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Abstract

We give a formula for pushing forward the classes of Hall-Littlewood
polynomials in Grassmann bundles, generalizing Gysin formulas for Schur
S- and P -functions.

Let E → X be a vector bundle of rank n over a nonsingular variety X over
an algebraically closed field. Denote by π : Gq(E)→ X the Grassmann bundle
parametrizing rank q quotients of E. Let π∗ : A(Gq(E))→ A(X) be the homo-
morphism of the Chow groups of algebraic cycles modulo rational equivalence,
induced by pushing-forward cycles (see [3, Chap. 1]). There exists an analogous
map of cohomology groups. A goal of this note is to give a formula (see Theorem
7) for the image via π∗ of Hall-Littlewood classes from the Grassmann bundle.

Hall-Littlewood polynomials appeared implicitly in Hall’s study [5] of the
combinatorial lattice structure of finite abelian p-groups, and explicitly in the
work of Littlewood on some problems of representation theory [8]. A detailed
account of the theory of Hall-Littlewood functions is given in [9].

The formula in Theorem 7 generalizes some Gysin formulas for Schur S- and
P -functions. In particular, it generalizes the formula in [11, Prop. 1.3(ii)], and
provides an explanation of its intriguing coefficient. We refer to [4] for general
information about the appearance of Schur S- and Q-functions in cohomological
studies of algebraic varieties.

Let t be an indeterminate. The main formula will be located in A(X)[t], or
in the extension H∗(X,Z)[t] of the cohomology ring for a complex variety X.
Let τE : Fl(E)→ X be the flag bundle parametrizing flags of quotients of E of
ranks n, n− 1, . . . , 1. Suppose that x1, . . . , xn is a sequence of the Chern roots
of E. For a sequence λ = (λ1, . . . , λn) of nonnegative integers, we define

Rλ(E; t) = (τE)∗
(
xλ1
1 · · ·xλnn

∏
i<j

(xi − txj)
)
, (1)
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where (τE)∗ acts on each coefficient of the polynomial in t separately. (The
same convention will be used for other flag bundles.)

The Grassmann bundle π : Gq(E) → X is endowed with the tautological
exact sequence of vector bundles

0 −→ S −→ π∗E −→ Q −→ 0 ,

where rank(Q) = q. Let r = n− q be the rank of S. Suppose that x1 . . . , xq are
the Chern roots of Q and xq+1, . . . , xn are the ones of S.

Proposition 1. For sequences λ = (λ1, . . . , λq) and µ = (µ1, . . . , µr) of non-
negative integers, we have

π∗
(
Rλ(Q; t)Rµ(S; t)

∏
i≤q<j

(xi − txj)
)

= Rλµ(E; t),

where λµ = (λ1, . . . , λq, µ1, . . . , µr) is the juxtaposition of λ and µ.

Proof. Consider a commutative diagram

Fl(Q)×Gq(E) Fl(S)

τQ×τS
��

∼= // Fl(E)

τ=τE

��
Gq(E)

π
// X

It follows that
π∗(τQ × τS)∗ = τ∗ . (2)

Using Eq.(1) for Q and S and Eq.(2), we obtain

π∗
(
Rλ(Q; t)Rµ(S; t)

∏
i≤q<j

(xi − txj)
)

= π∗
(
(τQ)∗

(
xλ1
1 · · ·xλqq

∏
i<j≤q

(xi − txj)
)
· (τS)∗

(
xµ1

q+1 · · ·xµrn
∏
q<i<j

(xi − txj)
) ∏
i≤q<j

(xi − txj)
)

= π∗(τQ × τS)∗

(
xλ1
1 · · ·xλqq

∏
i<j≤q

(xi − txj)xµ1

q+1 · · ·xµrn
∏
q<i<j

(xi − txj)
∏
i≤q<j

(xi − txj)
)

= τ∗(x
λ1
1 · · ·xλqq x

µ1

q+1 · · ·xµrn
∏
i<j

(xi − txj))

= Rλµ(E; t) .

In the argument above, we have used the following equality:∏
i<j≤q

(xi − txj)
∏
q<i<j

(xi − txj)
∏
i≤q<j

(xi − txj) =
∏
i<j

(xi − txj) . 2

We now set

vm(t) =

m∏
i=1

1− ti

1− t
= (1 + t)(1 + t+ t2) · · · (1 + t+ · · ·+ tm−1). (3)
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Let λ = (λ1, . . . , λn) be a sequence of nonnegative integers. Consider the
maximal subsets I1,...,Id in {1, . . . , n}, where the sequence λ is constant. Let
m1, . . . ,md be the cardinalities of I1,...,Id. So we have m1 + · · ·+md = n. We
set

vλ(t) =

d∏
i=1

vmi(t) . (4)

Let Sn be the symmetric group of permutations of {1, . . . , n}. We define a
subgroup Sλn of Sn as the stabilizer of λ. Of course,

Sλn =

d∏
i=1

Smi .

