RIBBON SCHUR FUNCTIONS

Alain Lascoux and Piotr.Pragacz octobre 1986

We present a new determinantal expression of a Schur function.
Previous expressions were due to Jacobi, Trudi, Giambelli and
others (see [7]) and involved elementary symmetric functions or
hook-functions. We give in Theorem 0.1 the decomposition of a
Schur function inte ribbon-functions (also called skew-hook-
functions, new functions by MacMahon, and MacMahon functions by
others). We provide two different proofs of this result in § 1 and
§ 2.

In 81, we use Bazin's formula for the minors of a general
matrix, as we already did in [6] to decompose a skew Schur
function into hooks.

In §2, we show how to pass from hooks to ribbons and
conversely.

In §3, we generalize to skew Schur functions.

In §4, we give some applications, and show how such
constructions, in the case of staircase partitions, generalize the

classical continued fraction for the tangent function due to Euler

0. DECOMPOSITION INTO SUGGESIVE RIMS

Many properties of symmetric functions can be visualized
graphically. For example, Schur Functions involve properties of
Ferrers' diagrams : given a partition J = (jl, jz’ ce jn) ,
i.e. an increasing sequence of numbers Oﬁjls...sjn , one
represents it by a diagram of boxes which is called its
(Ferrers’) diagram (see [7]) ; more generally, a skew diagram
or skew partition is the complement of a diagram I into another
bigger one J

A skew diagram © which contains no 2x2 block of boxes is
called a ribbon ( skew hook for Anglo-saxons) ; the rim of a
diagram (outer strip for [7, p.31]) is the maximal outer ribbon
of the diagram. Given a partition, we can peel its diagram off
intoe successive rims ep, e, @1 (see example 0.2 ) beginning

from the outside. Such a ribbon 6 1is cut by the diagonal into
1
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three disjoint parts : @ , 100 , 8 which are respectively the
i 1 1

boxes of & strictly above the diagonal, the diagonal box, the
hoxes strictly under the diagonal. .

+ -
Given two ribbons © , © , we denote by @ & 8  the ribbon
1 J 1 J

obtained by replacing the lower part ©  of @ by 8

i i 3
Pictorially, this can be represented by a displacement along the

diagonal and superposition of the two diagonal boxes of @ and © :
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The following theorem, for which we give two different proofs
in the next two paragraphs, shows that the decomposition of a
partition into ribbons provides a determinantal expression of a

Schur funetion.

THEOREM 0.1. Given a partition J , let ( & , ..., 91) be
P
its decomposition into ribbens. Then
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Example 0.2. Let J = 11 444 677 = ( 2347 & 0356 ).

The decomposition of J into the succesive rims ©...0 , E.. W,

F.o.o.0%, BB, representing moreover the diagonal boxes by O , is
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and, according to theorem 0.1, the Schur function 5114&4677 is

equal to the following determinant of ribbon-functions (writing the

ribbons instead of the corresponding functions)
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1 RELATTONS BETWEEN MINORS
A sequence A is a finite sequence of positive integers. The

concatenation product fa, a,..., a, b, b, ..., b} of two
1 2 n 1 2 m

sequences A and B will be denoted A B. If € 1is a subsequence of
A, then the complementary sequence of C in A will be denoted ANC
Given am « x n matrix and a sequence A of cardinal n, we note
n

{A] the maximal minor taken on rows a ., a Then one has the

foellowing determinantal relation between the minors (due to Bazin
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and Sylvester independently)

Lemma 1.1 (Bazin). Given an «xn matrix and 3 sequences A, B, C
such that card(A) = card(C) = p < n , card(A) + card(B) = n , one
has :

1

det | | ABeN a ] [ AB 1P77. [ BC ]

achA, ceC
(see [6] for more details).

