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Abstract. — We introduce analogs of the Kempf-Laksov desingularizations of Schubert bundles in
(non-necessary maximal) symplectic Grassman bundles. In this setting, these are smooth flag bundles
that are only birational to Schubert bundles. This construction allows us to obtain some universal Gysin
formulas for isotropic Schubert bundles.

Introduction

In Sect. 2, we define smooth flag bundles birational to isotropic Schubert bundles. These
are analogous to the flag bundles of Kempf and Laksov in [KL74] which desingularize the
Schubert bundles when working with the general linear groups. These are constructed as a chain
of zerodocus/in projective bundles of lines. These generalize the flag bundles of Kempf and
Laksov [KL74].

In [Kaz00], Kazarian has also constructed a “desingularization” (norwetransversality assump-
tions) of Schubert bundles using zerooctigand projective bundles of lines, in the Lagrangian
case (d = n), working with the Grassmannian as a base. It seems however that our construction
is more easily adapted to non-Lagrangian case, and it is our goal to work with base X.

1. Schubert bundles

Let (E, w) = X be a rank 21 symplectic vector bundle for the symplectic form w: EQ E — [,
with value in a line bundle L — X, over a variety X. Ford € {1,...,n), let G (E) be the Grassmann
bundle of isotropic d-planes in the fibers of E. For a vector space V' € L, let denote V¥ its
symplectic complement

V¥ i=twe ks w(v,w) =0, forallv e V).
Let
0=ECEi ¢ CE, =E,“C- - CE~“=E

be a reference flag of isotropic subbundles and co-isotropic subbundles of E, where rank(E;) = 1.
For the sake of uniformity of notation, for i = 0,1,..., 1, denote as well E,,_; := E“.

For a partition A C (211 — d)* ,@ dehings the Schubert open cell ), (Eo) in GY (E)éver the point
x € X by the conditions

Qu(E.) = {V € GL(E)): dim (VN Ean-dsicn(¥)) =1, fori=1,., d}.

Denote vy1-; == 2n —d + i — A; the dimension of the reference space appearing in the ith
condition. The partition indexing the Schubert cell Q, is uniquely defined if one considers only
admissible partitions A, i.e. partitions such that v; + vj # 2n + 1. For such admissible partitions
we defineil') the Schubert bundle @, : 2, — X as the Zariski-closure of f),,b given over a point
x € X by the conditions

Ou(E.) = |V € GY(E)x): dim (V0 Exr-ario (0) 2 0, fori=1,...,d).

This is a subvariety of the Grassmann bundle G/(E), that is in general singular. In the spirit of
Kempf and Laksov [KL74], and also inspired by Kazarian [Kaz00), we will now construct smooth
flag bundles F «(E,) giving for certain partitions v morphisms 9, : F,(E,) — X birational to w,.
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2. Isotropic Kempf-Laksov flag bundles

Let F¥(1,...,d)(E) denote the bundle of flags of nested isotropic subspaces with dimensions
1,...,d in the fibers of E.

Then,@we geﬁ'ngﬁthe isotropic Kempf-Laksov bundle 9,,: F,(E.) — Xfover the point x € X as Hlar?,l l‘,S/jl!Vf’.W

the dense subset
ens

d o
FuE) S {0CViGo CVa € B d)(E)®): Vi € By (),
of flags satisfying the supplementary (generic) conditions
1) (Va-i/ Vi) N (B2, (0)/ Vi) = {0} fori=1,...,d-1

To a strict partition i = (1, ..., 4g) € (2n)7 with at most d parts, we associate a d-tuple of
integers 6 = 6(u) defined by
b =#j>i: E,, CE, Y =#j>i w+p; <2n).

If &; # 0, one has
Ey,,-ﬂﬂ,i C EZH»-IU,- = (E;l,:)m.

,,,,,,,,,,

Notice that in opposition to the ordinary Kempf-Laksov flag bundles in type A, to obtain a
pure-dimensional variety, it is necessary to remove the “bad fibers” that do not satisfy (1), as it is
illustrated in the following examples.[TODO]

These bundles can be described by the mean of a chain of zerodocus in projective bundles of [ﬁ ce
lines, as follows. The idea is to construct the flag V1 ¢ --- € V, line—by-liﬁe (considering quotients
Vi/ Vi1 of successive spaces) in such way that it satisfies the incidence conditions defining F, at
each step.

