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1 Introduction

In this note we consider a certain connection between the (local) positivity
of line bundles on algebraic varieties and the symplectic packing of balls into
symplectic manifolds.
Let X be a smooth complex projective variety with an ample line bundle L.
Local positivity of the bundle may be measured by Seshadri constants (intro-
duced by Demailly in [9] and then generalized by Xu, [25]). These constants
measure, roughly speaking, how small can be the ratio between the degree of a
curve and the sum of the curve’s multiplicities in given points.
On the other hand, if X is a smooth projective variety, it is also a symplectic
manifold, with the symplectic form given by c1(L). We may then consider
a symplectic packing of X, ie a symplectic embedding of a disjoint union of
standard balls into X. The amount of the volume of X which may be filled by
the images of the symplecticly embedded balls is measured by so called packing
constants - introduced and investigated by Gromov, McDuff, Polterovich and
Biran, see [11], [15], [3].
In the first part of this note we collect some results concerning both kinds of
constants and then we show a connection between them. In the second part of
the paper we consider the special case of toric varieties, and we show that there
is a formula connecting Seshadri constants in fixed points of a toric variety with
packing constants, where packing in this case is symplectic and equivariant.

2 Seshadri constants

In this chapter we recall the definition and basic facts about Seshadri constants.
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Let X be a smooth complex projective variety of dimension n, with an ample
line bundle L and let P1, ..., PN be N different points on X.

Definition 1. Seshadri constant of L in P1, ..., PN is defined as the number

ε(X, L, P1, ..., PN ) := inf
{

LC

multP1C + ... + multPN
C

}
,

where infimum is taken over the set of all curves on X passing through at least
one Pi.
Equivalently

ε(X, L, P1, ..., PN ) := sup {ε | π∗L− ε(E1 + ...+EN ) is numerically effective},
where π : X̃ −→ X is the blow up of X in P1, ..., PN , with exceptional divisors
E1, ..., EN .

If the points P1, ..., PN are very general on X (ie they are outside a count-
able sum of algebraic subsets of HilbN (X)) we will write ε(X, L,N) instead of
ε(X, L, P1, ..., PN ). (See [14] Example 5.1.11 for the fact that ε(X,L, P1, ..., PN ) ≥
ε(X, L, Q1, ..., QN ) if P1, ..., PN are very general on X and Q1, ..., QN ∈ X).

Remark 2. From Seshadri criterion of ampleness (see eg [14], Theorem 1.4.13)
it follows that for an ample line bundle L on X we have

0 < ε(X,L, P1, ..., PN ) ≤ n

√
Ln

N
.

Finding the exact value of Seshadri constants is in most cases a difficult problem.
For X = P2 with L = OP2(1) the exact values of ε(X, L,N) are known only
if N ≤ 9 or N = k2, k ∈ N. Namely, for N = 1, ..., 9 we have ε(X, L, N) =
1, 1

2 , 1
2 , 1

2 , 2
5 , 2

5 , 3
8 , 6

17 , 1
3 respectively; for N = k2, ε(X, L,N) = 1

k .
Also, for X = P1×P1 with the line bundle of type (1, 1), we know the values of
ε(X, L, N) only for N ≤ 8 or N = 2k2, k ∈ N: ε(X,L, N) = 1, 1, 2

3 , 2
3 , 3

5 , 4
7 , 8

15 , 1
2

for N = 1, ...8 respectively and ε(X, L, N) = 1
k for N = 2k2.

The famous conjecture of Nagata states that ε(P2,OP2(1), N) =
√

1
N (so it is

maximal possible) for all integers N ≥ 10 (cf [12], [16]).
We do not know so far a single example of Seshadri constant with an irrational
value. The main obstacle in proving that the constant is irrational is that at

present we are able to compute the constant only when either n

√
Ln

N is rational
or when we can find a curve C such that

ε(X, L, P1, ..., PN ) =
LC

multP1C + ... + multPN
C

.
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Then ε(X, L, P1, ..., PN ) is rational (see [17]). If it is less than n

√
Ln

N , we say
that the constant is submaximal, and C is called a submaximal curve.
The problem is that we do not have (at the moment) many ways of proving
the nonexistence of submaximal curves. This makes it difficult proving that the
Seshadri constants are maximal.