In the ring of symmetric functions (in an infinite number of
variables, see (7], we consider the complete symmetric

functions 8 (i.e. the sum of all monomials of degree i ; § =0 if
1 1

i<0) and the infinite matrix S = ( SJ__i )iJ21 . Given two
partitions of cardinal r , the skew-Schur Function SJ/Z is the
minor of % taken on rows i1+1, iz+2, e if+r and columns
j1+1, j2+2, ce e, jr+r. The usual Schur function SJ is the special

case where I = 0 . In other words,

(1.2 S = det] 5, .,
371 I lh+k_h 15h, k<r
We shall write SJ(A) , SJ/I(A) when we want to specify or
specialize the wvariableg to A = {al, a2, coa )
To prove Theorem 0.1 , we use the submatrix of § taken on
columns j1+1, j2+l, ., J+L and rows 1, 2, ..., T, al+r+1,
r
., a+r+l, where ( B,.... B & o, ..., « y is the
r 1 P 1 P
Frobenius decomposition of the partition J (see 7, p.3]1 :
here, 0=x 31 < ... <8 and 0= @ < ... <a ). Now, in Bazin's
p P
theorem, we take A = {al+r+l, a2+r+1, e, o +r+l)
p
B=(1, 2, ..., t} - {r-8, ..., t-8}
P 1
C={r-g, -8 , ..., -8
P p-1 1
and we find the wanted formula, since [ BC ] = SJ and [ AB | = 1

Example 1.3. Take J = 11 444 677 as in Example 0.2. We have to

use the matrix
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S S 5 S S S 5
i 2 6 7 8 11 13 14
5 ° 8 S S S S S S
0 1 5 6 7 10 12 13
S S S s S S
-0 4 - 5 _ '8 9 i1 a1z
S S S S 8 S
3 4 5 8 10 11
S S S S S 5
2 3 5 7 9 16
S S S S S 5
1 2 3 6 8 G
S 3 S S S S
0 1 p 5 7 8
S 3 S S S
0 1 4 6 7
S S 5 S
¢ 3 5 5
S S S
0 2 3
S S
0 1
S
0
where we note for S, i<0 let A = {9, 12, 14, 15} , B =
1
{2, 3, 7, 8 , C = (1, 4, 5, 6). Then Bazin's formula expresses
S11 nah 677 28 the following determinant of minors :

[23678,12,14,15]
[23578,12,14,15]
(23478 ,12,14,15]
[12378,12,14,15]

[236789,14,15]
(235789,14,15]
(234789 ,14,15]
[123789,14,15]

[23678%9,12,15]
[235789,12,15]
[234789,12,15]
[123789,12,15]

[236789,12,14]
[235789,12,14]
[234789,12,14)
(123789,12,14]

which in turn is identified to

/11 333 677 /11 333 377 /11 333 357 /11 333 356
/11 233 677 /11 233 377 /11 233 377 /L1 233 356
/L1 133 677 /11 133 377 /11 133 357 /11 133 356
/00 033 677 /00 633 377 /00 033 357 /00 033 356
where we write /I for the Schur function S11 aht 677 ) 1 .Now,

these Schur functions are exactly the ribbon-functions that we

announced in Example 0.2.
2. DEFORMATION OF DIAGRAMS
Given a (skew) diagram, its right corner is the box at the
extreme right of the bottom row, and its Ieft corner is the upper
box of the left column. Given two skew diagrams H, K, let & be the
right corner of H and M the left corner of K . We define H b K
to be the skew diagram obtained by glueing the two diagrams by
their corners, & , ® being on the same horizontal, and H i K
to be the skew diagram obtained by glueing the two corners on a

vertical
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Lemma 2.1. Let H and K be two skew diagrams. Then

v Sk T Sk T Suix
Proof. The Schur function Sy can be looked as the sum ) t of
all the tableaux of diagram H ; similarly S, is the sum ) t' of

K
all the tableaux of diagram K . For any pair of tableaux t, ',

let y be the letter in the box 8 of t and z the letter in the box
B of t' ; according as y < z or y > z , the product of tableaux
t.t’ is a tableau of diagram HPK or H${K and conversely, cutting
into two pieces all the tableaux of diagrams H>K or HiK, one

obtains all the pairs of tableaux of respective diagrams H, K

all this is a trivial consequence of the Jeu de Taquin which

allows to move parts of tableaux, see [10] ; this lemma is also

given by Zelevinsky [11, p.69] J . w

Proposition 2.2. Let p be a positive linteger, q = czl) , I, J
., H, K be p skew partitions and a, 8, ..., v, § be p-1 other

skew partitions. Then

(i) the determinant
SI SI B> e SI pabpg SI Par B ... ¥
1 2 3 q g+l qt2 qtp-2
SJ SJDa SJDaDﬂ SJDaD g ... ¥
1 2 3 q qtl qtZ qtp-2
S e
K SKDa SKDabﬂ SKDaD AL ... ¥
1 Z 3 q agtl qt2 qtp-2

where we have suffixed the symbols > in the order they were
appearing in each row,is equal, up to a sign, to any determinant
obtained from it by changing any subset { Boo Dg )

of > symbols inte t ‘s

{ii) the determinant
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I at> 1 Sﬁ::-ablj e 'S'y[>...|:> B o> I
1 2z 3 q gtp-4  gtp-3  gtp-2

