . .many other dispersed results.6In 1955 Grothendieck's mathematical interests shift to homological algebra.This is a time of the triumph of homological algebra as a powerful tool inalgebraic topology, due to the work of H. Cartan and S. Eilenberg. During hisstay at the University of Kansas in 1955, Grothendieck constructs his axiomatictheory of Abelian categories. His main result asserts that the sheaves of modulesform an Abelian category with su�ciently many injective objects, which allowsone to de�ne cohomology with values in such a sheaf without any constraintson the sheaf or the base space (the theory appears in [28]).After homological algebra, Grothendieck's curiosity directs towards alge-6The above information about Grothendieck's contribution to functional analysis comesmostly from [P]. 4



braic geometry � to a large extent due to the in�uence of C. Chevalley andJ-P. Serre. Grothendieck considers the former a great friend of his, and in lateryears participates in his famous seminar in the ENS, giving a number of talks onalgebraic groups and intersection theory [81�86]. He also exploits J-P. Serre'sextensive knowledge of algebraic geometry, asking him numerous questions (re-cently, the French Mathematical Society published an extensive selection oftheir correspondence [CS]; this book can teach more algebraic geometry thanmany monographs). Serre's paper [S1], building the foundations of the theoryof sheaves and their cohomology in algebraic geometry, is of key importance toGrothendieck.One of Grothendieck's �rst results in algebraic geometry is a classi�cationof holomorphic bundles over the Riemann sphere [25]. It says that every suchbundle is the direct sum of a certain number of tensor powers of the tauto-logical line bundle. Some time after this publication it turned out that other�incarnations� of this result were much earlier known to mathematicians suchas G. Birkho�, D. Hilbert, as well as R. Dedekind and H. Weber (1892). Thisstory shows, on the one hand, Grothendieck's enormous intuition for importantproblems in mathematics, but on the other hand, also his lack of knowledge ofthe classical literature. Indeed, Grothendieck wasn't a bookworm; he preferredto learn mathematics through discussions with other mathematicians. Nonethe-less, this work of Grothendieck initiated systematic studies on the classi�cationof bundles over projective spaces and other varieties.Algebraic geometry absorbs Grothendieck throughout the years 1956�1970.His main motive at the beginning of this period is transformation of �absolute�theorems (about varieties) into �relative� results (about morphisms). Here is anexample of an absolute theorem7:If X is a complete variety and F is a coherent sheaf on X, then dimHj(X;F) <1.And this is its relative version:If f : X ! Y is a proper morphism, and F is a coherent sheaf on X, thenRjf�F is coherent on Y .Grothendieck's main accomplishment of that period is concerned with therelative Hirzebruch-Riemann-Roch theorem. The original problem motivatingthe work on this topic can be formulated as follows: given a connected smoothprojective variety X and a vector bundle E over X , calculate the dimensiondimH0(X;E) of the space of global sections of E. The great intuition of Serretold him that the problem should be reformulated using higher cohomologygroups as well. Namely, Serre conjectured that the numberX(�1)i dimH i(X;E)7In the rest of this paper we will use some standard algebraic geometry notions and notation(see [H]). Unless otherwise implied, by a variety we will mean a complex algebraic variety.Cohomology groups of such a variety � unless otherwise speci�ed � will have coe�cients inthe �eld of rational numbers. 5