We now describe the step F, ,,...u)(Es) = Fiuy, ) (Eo). Let Ug_; be the universal subbundle
of rankd — 1 on F¥(1,...,d — 1)(E). Note that in restriction to Fiu,..pa):

— the condition V;_; C Eu,(x) yields: Uy1 CE,, CEyp;

- the condition V;_; isotropic yields: V., & {(x) isotropic & ( C U;’_l (recall that a line € is
always isotropic).
It thus follows from the definition of F,,(E,) that

(2) F(y,,._,,ud)(E.) o {f € P((E“l /Ud_;)l;{uzp ,.udi(E')): £ C u;)_l},
where one considers only the fibers over

FFPZ,-«:W)(E') ={V, € F(yg ,,,,, ;l.;)(E-)Z dim(V-1 N E2n—;11) =01}

We denote U, /U, be the tautological subbundle of P((E wl Ud_l)lpm} _ M(E.)), so that Uy coincide
with the restriction to Fy,,,, _,.,)(E.) of the universal subbundle of rank d on F*(1, ..., d)(E).
Note that since we restrict to Fuy,..u)(Ee), one has

ud—l - (ud—l)w and um c E.“JH—M c EZn—-m = (Epl)m~
Hence, there is a well-defined global section of the vector bundle
Hom (Ug/Ug1, L ® (Us-1 /Uy,)Y ) = L& (Ug/Ugr)” ® (Ugr/Un,)
defined at the point £ = V,;/V,_; C E./Va by:

i~

3) s(f) = {t € € wlt, ')Ivd_‘}.

We denote by Z, the zero-locus of s in P((E,, / Ug-1lFy, p(Ea))-
Over a point V1 2 --- 2 Vj, the lines in Z, are these lines that are (symplecticly) orthogonal
to V-1 or equivalently the lines £ such that the vector space

Vi=ta Vi,

is isotropic. Indeed, both £ and V,_; are already isotropic.

Let us now compute fiberwise the codimension of Z,; in P((E,,, / Ua-Dlry,,. . E)- Over a point
Va1 2 -+ 2 Vi above a point x € X, the zero-locus Z; consists of the common zeroes of the linear
forms

(‘)('/ f/): Ey]/vd~‘x — Ly,



for £ C V4. Such a linear form is trivial if and only if
S Ve NEY = Vi N Egpy,.

As a consequence the codimension of the fibers of Z; is given by the evaluation at a point
Vd--l 202 Vl € P(pz ,,,, ;-ld)(Eo) of
(4) codim(Zy, P(E;, /Ug-1)) = (d — 1) = dim(Usy 0 Ezyp).

Now, recall that Uy, © Ezy-py, 50 inany fiber U, € U1 N Ezyy, . One infers from (4) the upper
bound on the codimension

codim(Z;, P(E,, /Uy-1)) <d ~1 -0, = rank (L @ (Uys/Ug)' ® (ud-1/ub1)v)-

In the fibers where the equality holds, the zero-locus Z; has the expected codimension and the
section s is transverse to the zero section.
When p; + pj # 2n + 1, such a fiber is given by
Vk/vk~1 = E‘le+]-k/E
The fact that is satisfies the conditions follow almost from definition of §; and the fact that it is
isotropic follows from y; + u; # 2n + 1.
A classical upper semi-continuity argument yields thus that the set of the base
dim(ud—-l N EZH-—y]) = 5]/

in which Z; has the expected codimension is open dense. We restrict to the fibers over this open.

Hasr-k—=1+

Corollary 2.1. — If v is the strict partition with d parts associated to A,
codim(€2y, GF(E)) = |A] = [6(v)l.