3 Packing numbers

Let us now look at the symplectic side of the problem. Recall, that a symplectic
manifold is a smooth real manifold X (of real dimension 2n) with a closed
nondegenerate differential 2−form ω, so the volume form on X is given by
1
n!ω

∧n. A basic example is R2n with the 2-form ω0 := dx1∧dy1 + ...+dxn∧dyn.
As mentioned in the Introduction, another example of a symplectic manifold is
produced by a smooth complex projective variety X with an ample line bundle
L. This variety may be treated as a real 2n dimensional manifold with the
closed nondegenerate differential 2-form given by the first Chern class of L,
ωL = c1(L). Then the volume of X equals volX = 1

n!L
n.

For two symplectic manifolds, (X1, ω1) and (X2, ω2) we define a symplectic
embedding of X1 to X2.

Definition 3. We say that f : (X1, ω1) −→ (X2, ω2) is a symplectic embedding
if f is a C∞-diffeomorphism onto the image and

f∗ω2 = ω1.

Consider the symplectic packing problem: Given a symplectic manifold (X, ω)
find the maximal radius R such that there exists a symplectic embedding of a
disjoint union of N euclidean balls of radius R into a given symplectic manifold
(X, ω),

f :
N∐

i=1

(B2n(R), ω0) −→ (X, ω).

Let the volume of X be finite. Then there is an obvious upper bound on R,
Nvol(B2n(R)) ≤ vol(X). However, it may happen, that the volume bound is
not the only obstacle for packing the balls into X, and even if the volume of X
is infinite, there may be obstructions for packing balls into X. Let us recall here
the Gromov Nonsqueezing Theorem (see [11]), which says that if there exists
a symplectic embedding of a ball (B2n(R), ω0) into (B2(ε) × R2n−2, ω0), then
R ≤ ε.
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Let (X,ω) be a symplectic manifold and assume that volX is finite. Packing
constants (or packing numbers) measure how much of the volume of (X, ω) may
be filled with the symplectic images of euclidean balls (see [3],[15]).

Definition 4. Let (X,ω) be a symplectic manifold and let N be a natural
number. A symplectic packing constant is defined as

vN (X, ω) := sup
{

Nvol(B2n(R))
vol(X)

}
,

where the supremum is taken over all R, such that there exists a symplectic
packing f :

∐N
i=1(B

2n(R), ω0) −→ (X, ω).
If vN (X, ω) = 1 we say that full packing exists.
By vN (X, ω, P1, ..., PN ) we will denote the analogously defined packing constant,
with the images of the centers of the balls in P1, ..., PN .
If (X, ω) are clear from the context, we will write vN instead of vN (X,ω).

Following Lazarsfeld in [13] we define similar constants for embeddings being
both symplectic and holomorphic:

Definition 5. Let (X, ω) be a symplectic and holomorphic manifold and let N
be a natural number. A symplectic and holomorphic packing constant is defined
as

vh
N (X, ω) := sup

{
Nvol(B2n(R))

vol(X)

}
,

where the supremum is taken over all R, such that there exists a symplectic and
holomorphic packing f :

∐N
i=1(B

2n(R), ω0) −→ (X, ω).

There are many interesting results about the constants vN (X,ω), cf eg [3], [4],
[15]. In his famous paper [4], Biran proved the following theorem (here quoted
in the version restricted to algebraic surfaces with the symplectic form ωL):

Theorem 6. Let (X, L) be a smooth projective algebraic surface, treated as a
four dimensional symplectic manifold with the symplectic form ωL. Then there
exists a number N0, such that for any N ≥ N0 there exists full packing, ie
vN (X, ω) = 1. Moreover, this N0 can be taken equal k2

0L
2 where k0 is such,

that the linear system |k0L| contains a curve C of genus at least one.

4 Connection

It seems that there exists a close connection between Seshadri constants and
packing numbers. The possibility that such a connection exists was first ob-
served in [15] and then in [3], [4], [13] and others.
Consider the following examples:
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Example 7. Let X = P2 with L = OP2(1). For N = 1, ..., 9 we have
ε(X, L, N) = 1, 1

2 , 1
2 , 1

2 , 2
5 , 2

5 , 3
8 , 6

17 , 1
3 respectively. In the same range of N , we

have (see [3]): vN = 1, 1
2 , 3

4 , 1, 20
25 , 24

25 , 63
64 , 288

289 , 1, so ε(X, L, N) =
√

L2vN
N here.