could be expressed in terms of topological invariants related to X and E. Nat-urally, Serre's point of departure was a reformulation of the classical Riemann-Roch theorem for a curve X : given a divisor D and its associated line bundleL(D), dimH0(X;L(D))� dimH1(X;L(D)) = degD + 12�(X) :(An analogous formula for surfaces was also known.)The conjecture was proved in 1953 by F. Hirzebruch, inspired by earlier in-genious calculations of J.A. Todd. Here is the formula discovered by Hirzebruchfor an n-dimensional variety X :X(�1)i dimH i(X;E) = deg(ch(E)tdX)2n ; (*)where (�)2n denotes the degree 2n component of an element of the cohomologyring H�(X), and ch(E) =X eai ; tdX =Y xj1� e�xj(where the ai are the Chern roots of E 8, and the xj are the Chern roots of thetangent bundle TX).To formulate a relative version of this result, let a proper morphism f : X !Y between smooth varieties be given. We want to understand the relationshipbetween chX(�)tdX and chY (�)tdY;�induced� by f . In the case of f : X ! Y = point , we should obtain theHirzebruch-Riemann-Roch theorem. The relativization of the right-hand sideof (*) is easy: there exists a well de�ned additive mapping of cohomology groupsf� : H(X) ! H(Y ), and deg(z)2n corresponds to f�(z) for z 2 H(X). Whatabout the left-hand side of (*)? The relative version of the Hj(X;F) are thecoherent modules Rjf�F, vanishing for j � 0. In order to construct a relativeversion of the alternating sum, Grothendieck de�nes the following group K(Y )(now called the Grothendieck group): It is the quotient group of a �very large�free Abelian group generated by the isomorphism classes [F] of coherent sheaveson Y , modulo the relation [F] = [F0] + [F00]for each exact sequence 0! F0 ! F! F00 ! 0: (**)The group K(Y ) has the following universal property: every mapping ' fromLZ[F] to an Abelian group, satisfying'([F]) = '([F0]) + '([F00]); (***)8These are the classes of divisors associated with line bundles, splitting E (see [H, p. 430]).6



factors through K(Y ). In our situation, we de�ne'([F]) :=X(�1)j [Rjf�F] 2 K(Y ) :Observe that (***) follows from the long exact sequence of derived functors� � � �! Rjf�F0 �! Rjf�F �! Rjf�F00 �! Rj+1f�F0 �! � � � ;associated with the short exact sequence (**) (see [H, Chap. III]). Thus, weobtain an additive mapping f! : K(X)! K(Y ):Now the relative Hirzebruch-Riemann-Roch theorem, discovered by Grothen-dieck ([102], [BS]) and being a sign of his genius, asserts the commutativity ofthe diagram K(X) f!������! K(Y )???ychX (�)tdX ???ychY (�)tdYH(X) f�������! H(Y ) :(Note that due to its additivity, the Chern character ch(�) is well de�ned inK-theory.) More information about various aspects of the intersection theory,of which the ultimate result is the above Grothendieck-Riemann-Roch theorem,can be found in [H, Appendix A] 9. The theorem has been applied in manyspeci�c calculations of characteristic classes.Grothendieck's group K spurred the development of K-theory, marked withthe works of D. Quillen and many others. Note that K-theory plays an impor-tant role in many areas of mathematics, from the theory of di�erential opera-tors (the Atiyah-Singer theorem) to the modular representation theory of �nitegroups (the Brauer theorem).10Following this spectacular result, Grothendieck is proclaimed a �superstar�of algebraic geometry, and invited to the International Congress of Mathemati-cians in Edinburgh in 1958, where he sketches a program to de�ne a cohomologytheory for positive characteristics that should lead to a proof of the Weil conjec-tures, see [32]. The Weil conjectures [W] suggested deep relations between thearithmetic of algebraic varieties over �nite �elds, and the topology of complexalgebraic varieties. Let k = Fq be a �nite �eld with q elements, and let �k be itsalgebraic closure. Fix a �nite collection of homogeneous polynomials in n + 1variables with coe�cients in k. Let X (resp. �X) be the zero-set of this collec-tion in the n-dimensional projective space over k (resp. �k). Denote by Nr thenumber of points in �X whose coordinates lie in the �eld Fqr with qr elements,9In fact, the Grothendieck-Riemann-Roch theorem was proved for varieties over any alge-braically closed �eld (of arbitrary characteristic) by taking the values of the Chern characterin the Chow rings (cf. [102], [BS]).10Three contributions in the present volume: by M. Brion, A. S. Buch, and M. Szyjewskipresent various developments of K-theory initiated by Grothendieck.7