3. Gysin formulas

Consider a symplectic vector bundle (E, w) of rank 21, carrying a reference flag E. of isotropic
and co-isotropic subbundles of E

O0=ECE S CE,=E,"C---CEY=E

(recall the convention rank(E;) = i and the notation Ej,; := E;* fori < n).
To sum up the previous Section, for a strict partition u C (2n)¢, we get a sequence of
Kempf-Laksov flag bundles

F(y,,.,.,yd)(E') — F(qu yd)(E') — T F(,qu,,lld)(E') - F(}ld)(E') — X,

.....

induced by forgetful maps, which is the same as the chain of zero@n projective bundles: («0[1;
Zy ———————= L4y~~~ -3y Z X,
) Ldf /LH{ /,/”/ lz[ /HH /
Py (Ep/Ua1)) Py ,(Ey, /Ua-2)) P (Ep,., /Ur) P(E,,)
where fori=1,...,d, we denote Z; := {5@1,-_1“’} C P(¢_(Ep,,,./Uix))- 'd
T the spirit of [DP15, DP16]) we shall'deduce a Gysin formula for 9, : F,(E.) — X from this
description.

We fix an integer d and we denote by U the universal subbundle on Gj/(E), as well as its
pullback to F°(1, ..., d)(E) by the natural forgetful map F(1,...,d)}(E) — G{(E). We still denote
bu U the restrictions of these respective bundles to Schubert bundles in G{(E) or to Kempf-Laksov
bundles in F¥(1,...,d)(E). For a symmetric polynomial f in d variables, we write f(U) for the

~ specialization of f with Chern roots of U".

For a Laurent polynomial P in d variables ty, ..., t;, and a monomial m, we denote by [m](P)
the coefficient of m in the expansion of P. Clearly, for any second monomial m’, one has
[mm’}(Pm’) = [m](P), a property that we will use repeatedly.
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Theorem 3.1 (Gysin formula). — For any strict partition u € (2n)* and 9,,: F w(Es) = X:

d o
O @) =TT (Ft ot TT =) 11 @@ +ti+8) T1 sy (Ep)).
j=1 1 1si<jsd 1<i<j<d 1<j<d
uitpi=2n+1

Proof. — We will prove this formula by induction. With the notation of (5), fori = 1,...,d, let

&= C](OP((E,,,./ud_,-nz‘,_:)(D)lzwl = ci((Ugs1-i/Ua—i)").

Then &, ..., &, is a set of Chern roots for UY on Fu(E,).

We want to compute (9,,).f(&1,...,&q). If d = 1, this is the Gysin formula along projective
bundles of lines. Assume that the formula holds for d — 1. Since Z;_; ~ F 12,...ua(Es), we know the
Gysin formula A*(Z,_,) — A*(X), it is thus sufficient to study the Gysin map A*(Z;) — A*(Zy_1).
Considering (5), we decompose this map as

A*(Za) -5 AP(E,, /Us)lz,.,) ~ A*(Zy-r).

The Gysin formula for p, is the formula for projective bundles of lines. It remains to study the
Gysin formula for i..
The map i is then given by the cup product with the top Chern class

Crop(L® (Ug/Uy-1)" @ (U1 /Us,)") = H (@) +&+&) = H (c1(L) + &1 + &),
I<j<d—dy 1<j: py+p22n+1
Composing the Gysin formulas for p, and i. (and using the projection formula), we get
wy—~d

pei(f(&r, &2, E0)) = [t ](f(l‘l, E2rvnr ) H (c1(L) + t1 + &) sy, (E, /ud—l))'

1<ji i +p;22n+1

Now
. . 1
s1/n (Eyy [Ua-1) = sy, (Ep)eyn (Ua-1) = sy (Eyy) H(l =¢&i/t) = ;;jlslm (E.) H(fl =&
1<) 1 1<

Thus (multiplying the extracted monomial and the polynomial by #-1):

poi(f(Er, G &) = IS 2 ) TT (=) TT (@)% 1+ ) 51 (Ep)).
<Jj=<d <J<i
pitp=2n+1

The stated formula easily follows, using the induction hypothesis. 0

Note that the formula and its proof also holds for general polynomials f(&, ..., &), without
symmetry.

Corollary 3.2. — For any strict partition u C (2n)?, and @,: Q, — X:
d .
@) fW) = [TTE7(Ftt, ot T (=) T1 @@ +ti+1) T1 sie(Ey))
=11 1si<j<d 1 j<d !

<i<j< <i<j<d 1gj<
ILI;+[,1,',>_27H-]
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