Finally, we associate to a sequence λ a (d − 1)-step flag bundle (with steps of
lengths mi)

ηλ : Flλ(E)→ X ,

parametrizing flags of quotients of E of ranks

n−md, n−md −md−1, . . . , n−md −md−1 − · · · −m2 . (5)

Example 2. Let ν = (ν1 > . . . > νk > 0) be a strict partition (see [9, I,1,Ex.9])
with k ≤ n. Let λ = ν0n−k be the sequence ν with n−k zeros added at the end.
Then d = k+1, (m1, . . . ,md) = (1k, n−k), vλ(t) = vn−k(t), Sλn = (S1)k×Sn−k,
and ηλ : Flλ(E) → X is the flag bundle, often denoted by τkE , parametrizing
quotients of E of ranks k, k − 1, . . . , 1.

If λ = (apbn−p), then d = 2, (m1,m2) = (p, n − p), vλ(t) = vp(t)vn−p(t),
Sλn = Sp × Sn−p, and ηλ is here the Grassmann bundle π : Gp(E)→ X.

We shall now need some results from [9, III]. Let y1, . . . , yn and t be inde-
pendent indeterminates. We record the following equation from [9, III, (1.4)]:

Lemma 3. We have ∑
w∈Sn

w
(∏
i<j

yi − tyj
yi − yj

)
= vn(t) .

For a sequence λ = (λ1, . . . , λn) of nonnegative integers, we define

Rλ(y1, . . . , yn; t) =
∑
w∈Sn

w
(
yλ1
1 · · · yλn

∏
i<j

yi − tyj
yi − yj

)
Arguing as in [9, III (1.5)], we show with the help of Lemma 3 the following

result.

Proposition 4. The polynomial vλ(t) divides Rλ(y1, . . . , yn; t), and we have

Rλ(y1, . . . , yn; t) = vλ(t)
∑

w∈Sn/Sλn

w
(
yλ1
1 · · · yλnn

∏
i<j,λi 6=λj

yi − tyj
yi − yj

)
.
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Let us invoke the following description of the Gysin map for the flag bun-
dle ηλ : Flλ(E) → X with the help of a symmetrizing operator. Recall that
A(Flλ(E)) as an A(X)-module is generated by Sλn-invariant polynomials in the
Chern roots of E (see [1, Thm 5.5]). We define for an Sλn-invariant polynomial
f = f(y1, . . . , yn),

∂λ(f) =
∑

w∈Sn/Sλn

w
( f(y1, . . . , yn)∏

i<j,λi 6=λj (yi − yj)

)
.

The following result is a particular case of [2, Prop. 2.1] (in the situation of
Corollary 6, the result was shown already in [10, Sect. 2]).

Proposition 5. With the above notation, we have

(ηλ)∗
(
f(x1, . . . , xn)

)
=
(
(∂λf)(y1, . . . , yn)

)
(x1, . . . , xn) .

It follows from Propositions 4 and 5 that

Rλ(E; t) = vλ(t)(ηλ)∗

(
xλ1
1 · · ·xλnn

∏
i<j,λi 6=λj

(xi − txj)
)
,

where x1, . . . , xn are the Chern roots of E.

Let λ be a sequence of nonnegative integers. Extending [9, III, 2], we set

Pλ(E; t) =
1

vλ(t)
Rλ(E; t) . (6)

It follows from Proposition 4 that Pλ(E; t) is a polynomial in the Chern classes
of E and t.

Let us record the following particular case.

Corollary 6. Let ν be a strict partition with length k ≤ n. Set λ = ν0n−k.
We have

Pλ(E; t) = (τkE)∗

(
xν11 · · ·x

νk
k

∏
i<j,i≤k

(xi − txj)
)
.

As a consequence of Propositions 1 and 4, using Eq.(6), we obtain the fol-
lowing result.

Theorem 7. Let λ = (λ1, . . . , λq) and µ = (µ1, . . . , µr) be sequences of non-
negative integers. Then we have

π∗

( ∏
i≤q<j

(xi − txj)Pλ(Q; t)Pµ(S; t)
)

=
vλµ(t)

vλ(t)vµ(t)
Pλµ(E; t) .

We first consider the specialization t = 0.

Example 8. We recall Schur S-functions. Let si(E) denotes the ith complete
symmetric function in the roots x1, . . . , xn, given by

∑
i≥0

si(E) =

n∏
j=1

1

1− xj
.
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Given a partition λ = (λ1 ≥ . . . ≥ λn ≥ 0) , we set

sλ(E) =
∣∣sλi−i+j(E)

∣∣
1≤i,j≤n .

(See also [9, I, 3].) Translating the Jacobi-Trudi formula (loc.cit.) to the Gysin
map for τE : Fl(E)→ X (see, e.g. [11, Sect. 4]), we have

sλ(E) = (τE)∗(x
λ1+n−1
1 · · ·xλnn ).

We see that Pλ(E; t) = sλ(E) for t = 0. Under this specialization, the theorem
becomes

π∗
(
(x1 · · ·xq)rsλ(Q)sµ(S)

)
= π∗

(
sλ1+r,...,λq+r(Q)sµ(S)

)
= sλµ(E) ,

a result obtained originally in [7, Prop. p. 196] and [6, Prop. 1].