r = 1; 2; : : : . �Organize� the Nr into a generating function, called the zetafunction of X : Z(t) := exp� 1Xr=1Nr trr �:The Weil conjectures, for a smooth variety X , concern the properties of Z(t),as well as the relations with the classical Betti numbers of the complex variety�associated� with X . The formulation of the Weil conjectures can be foundin 1.1�1.4 of [H, Appendix C], or W1�W5 of [M, Chap. VI, � 12] (both listsbegin with the conjecture on rationality of the zeta function Z(t)). The abovesources also contain some introductory information about the Weil conjectures,as well as an account of the struggle for their proof, which (besides Weil and theGrothendieck school) involved mathematicians such as B. Dwork, J-P. Serre, S.Lubkin, S. Lang, Yu. Manin, and many others.The Weil conjectures become the main motivation for Grothendieck's workin algebraic geometry during his stay at the IHES11. He begins working at theIHES in 1959, and soon under his charismatic leadership, emerges the Séminairede Géométrie Algébrique du Bois-Marie (after the wood surrounding the IHES).For the next decade, the seminar will become the world's �capital� of algebraicgeometry. Working on mathematics 12 hours a day, Grothendieck generouslyshares his ideas with his co-workers. The atmosphere of this exceptional seminarhas been captured in an interview [Du] with one of Grothendieck's students, J.Giraud. Let us concentrate now on the main ideas explored by Grothendieck atthe IHES12.Schemes are objects that allow for uni�cation of geometry, commutativealgebra, and number theory. Let X be a set, and let F be a �eld. Consider thering FX = ffunctions f : X ! Fgwith multiplication de�ned pointwise. For x 2 X , de�ne �x : FX ! F byf 7! f(x). The kernel of �x being a maximal ideal, we can identify X withthe set of all maximal ideals in FX . Thus, we replace a simpler object, X bya more complicated one, which is the set of all maximal ideals in FX . Vari-ants of this idea appeared in the work of M. Stone on the theory of Booleanlattices, as well as in papers of I.M. Gelfand on commutative Banach algebras.In commutative algebra, similar ideas were �rst exploited by M. Nagata andE. Kähler. In the late 50's, many mathematicians in Paris (Cartan, Chevalley,Weil, . . . ) intensively searched for a generalization of the concept of variety overan algebraically closed �eld.Serre showed that the notion of localization of a commutative ring leads toa sheaf over the maximal spectrum Specm of an (arbitrary) commutative ring.Note that the mapping A! Specm(A) is not a functor (the inverse image of a11IHES = Institut des Hautes Études Scienti�ques: mathematical research institute inBures-sur-Yvette near Paris � a fantastic location for doing mathematics, also thanks to itslovely canteen that will probably never run out of bread and wine.12See also [D] for a more detailed account of the theory of schemes.8



maximal ideal need not be maximal). On the other hand,A! Spec(A) := fprime ideals in Agis a functor. It seems that it was P. Cartier who in 1957 �rst proposed the fol-lowing: a proper generalization of the classical algebraic variety is a ringed space(X;OX) locally isomorphic to Spec(A) (although it was a result of speculationsof many algebraic geometers). Such an object was called a scheme.

The music pavilion of the IHES, Bures-sur-Yvette;venue of the �rst algebraic geometry seminars.Grothendieck was planning to write a 13-volume course in algebraic geometryEGA13 based on the concept of schemes and culminating in the proof of theWeil conjectures. He managed to publish 4 volumes, written together withDieudonné. But in fact, most of the material to appear in the later volumeswas covered by SGA14 � publications of the algebraic geometry seminar at theIHES. (The text [H], to which we often refer here, is a didactic recapitulationof the most useful parts of EGA concerning schemes and cohomology.)Let us now turn to constructions in algebraic geometry that make use ofrepresentable functors. Fix an object X in the category C. We associate withit a contravariant functor from C to the category of sets,hX(Y ) := MorC(Y;X):At �rst sight, it is hard to see any use of such a simple assignment. However,the knowledge of this functor gives us a unique (up to isomorphism) object Xthat �represents� it (a fact known as the Yoneda Lemma). It is thus natural to13EGA �Éléments de Géométrie Algébrique, published by the Publ. IHES and SpringerVerlag [57�64].14SGA � Séminaire de Géometrie Algébrique, published by the Springer Lecture Notes inMathematics and (SGA 2) by North-Holland [97�103].9