Example 8. For X = P1 × P1 with the line bundle of type (1, 1), we know
ε(X, L, N) for N ≤ 8: ε(X, L,N) = 1, 1, 2

3 , 2
3 , 3

5 , 4
7 , 8

15 , 1
2 . From [3] we know

that vN = 1
2 , 1, 2

3 , 8
9 , 9

10 , 48
49 , 224

225 , for N < 9 and 1 for all N ≥ 9. Thus here

ε(X, L, N) =
√

L2vN
N for N < 9.

The next set of examples is given by some surfaces with Picard number ρ = 1.
Recently Szemberg in [23] proved that for a surface X with Picard number one

and with
√

L2

a ∈ N (where a is a positive integer and L is the ample generator
of the Picard group of X) the constant ε(X,L, a) is the maximal possible. Roé
and Ross in [20] proved the following result.

Theorem 9. Let X be a projective variety of dimension n with an ample line
bundle L. Let r, s be integers. Then

ε(X, L, sr) ≥ ε(X,L, s) · ε(Pn,OPn(1), r).

Let now X be a projective surface with ρ = 1 and let L be the ample generator

of the Picard group of X. Let
√

L2

N = p
q (where (p, q) = 1). Then L2 = ap2

and N = aq2 for a positive integer a. We know that ε(P2,OP2(1), q2) = 1
q .

Szemberg’s result gives that ε(X, L, a) = p. Thus, Theorem 9 implies that
√

L2

N
≥ ε(X, L, N) ≥ ε(X,L, a)ε(P2,OP2(1), q2) =

p

q
,

so
ε(X,L, N) =

p

q
.

This gives us the following example.

Example 10. Let X be a surface with the Picard number ρ = 1. Let L be the
ample generator of the Picard group of X. Assume also that L2 + LKX ≥ 0 -
this implies that |L| contains a curve of genus at least one. Thus, from Theorem
6 it follows that for these surfaces vN (X,ωL) = 1, for any N ≥ L2.

So, we have that if N ≥ L2 and
√

L2

N ∈ Q, then

ε(X, L,N) =

√
vN (X,ωL)

L2

N
=

√
L2

N
.
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Remark 11. We know by the results of Biran, [4, 3], that if N ≥ 9 for P2 with
L = OP2(1) or N ≥ 8 for P1 × P1 with L of type (1, 1), then vN = 1.

All the above speak in favour of the following Biran-Nagata-Szemberg Conjec-
ture (see eg [22]):

Conjecture 12. For any algebraic surface X, with an ample line bundle L there

exists a number N0, such that for any N ≥ N0 we have ε(X,L, N) =
√

L2

N .

We may consider also the following problem:

Problem 13. For which complex projective surfaces X with an ample line
bundle L and the symplectic form given by ωL = c1(L) and for which natural
N

ε(X,L, N) =

√
vN (X, ωL)

L2

N
? (1)

We have seen that for X = P2, L = OP2(1) and N ≤ 9 the equality holds. It
holds also for X = P1 × P1 with the line bundle of type (1, 1) and N ≤ 8 or
for the surfaces as in Example 10 (and N = 1), but it is too much to expect it
holds for any X,L and N . Consider the following example.

Example 14. All abelian surfaces (X, L) with line bundle L of type (1, 1) are
symplectomorphic, so v1(X, ωL) is the same for them (however, unknown so
far). On the other hand, if X = E × E, where E is an elliptic curve, then
ε(X, L, 1) = 1 and for a generic X we have ε(X, L, 1) = 4

3 , see [21].

Anyway, it would be very interesting to understand when and why the equality
in Problem 13 does or does not hold.
There are also known results giving bounds for Seshadri constants by means of
packing constants. In [5] Biran and Cieliebak proved that there is always an
inequality in (1).

Theorem 15. Let X be a projective n-dimensional manifold with an ample line
bundle L. Then

n

√
vN (X, ωL)

Ln

N
≥ ε(X, L, N).

On the other hand, holomorphic and symplectic packing constants give the
lower bound. Lazarsfeld in [13] proved the following result.