K SaDK SﬁbaDK R Syr:» B -5 Jiig al> K
2 3 q gtp-4 g+p-3  gtp-2

is equal, up to a sign, to any determinant obtained from

it by the exchange of some © ‘s linto $} ’s
1

Proof: This is a direct consequence of Lemma 2.1, since in a
determinant, adding a linear combination of columns to a given

column does not change the value of the determinant. For example,

the fifth column of the first determinant, SIDaDﬁDyD& can be
transformed into SIDaiﬁb7¢6 because of the identities
Slbabﬁb’yi 5 SIDaDﬁD'y' 85 i SIDaDﬂD'yI)S ; SIDa#ﬁDy# §

Slbg Sﬁbwa ) SIaDﬂDﬂ‘,&

Proof of Theorem 0.1. Given a partition J whose Frobenius
decomposition 1is B.,....,B & I ), we have the
P b

1
following equality due to Giambelli ( see [7 p.30] )

S S P S
lﬂl & o lﬂl & o 1ﬂ1 & o
1 2 p
(2.3) SJ =
S S e S
lﬁp & al 1'8;) & sz lﬂp &
B
where 1 & a denotes the partition ( 1, ..., 1 , a+tl )
Now, using Proposition 2.2 (i) with ( I, J, , K} =
8, p
{1 & o, ..., 1% & @ o, a, A, ..., ¥ being the
one-part-partitions - a ,a @, ..., -« ., we get that
2 1 3 ; P p-1
S S e S
LAy 1% & @ 1P s o
1 2 »
)
s, = (-1)
S S S
1ﬁp & 6 1ﬂp & 6 I 1'813 &8
1 2 p
since @1 —a @2 = ali(az—al) Y, @p = ali(a2~al)i...¢(ap-apﬂ)
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Using the second part of Proposition 2.2, we can further transform

the determinant and get the desired result.

Example 2.4. let I =1 3 5 5 7. The decompositions of the

diagram of I into respectively hooks and ribbons are

0] 0]
[ONE N | [N
GFORE and * ¥ 00 06
OO0 60 060606 O HE¥OCOOQ
513 514 S17
513557 ~ 5113 5114 5117 =
511113 S11114 511117
513 S13:1 Sy33143 513 1341 5131143
5113 St1331 S13s1s3 = 5113 Sw13s1 Sip13iigs
S S S S S S
11113 51111341 5111132143 111513 S1161513$1 11610134143

Proposition 2.2. not only allows to pass from Giambelli’s
determinant 2.3 to the determinant of rims 0.1, but moreover

~1)(p-2
produces g (P12

determinants equal wup to a sign, by
exchanging symbols > and } . Certain choices of > , $ correspond
to a block decomposition of a partition. For example, let J =

11 444 677 as in 0.2 , and €& = 111. Then 8 =

J
5 Ser3 Sep3p2 Ser3p-211
5110 S1tem3 51sep3p2 S1ten3p041
5 S S S
11140 1:1:0m3 131300302 13110035241
S S S S
11113140 1111314003 11114160302 111r1f1i0:3211

and this determinantal expression corresponds to the following

block-decomposition of J inte two blocks



and *

* D% %

%
*

IR O OO ONO]
EEREERDO

CEmREEBEOCGO
OO0 00

Starting from the determinantal expression (1.2) of a Schur

function, transforming symbols © will produce other determinantal

expressions of this Schur function : this is a special case of
Proposition 2.2., I J, ..., a, 8,... being then one-part
partitions. Thus, writing @ for S@ , one has for example that
36 8
5 which by definition is equal to 2571 , i.e. to
537 14 6

3 3p3 332
2 2r=3 20302
113 1p3p2

is also equal, up to a sign, to one of the

following determinants

3333 3e302| |3 33 3132
2 233 203v2|,[2 23 243b2
1 133 1302 |1 1p3 14362

3 33 3p3i2
2 263 26342
1 1e3  1p342

3 363 34342
o3 24342
1 1p3 14332

¥ 7 ?