make the following de�nition: A contravariant functor from C to the categoryof sets is called representable (by X) if it is of the form hX for some object Xin C. Grothendieck masterfully exploits the properties of representable functorsto construct various parameter spaces. Such spaces are often encountered inalgebraic geometry, a key example being the Grassmannian parametrizing linearsubspaces of a given dimension in a given projective space. A natural question iswhether there exist more general schemes parametrizing subvarieties of a givenprojective space, and having certain �xed numerical invariants.Let S be a scheme over a �eld k. A family of closed subschemes of Pnwith the base S is a closed subscheme X � Pn �k S together with the naturalmorphism X ! S. Fix a numerical polynomial P . Grothendieck considers thefunctor 	P from the category of schemes to the category of sets, that assignsto S the set 	P (S) of �at families of closed subschemes of Pn with base S andHilbert polynomial P . If f : S0 ! S is a morphism, then	P (f) : 	P (S)! 	P (S0)assigns to a family X ! S the family X 0 = X�S S0 ! S0. Grothendieck provesthat the functor 	P is representable by a scheme (called a Hilbert scheme) thatis projective [74]15. This is a (very) ine�ective result � for example, estimat-ing the number of irreducible components of the Hilbert scheme of curves in3-dimensional projective space, with a given genus and degree, is still an openproblem. Nonetheless, in numerous geometric considerations it su�ces to knowthat such an object exists, which makes this theorem of Grothendieck useful inmany applications. More generally, Grothendieck constructs a so-called Quot-scheme parametrizing (�at) quotient sheaves of a given coherent sheaf, with a�xed Hilbert polynomial [73]. Quot-schemes enjoy many applications in con-structions of moduli spaces of vector bundles. Yet another scheme, constructedby Grothendieck in the same spirit, is the Picard scheme [75, 76].In 1966 Grothendieck receives the Fields Medal for his contributions to func-tional analysis, the Grothendieck-Riemann-Roch theorem, and the work on thetheory of schemes (see [S2]).The most important subject of Grothendieck's research at the IHES is, how-ever, the theory of étale cohomology. Recall that, for the purpose of the Weilconjectures, the issue is to construct an analogue of the cohomology theory ofcomplex varieties for algebraic varieties over a �eld of positive characteristic (butwith coe�cients in a �eld of characteristic zero, so that one could count the �xedpoints of a morphism as a sum of traces in cohomology groups, à la Lefschetz).Earlier e�orts to exploit the classical topology used in algebraic geometry �the Zariski topology (closed subsets = algebraic subvarieties), turned out un-successful, the topology being �too poor� for homological needs. Grothendieckobserves that a �good� cohomology theory can be built by considering a varietytogether with all its unrami�ed coverings (see [32] for details on the context of15In fact, Grothendieck proves a much more general result for projective schemes over abase Noetherian scheme. 10



this discovery). This is the beginning of the theory of étale topology, devel-oped together with M. Artin and J-L. Verdier. Grothendieck's brilliant ideawas the revolutionary generalization of the notion of topology, di�ering fromthe classical topological space in that the �open sets� need not be all containedin the same set, but do have some basic properties that allow one to build a�satisfactory� cohomology theory of sheaves.

Alexander GrothendieckThe origins of these ideas are sketched in the following discussion of Cartier[C1]. When using sheaves on a variety X or studying cohomology of X withcoe�cients in sheaves, the key role is played by the lattice of open subsets ofX (the points of X being of secondary importance). In our considerations, wecan thus, without any harm, �replace� the variety by the lattice of its opensubsets. Grothendieck's idea was to adapt B. Riemann's concept of multivaluedholomorphic functions that actually �live� not on open subsets of the complexplane, but rather on suitable Riemann surfaces that cover it (Cartier uses asuggestive term �les surfaces de Riemann étalées�). Between these Riemannsurfaces there are projections, and hence they form objects of a certain category.A lattice is an example of a category in which between any two objects thereis at most one morphism. Grothendieck suggests then to replace the lattice ofopen sets with the category of open étale sets. Adapted to algebraic geometry,this concept allows one to resolve the fundamental di�culty of the lack of animplicit function theorem for algebraic functions. Also, it allows us to view theétale sheaves in a functorial way.To continue our discussion in a more formal way, suppose that a categoryC is given, which admits �bre products. A Grothendieck topology on C is anassignment to every object X 2 C of a set Cov(X) of a families of morphismsffi : Xi ! Xgi2I , called the coverings of X , satisfying the following conditions:1) fid : X ! Xg 2 Cov(X);2) if ffi : Xi ! Xg 2 Cov(X), then, induced by a base change Y ! X , thefamily fXi �X Y ! Y g belongs to Cov(Y );11