If a sequence λ = (λ1, . . . , λn) is not a partition, then sλ(E) is either 0 or
±sµ(E) for some partition µ. One can rearrange λ by a sequence of operations
(. . . , i, j, . . .) 7→ (. . . , j−1, i+1, . . .) applied to pairs of successive integers. Either
one arrives at a sequence of the form (. . . , i, i+ 1, . . .), in which case sλ(E) = 0,
or one arrives in d steps at a partition µ, and then sλ(E) = (−1)dsµ(E).

Corollary 9. Let ν and σ be strict partitions of lengths k ≤ q and h ≤ r. It
follows from Eq.(3) that

vν0q−kσ0r−h(t)

vν0q−k(t)vσ0r−h(t)
=

[
n− k − h
q − k

]
(t) · (1 + t)e ,

the Gaussian polynomial times (1+t)e where e is the number of common parts of
ν and σ. Thus the theorem applied to the sequences λ = ν0q−k and µ = σ0r−h

yields the following equation:

π∗
( ∏
i≤q<j

(xi− txj)Pν(Q; t)Pσ(S; t)
)

=

[
n− k − h
q − k

]
(t) · (1 + t)e ·Pλµ(E; t) . (7)

We need the following property of Gaussian polynomials, which should be
known but we know no precise reference.

Lemma 10. At t = −1, the Gaussian polynomial[
a+ b

a

]
(t)

specializes to zero if ab is odd and to the binomial coefficient(
b(a+ b)/2c
ba/2c

)
otherwise.

Proof. We have[
a+ b

a

]
(t) =

(1− t)(1− t2) · · · (1− ta+b)
(1− t) · · · (1− ta)(1− t) · · · (1− tb)

.
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Since t = −1 is a zero with multiplicity 1 of the factor (1− td) for even d, and

a zero with multiplicity 0 for odd d, the order of the rational function
[
a+b
a

]
(t)

at t = −1 is equal to

b(a+ b)/2c − ba/2c − bb/2c . (8)

The order (8) is equal to 1 when a and b are odd, and 0 otherwise. In the former
case, we get the claimed vanishing, and in the latter one, the product of the
factors with even exponents is equal to[

ba+ b/2c
ba/2c

]
(t2) .

The value of this function at t = −1 is equal to
[
ba+b/2c
ba/2c

]
(1) which is the

binomial coefficient (
b(a+ b)/2c
ba/2c

)
.

This is the requested value since the remaining factors with an odd exponent
give 2 in the numerator and the same number in the denominator.

The assertions of the lemma follow. 2

We now consider the specialization t = −1.

Example 11. Consider Schur P -functions Pλ(E) = Pλ (or Pλ(y1, . . . , yn) =
Pλ) defined as follows. For a strict partition λ = (λ1 > . . . > λk > 0) with odd
k,

Pλ = Pλ1Pλ2,...,λk − Pλ2Pλ1,λ3,...,λk + · · ·+ PλkPλ1,...,λk−1
,

and with even k,

Pλ = Pλ1,λ2Pλ3,...,λk − Pλ1,λ3Pλ2,λ4,...,λk + · · ·+ Pλ1,λkPλ2,...,λk−1
.

Here, Pi =
∑
sµ, the sum over all hook partitions µ of i, and for positive i > j

we set

Pi,j = PiPj + 2

j−1∑
d=1

(−1)dPi+dPj−d + (−1)jPi+j .

(See also [9, III, 8].) It was shown in [12, p. 225] that for a strict partition λ of
length k,

Pλ(y1, . . . , yn) =
∑

w∈Sn/(S1)k×Sn−k

w
(
yλ1
1 · · · yλnn

∏
i<j,i≤k

yi + yj
yi − yj

)
(see also [9, III, 8]). This implies

Pλ(E) = (τkE)∗

(
xλ1
1 · · ·x

λk
k

∏
i<j,i≤k

(xi + xj)
)
.

By Corollary 6, using its notation, we thus get Pλ(E; t) = Pν(E) for t = −1.
We now use the notation from Corollary 9. Specializing t = −1 in Eq.(7),

we get by Lemma 10

π∗
(
cqr(Q⊗ S)Pν(Q)Pσ(S)

)
= dν,σPνσ(E) ,
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where dν,σ = 0 if (q − k)(r − h) is odd and

dν,σ = (−1)(q−k)h
(
b(n− k − h)/2c
b(q − k)/2c

)
otherwise. This result was obtained originally in [11, Prop. 1.3(ii)] in a different
way. The present approach gives an explanation of the intriguing coefficient dν,σ.

Suppose that λ = (λ1, . . . , λk) is not a strict partition. If there are repetitions
of elements in λ, then Pλ is zero; if not then Pλ = (−1)lPµ , where l is the length
of the permutation which rearranges (λ1, . . . , λk) into the corresponding strict
partition µ.

We thank Witold Kraśkiewicz, Itaru Terada and Anders Thorup for helpful
discussions, and the referee for suggesting several improvements of the text.
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[12] I. Schur, Über die Darstellung der Symmetrischen und den Alterienden Gruppe
durch Gebrochene Lineare Substitutionen, Journal für die reine u. angew. Math.
139, 1911, 155–250.

7