3 3343 3342 3 3p3 33342 3 343 34342
2 243 2e342[ , |2 203 24332 , [2 243 21342
1 143 1342 1 13 14322 1 143 143#2

3 GENERALISATION

In the previous paragraph, we have only used the fact that,

for any skew partition J and any strictly positive integer i

3

(3.1) SJ . Si = SJDi + Sj#i

(3.2) s .5 = 5 + 5§
1 J 1'»J 174

As Schur functions can be expressed as determinants of
functions Slj and Sj with j belonging to Z in general (Sj

=0 = Slj if j<0 ) , it is desirable to extend (3.1) and (3.2)

to the case J = j or 1’ , jJ<0 . This is done by putting
S. . =185, . = - 5
REt J+i Ji1

(3.3) J<O  mmep S .= 8§ - -5
1*41d 1 11

and
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(3.4 S =S, ; 8 =0 ;8§ = 5 ;5 =
11°

We shall never mneed i = 0 = 1" , thus escaping the
non-consistency of (3.4) in that case.

With these rules, we are able to transform more general

determinants than (2.3), for example, the one expressing a skew

Schur function in terms of hook functions.

Let J be a partition, 91 y ..., B its decompesition into
P
rims, (ﬁl,..., B & Asenny @ y its Frobenius decomposition.
P P
Let I be a second partition and (61, e, B & Voo Y )y its
r I
Frobenius decomposition. Then according to [6] , (—l)lII SJ/I is
equal to the determinant
S coe S S . . . 8
1ﬂ1 &:al 1ﬂ1 & e 161~61 lﬁl_gr
P
S . S S S
lﬁp & Ctl lﬁp & o lﬂp—él 1ﬁp~6r
(3.5)
Sa ) s 0 0
1T Otp 7
S S 0 0
a - 7 o - ¥
1 r r r

generalizing Giambelli's formula (2.3).
Performing the same linear combination of rows and columns as

in § 2 , one obtains the following theorem .

THEOREM 3.6. The skew Schur function is equal to the

Syt
determinant obtained from (3.5) by changing, for all i, j, h, k

1<i, j<p , 1sh, k<r

(1) the (i,j)-th element (formerly = § ) into S " =

lﬁi & o 0 & 8

g J i d

i-1 D...Dlﬁz_ﬂlb@ ta ~a .. .i0 -0
1772 T i -1

(2) the (p+h,j)-th element ( formerly = Sa ¥ ) into

S
a1~7h¢a2—a1¢...#aj«aj_l
(3) the (i,ptk)-th element ( formerly = § ) into

1ﬁi_5k
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lﬂi—ﬁi—1£> . B lﬁz—ﬁl oy 1ﬂ1'5k

One notices that if in determinant (3.6), one of the elements
of a row among the last r ones is the function SO ( = 1), then
all the other elements of this row are null thanks to (3.4)

Similarly, a function 8,0 in any of the last r columns imply

1
that all the other elements of this column are null.

Corollary 3.7. Let J be a partition, (ﬁl,..., B & %y @ )
p P
its Frobenius decomposition and 61, ce., 8 its rim
: P
decomposition. Let further r be an integer = p , H =
{ hl,..., h } , X ={ kl, ..., kB )Y two subsets of the set
I r
{ 1, ..., p }. Let at last 1 be the partition of Frobenius
decomposition (ﬁh s e ﬁh & Qv s o Y. Then
1 r 1 r
Siqp = 5" & @

i 3 iEH, jeX
Proof. with the hypothesis on I , each of the last r rows and
the last r columns of the determinant (3.6) admits one and only

one element which is different from 0, according to the preceeding

remark. This reduces determinant (3.6) to the claimed one.