3) if fXi ! Xg 2 Cov(X) and, for all i, fXij ! Xig 2 Cov(Xi), then thebi-indexed family fXij ! Xg belongs to Cov(X).If C admits direct sums � and let us suppose so � then a family fXi ! Xg canbe replaced with a single morphismX 0 =ai Xi ! X :Having coverings, one can consider sheaves and their cohomology. A contravari-ant functor F from C to the category of sets is called a sheaf of sets if, for everycovering X 0 ! X , haveF (X) = fs0 2 F (X 0) : p�1(s0) = p�2(s0)g ;where p1; p2 are the two projections from X 0 �X X 0 onto X 0. A canonicaltopology in the category C is the topology �richest in coverings� in which allthe representable functors are sheaves. If in turn, every sheaf in a canonicaltopology is a representable functor, then the category C is called a topos. Moreinformation about the Grothendieck topologies can be found for instance in[BD].Let us return to geometry. Very importantly: the above fi need not beembeddings! The most signi�cant example of a Grothendieck topology is theétale topology, where the fi : Xi ! X are étale morphisms16 that induce asurjection`iXi ! X . Grothendieck's cohomological machinery applied to thistopology yields the construction of the étale cohomology H iét(X;�). Althoughthe basic ideas are relatively simple, the veri�cation of many technical detailsregarding the properties of étale cohomology required many years of hard work,which involved the �cohomological� students of Grothendieck: P. Berthelot, P.Deligne, L. Illusie, J-P. Jouanolou, J-L. Verdier, and others, successively �llingup the details of new results sketched by Grothendieck. The results of theGrothendieck school's work on étale cohomology are published in [100]17.The proof of the Weil conjectures required a certain variant of étale cohomol-ogy � the l-adic cohomology. Its basic properties, particularly a Lefschetz-typeformula, allowed Grothendieck to prove some of the Weil conjectures, but themost di�cult one � the analogue of the Riemann Hypothesis � remained un-solved. In the process of proving the conjecture, Grothendieck has played a rolesimilar to that of the biblical Moses, who led the Israelis o� Egypt and towardsthe Promised Land, was their guide for the most part of the trip, but was notsupposed to reach the goal himself. In the case of the Weil-Riemann conjec-ture, the goal was reached by Grothendieck's most brilliant student � Deligne[De]. (Grothendieck's plan to prove the Weil-Riemann conjecture by �rst prov-ing the so-called standard conjectures has not been realized to these days � theconjectures are discussed in [44].)16These are smooth morphisms of relative dimension zero. For smooth varieties, étalemorphisms are precisely those that induce isomorphisms of the tangent spaces at all points �naturally, such morphisms need not be injective. A general discussion of étale morphisms canbe found in [M].17A didactic exposition of étale cohomology can be found in [M].12



In 1970 Grothendieck accidentally discovers that the IHES �nances are par-tially supported by military sources, and leaves the IHES instantly. He re-ceives a prestigious position at the Collège de France, however by that time(Grothendieck is about 42) there are things that interest him more than math-ematics: one has to save the endangered world! Grothendieck cofounds anecological group called Survivre et Vivre (Survive and Live). In this group heis accompanied by two outstanding mathematicians and friends: C. Chevalleyand P. Samuel. The group publishes in 1970�1975 a magazine under the samename. Typically for his temperament, Grothendieck engages wholly in this ac-tivity, and soon his lectures at the Collège de France have little to do withmathematics, concerning instead the issues like . . . how to avoid the world warand live ecologically. Consequently, Grothendieck needs to �nd himself a newjob. He receives an o�er from his �home� university in Montpellier, and soonsettles down on a farm near the city and works as an �ordinary� professor (withteaching duties) at the university. Working in Montpellier, Grothendieck writesa number of (long) sketches of new mathematical theories in an e�ort to obtaina position in the CNRS18 and talented students from the ENS to work with. He�receives� no students, but for the last four years before retirement (at the ageof 60) is employed by the CNRS. The sketches are currently being developed byseveral groups of mathematicians; it is a good material for a separate article.In Montpellier Grothendieck writes also his mathematical memoirs Récolteset Semailles (Harvests and Sowings) [G1], containing marvellous pieces abouthis perspectives on mathematics, about �male� and �female� roots in mathe-matics, and hundreds of other fascinating things. The memoirs contain alsoa detailed account of Grothendieck's relationship with the mathematical com-munity, as well as a very critical judgement of his former students . . . . Butlet us talk about more pleasant things. Speaking of a model mathematician,Grothendieck without hesitation names E. Galois. Of the more contemporaryscientists, Grothendieck very warmly recalls J. Leray, A. Andreotti, and C.Chevalley. It is symptomatic how greatly important to Grothendieck is thehuman aspect of his contacts with other mathematicians. He writes in [G1]:If, in �Récoltes et Semailles� I'm addressing anyone besides myself, it isn'twhat's called a �public�. Rather I'm addressing that someone who is prepared toread me as a person, and as a solitary person.Maybe it was the loneliness experienced in all his life that made him sosensitive about it?In 1988 Grothendieck refuses to accept a prestigious Crafoord Prize, awardedto him, jointly with Deligne, by the Royal Swedish Academy of Sciences (hugemoney!). Here is a quote of the most important, in my opinion, part of Grothen-dieck's letter to the Swedish Academy in regard to the prize (see [G2]):I am convinced that time is the only decisive test for the fertility of new ideasor views. Fertility is measured by o�spring, not by honors.18CNRS � Centre National de la Recherche Scienti�que, French institution employing sci-entists without formal didactic duties. 13



Let us add that the letter contains also his extremely critical opinion on theprofessional ethic of the mathematical community of the 70's and 80's . . . .It is time for some summary. Here are the 12 most important topics ofGrothendieck's work in mathematics, reproduced after [G1]:1. Topological tensor products and nuclear spaces;2. �Continuous� and �discrete� dualities (derived categories, the �six opera-tions�);3. The Riemann-Roch-Grothendieck yoga (K-theory and its relationship tointersection theory);4. Schemes;5. Topos theory;(Toposes, as pointed out before, realize (as opposed to schemes) a �geometrywithout points� � see also [C1] and [C2]. Grothendieck �admired� toposes morethan schemes. He valued most the topological aspects of geometry that led tothe right cohomology theories.)6. Étale cohomology and l-adic cohomology;7. Motives, motivic Galois groups (
-Grothendieck categories);8. Crystals, crystalline cohomology, yoga of the De Rham coe�cients, theHodge coe�cients;9. �Topological algebra�: 1-stacks; derivations; cohomological formalism oftoposes, inspiring a new conception of homotopy;10. Mediated topology;11. The yoga of Anabelian algebraic geometry. Galois-Teichmüller theory;(This point Grothendieck considered the hardest and �the deepest�. Re-cently, important results on this subject were obtained by F. Pop.)12. Schematic or arithmetic viewpoints on regular polyhedra and in generalall regular con�gurations.(This subject was developed by Grothendieck after moving from Paris toMontpellier, in his spare time at a family vineyard.)The work of numerous mathematicians who carried on 1.�12. has madeup a signi�cant chunk of the late XX century mathematics. Many of theGrothendieck's ideas are being actively developed nowadays and will certainlyhave a signi�cant impact on the mathematics of the XXI century.Let us name the most important continuators of Grothendieck's work (amongthem, a few Fields medalists):1. P. Deligne: complete proof of the Weil conjectures in 1973 (to a largeextent based on techniques of SGA);2. G. Faltings: proof of the Mordell conjecture in 1983;3. A. Wiles: proof of Fermat's Last Theorem in 1994;(it is hard to imagine 2. and 3. without EGA)4. V. Drinfeld, L. La�orgue: proof of the Langlands reciprocity for generallinear groups over function �elds;5. V. Voevodsky: theory of motives and proof of Milnor's conjecture.14