Example 3.8. Let J =1 3 4 5 5 6 7 = ( 1346 & 1248 ),

I =1235=¢(13&14 ). Then J decomposes into the rims
e = 81 =12, @2 =11r8 %1 |, @3 =1ls1lpr0 %142
@4 =11l 1le1le0 4514244 and

’

Sot & 6° Sot & o
2 3 4
S -
J/1
St & @ St & 0°
4 2 4 4

since we have to throw away @j and 9; because 1, 3 are the
first two elements of { 1,3,4,6 } , and to throw away 9; and @;

because 1, 4 are the first and the third element of {1, 2, 4, 8}.
4  EULERIAN DETERMINANTS

The tangent function admits a q-analog ; even better, since
sinus and cosinus can be symmetrized, there exists a symmetrical
analog of the tangent ; to compute its coefficients, one needs to
know how to express the quotient of two formal series. This was

done by Faure (1855, [9, I! p.212]) ; Anglo-Saxons usually
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prefers Hammond (1875, [9, III p.232]), but could as well take
Spottiswoode (1853, {9, IT p.211]) who gives the coefficients of

the succesive derivatives of f/g . i _

fos 1 2
Proposition 4.1. Let f = a0+alz + @zt .,

1 2 3 : .
g =1- ,Blz + ﬁzz -ﬁsz +... be two formal series in =z . Then

n
f/g = Lz S

with
o o
0 1 n
ﬂO ﬂl n
g =
n
'B-n+1 A -tz 51

putting ,80=l,,3‘=0 Vi<
i

let A be & set of indeterminates, f = Z z 2 Sz'+1(ﬂ) ,

. . 1

g =Z (-1)° 7™ Sz_(ﬁx) ; define tg(h, z) - £ / g
3
[eo]
2ntl .

Lemma 4.2. tg(h, z) = zo z it with

2o+l 312...n+1/0012 ... n-1 (}\)

* i — = i 4 -

Proof : Taking o SZiH(.'A) , ﬁj Szj(ﬂ) in Faure's deter
minant (4.1) , we recognize it to be the minor of § taken on
columns 2, 4, 6 ... and vows 1, 2, 3, 5, 7, ... , i.e. to be
S ) . 0
123...0+1/00. . .n-1

The g-analog of the tangent is obtained for A =
{L, q, qz. coer s o tgC {1, g, ...}, z{l-q) } specializes to the
usual tangent function for q = 1 (ecf [3]).

The continued fraction-decomposition of any formal series
¥ 2’ Sj has been obtained by many authors ; it is closely related
to the computation of the succesive remainders in the division of

a polynomial by another one (see e.g. Heilermann, 1845 [7,II

p.36]).

Proposition 4.3. For a series and its inverse, one has the

following developments
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y2's - 2
J
z8 /S
1. 1’ "o
z5 /S .8
1+ 1177 70" T2
zSU Szz/s Sll
1-
n
.. (-1) =z An.An 5 / An+1 An+2
with A =8 n+ and A = S n
2n n 2n-1 n
j -1 So
(L G281 =
le/S0
1-
zSz/SD 5
1+
ZSU'Szz/Sl S
1-
n
1 - (_1) “ AnAn+3/An+1An+z
with AZn = S(n+l)n and AZn*l = Snn

To get the continued fraction for the tangent, we thus need to

evaluate the determinants

T ... T T ... 7T
n 2n n Zn-1
‘- : . and A = :
2n . . 2Zn-1
T . T T T
0 n 1 n
with T = 5 . Since the skew partitions
n 12...n/0012,, .n-2
12..n / 0012,..n-2 are exactly the rims of the staircase
partition 123..., we can apply Theorem 0.1

Corollary 4.4. tg(hA, z) is equal to the continued fraction
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12...n 12...n+3 12...n+1° 12...n+2

Similarly, the secant function is sec(z) =1 / cos(z) ; it
admits the following symmetrical generalization :
(= 1] 3 -1
sec (A, z) = [} (-1) Szj(’“]

The specialisation S — SZ(M) in Faure's determinant
n 0

(4.1) and in the expansion (4.3) leads to

Lemma 4.5. sec(h,/z ) =1 +z 5 () + 22523/1(M T
+2z°8 (B + ...
2...nt1/01.. .n-1
1
zS2
1 -
z8 /§
1+ R
1 4571 /Sz Sa
n
1 + (WI) z An'An /An+1 An+2
with A = § , A = § A = 5 and
0 1] 2 40 2n 2nt2 ., 3n+1/01,. n~1
A =8 , A =8 , ., A =3
1 2 3 45/01 2n-1 2n...3n-1/91.. .01

If one prefers, one can use dimensions of C-representations of

the symmetric group. Recall (cf.[7,p.63])