The last point is related to the following Grothendieck's �dream�: thereshould exist an �Abelianization� of the category of algebraic varieties � a cat-egory of motives together with the motivic cohomology, from which one couldread the Picard variety, the Chow groups, etc. A. Suslin and V. Voevodskyconstructed motivic cohomology satisfying the postulates of Grothendieck.In August 1991 Grothendieck suddenly abandons his house and, without aword, leaves to an unknown location somewhere in the Pyrenees. He devoteshimself to philosophical meditations (free choice, determinism, and the existenceof . . . the devil in the world); earlier, he wrote an interesting text La clef dessonges describing his argument for the existence of God based on a dreamanalysis, and writes texts on physics. He wishes no contacts with the outsideworld.We come to the end. Here is a handful of re�ections.The following words of Grothendieck, from [G1], describe what interestedhim most in mathematics:That is to say that, if there is one thing in mathematics which (no doubtthis has always been so) fascinates me more than anything else, it is neither�number�, nor �magnitude� but above all �form�. And, among the thousand andone faces that form chooses in presenting itself to our attention, the one thathas fascinated me more than any other, and continues to fascinate me, is thestructure buried within mathematical objects.It is truly amazing that resulting from this re�ection of Grothendieck on the�form� and �structure� are theories that provide tools (of unparalleled precision)for calculating speci�c numerical quantities and �nding explicit algebraic rela-tions. An example of such a tool in algebraic geometry is the Grothendieck-Riemann-Roch theorem. Another, less known example, is the language ofGrothendieck's �-rings [102], that allows one to treat symmetric functions asoperators on polynomials. This in turn provides a uniform approach to nu-merous classical polynomials (e.g. symmetric, orthogonal) and formulas (e.g.interpolation formulas or those of the representation theory of general lineargroups and symmetric groups). The polynomials and formulas are often relatedto the famous names such as: E. Bézout, A. Cauchy, A. Cayley, P. Chebyshev,L. Euler, C.F. Gauss, C.G. Jacobi, J. Lagrange, E. Laguerre, A-M. Legendre, I.Newton, I. Schur, T.J. Stieltjes, J. Stirling, J.J. Sylvester, J.M. Hoene-Wro«ski,and others. What's more, the language of �-rings allows one to establish usefulalgebro-combinatorial generalizations of the results of these classics, see [L]. Thework of Grothendieck shows that there is no essential dichotomy between thequantitative and qualitative aspects of mathematics.Undoubtedly, Grothendieck's point of view explained above helped him toaccomplish the enormous work towards the uni�cation of important subjectsin geometry, topology, arithmetic, and complex analysis. It also relates toGrothendieck's fondness for studying mathematical problems in their full gen-erality. 15



Grothendieck's work style is well described in the following tale of his, from[G1]. Suppose one wants to prove a conjecture. There are two extreme methodsto do this. First: by force. As with opening a nut: one cracks the shell with anutcracker and gets to the fruit inside. But there is also another way. One canput a nut into a softening liquid and wait patiently until it su�ces to gentlypress the shell and it opens all by itself. Anyone who read Grothendieck's workswould have no doubt that it was the latter approach he used when working onmathematics. Cartier [C1] gives a yet more suggestive characterization of thismethod: it is the Joshua way of conquering Jericho. One wants to get to Jerichoguarded by tall walls. If one compasses the city su�ciently many times, thusweakening their construction (by resonance), then eventually it will su�ce toblow with the trumpets and shout with a great shout and . . . the walls of Jerichoshall fall down �at!Let us share the following piece of advice, especially with young mathemati-cians. Grothendieck highly valued writing down his mathematical considera-tions. He regarded the process of writing and editing of mathematical papersitself an integral part of the research work, see [He].Finally, let us listen to Dieudonné, a faithful witness of Grothendieck's work,and a mathematician of an immense encyclopedic knowledge. He wrote (see [D])on the occasion of Grothendieck's 60'th birthday (that is, some 15 years ago):There are few examples in mathematics of a theory that monumental andfruitful, done by a single man in such a short time.He is accompanied by the editors of The Grothendieck Festschrift [C-R](where [D] was published), who say in the introduction:It is di�cult to grasp fully the magnitude of Alexander Grothendieck's con-tribution to and in�uence on twentieth century mathematics. He has changedthe very way we think about many branches in mathematics. Many of his ideas,revolutionary when introduced, now seem so natural as to have been inevitable.Indeed, there is a whole new generation of mathematicians for whom these ideasare part of the mathematical landscape, a generation who cannot imagine thatGrothendieck's ideas were ever absent.During the preparation of this article I asked a couple of my French friendswhether Grothendieck was still alive. Their answers could be summarized asfollows: �Unfortunately, the only news we will have about Grothendieck will bethe notice of his death. Since we still haven't got any, he must be alive.� OnMarch 28, 2004 Grothendieck turned 76.The bibliography of Grothendieck's work is huge and obviously stretchesbeyond the scope of this modest exposition. We cite only those bibliographicalitems to which we refer directly in the text. One can �nd there more detailedreferences to papers of Grothendieck and other authors writing about him andhis work. We heartily recommend visiting the website of the GrothendieckCircle: http://www.grothendieck-circle.org/16
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