Lemma 4.6. Let J/1 be a skew partition, WJ/I the
corresponding representation of the symmetric group 6 , n being
11
the weight of J/1 . Then, with A = { 1, q, qz, R T
. - 2 n
dim WJ/I = lim . (L-q)(1-97)...(1-q) SJ/I(&)

Thus, any of the determinants (0.1), (1.2), (2.3, (3.5),
{3.6) provides an expression of the dimension of WJ/I . When I=0
one has also a "hook formula" (cf.[7, p.28])
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The Euler numbers are defined by
* n
tg(y) + sec{y) = Z En vy / n!
0

{l’ Q: qz:--<] ]
Thus,

They are obtained through the specialisation A& =
(1-Qy , of tg(h,z) + sec(h,z) = f: T z"
(4.2 and (4.5),

the Euler numbers due to Desiré André [1, 2], once knowing, thanks

z =

q = 1

from one gets the following interpretation of

to Young and his school, that standard tableaux of any shape give

bases of representations

is the dimension of V¥ and of

Lemma 4.7. E
2n-1 12, ., .n/0012. . n-2

; E is the dimension of
2304...mx/C12. . .n-1 2n 123, .an/001. .n-1

and of V¥
23...n+1/01., .n-1

Much more properties of the characters of the above

representations have been obtained by Foulkes [4, 5]

The preceedings paragraphs allow to evaluate determinants in

the

E/ n!
n

and to interpret them in terms of dimension of

representations.

Specially

noteworthy

are the following

determinants, denoting by [n] the integral part of the real n .

Proposition 4.8, Let the T' = En/nl be the coefficients of
n
the function tg(y) + sec(y) Then
(1) For the following determinant of order [(n+l)/2] , we have
] r ]
2n-1 Zn-3 2n-5
t I L
2n-3 2n-5 2n-7 -1 qniieni2 (2n-1) )—l
r ] !
Zn-5 2n-7 Zn-9

(Z2) For the following determinant of order

(3) For the following determinant of order [(n+3) /27,

[(n+2)/2], we have

r Tl T!

2n 2n-1 Zn-3

L} [ Tl‘

Zn-2 2n-3 2n-5 n ,n-1 _n-2 n, -1
= (1°.37 7.5 7. .. a2

t Tl' L

Zn-4 Zn-5 2n-7

we have
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2nt+l 2n 2n-2

20 2n-1 2n-3 - (1”_3n_1...(n!)2 2211(21%1))"1

2n-2 2n-3 Z2n-5 '

Proof: wup to a symmetry with respect te the anti-diagenal, the

three previous determinants are the specialisation of the rim-

decomposition of the respective Schur-functions S12 :
- n

S ' Lemma 4.6 together with the already

5 .
23...n+l 23...n+l1 ntl
mentionned hook-formula, gives the desired explicit values.

The same determinants, once truncated, provide the dimensions

of the following representations.

Proposition 4.9. Let m, n, p be positive integers such that
n-m = 2p. Then for the minors taken on the first p rows and
columns, one has

(1) the minor of det 4.8(1) is egual to

n+l m+l
i - 1
dim le...nllz..Jn / [< 2 ) ( 2 )]'
(2) the minor of det 4.8(2) is equal to

mti
2

dim V A (U I GRS

2...n+1/1Z,, .mt

(3) the minor of det 4.8(3) is egual to

di v n+l _ m+2 '
m 2...ntl ntl 12___m+2/ [(2) +n (2):|

Specializing det 4.4 in =z =y (1-q) , & = (1, q,...}
g = 1, one finds back the following expression of the tangent

function due to Euler

Corollary 4.10.

tgly / VY =
1 - y/1.3

1 _ ¥/3.5
1. v/5.7

However, a sgimilar simplification does mnot arise for the
cosecant function.
A

Finally, let us illustrate the role of rims in representation

theory through the following fact (see also [12, p.69]).
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Lemma 4.11. Let n be a positive integer. Then

n
Gy = Egﬁ o
sum on all different rims @ of Wéigﬁf n .

Proof: by induction on n , with the help of Lemma 2.1. 0
Combinatorially, the proof is even simpler : every word or every
permutation can be written into a ribbon-diagram and only one, i.e.
the "up-down sequence" of a permutation is well defined ( see
(71).

In other words, the regular representation of the symmetric
group Gn decomposes into the multiplicity-free sum of all the
different ribbon representations., There is a more general

decomposition for a finite Coxeter group, see [11]
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