Theorem 16. For a projective n-dimensional manifold X with an ample line
bundle L we have

ε(X,L, N) ≥ n

√
vh
N (X, ωL)

Ln

N
.
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Remark 17. Lazarsfeld’s proof of this result is based on the construction of
symplectic blowing up, cf [15]. The theorem in [13] is actually stated for N = 1,
but it can be generalized for N ≥ 1. For another proof of the result see [24].

5 Special case: toric manifolds

In this part of the paper we consider the special case of toric varieties. On the
one hand we have Seshadri constants in a fixed point of a toric variety, on the
other hand we may consider a symplectic and equivariant embedding of a ball
into the manifold and for such an embedding analogously define the packing
constant v1. It turns out that in this special case the equality (1) holds.

5.1 Seshadri constants on toric manifolds

This chapter is written on the base of Chapter 4 form [2]; for more about toric
varieties see eg [10] or [7]. First, let us recall some basic facts about toric
manifolds. Let X be a nonsingular compact toric variety, ie an n-dimensional
smooth compact complex manifold with an action of a torus (C∗)n, such that
(C∗)n is a Zariski open subset of X and the action of (C∗)n on itself extends to
the action of (C∗)n on X.
In what follows we assume that X is smooth and projective. We assume also
that the standard volume form ω0 is normalized in such a way, that the area of
the unit disc is one. This implies that vol(B2n(R)) = R2n

n! .
X may be described by means of a fan, ∆ ⊂ M , where M ∼= Z2n is a lat-
tice. In particular, prime torus invariant divisors correspond bijectively to 1-
dimensional cones in ∆. The toric variety X with an ample line bundle L may
be described by a certain lattice polytope. Every line bundle on X may be
written as L = OX(

∑ρ
i=1 aiDi), where ρ is the rank of PicX and Di are prime

action invariant divisors on X. Denote by ni the lattice generators of the cones
corresponding to Di. We define a polytope of (X, L) as

P (X,L) := {m ∈M|〈m,ni〉 ≥ −ai, for any ni ∈ M},
where M denotes the lattice dual to M .
A polytope of (X, L) is called a Delzant polytope if there are exactly n edges
from each vertex and for each vertex, the first integer points on the edges
(originating from the vertex) form the basis of the lattice.
If X is nonsingular, then its polytope is Delzant, and in [8] it is proved that X
as above is uniquely determined by its Delzant polytope.
Let us denote by P (k) the set of faces of P (X, L) of dimension k. The elements
of P (k) correspond bijectively to the invariant (with respect to the action of
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(C∗)n) subvarieties of X of dimension k; so to each vertex of the polytope
corresponds one fixed point of X, each edge corresponds to an invariant curve
etc.
For any edge e ∈ P (1) by l(e) denote the length of e, ie the number of lattice
points on e minus one. For a vertex w ∈ P (0) define

s(P (X, L), w) := min{l(e)|w ∈ e}.

In [2] the following theorem is proved:

Theorem 18. Let x be a fixed point of X, corresponding to the vertex w ∈ P (0).
Then

ε(X,L, x) = s(P (X,L), w).

5.2 Packing one ball into a toric manifold

This chapter is based on the results proved by Pelayo and Schmidt in [18], [19].
Let (X,L) be a smooth projective toric variety, as described in the previous
subsection. Then X has a symplectic form ωL = c1(L). It may be seen that
the restriction of the (C∗)n action to its real subgroup Tn = (S1)n is effec-
tive and Hamiltonian, see [6]. Thus, X is a symplectic toric manifold (ie a
compact connected symplectic manifold of real dimension 2n with an effective
and Hamiltonian torus action of Tn, see [6]). For such X we may consider a
symplectic and equivariant packing of balls.

Definition 19. Let (X, L) be a symplectic toric manifold, with the torus action
ψ : Tn × X −→ X. Let Λ ∈ Aut(Tn). A subset B ⊂ X is a Λ-equivariantly
embedded ball (of radius r) if there exists a symplectic embedding f : B(r) −→
B = f(B(r)) ⊂ X, such that

Tn ×B(r)
Λ×f−→ Tn ×X

↓ Rot
⊙ ↓ ψ

B(r)
f−→ X

where the action Rot: Tn×B(r) −→ B(r) is given by (θ1, ..., θn)(z1, ..., zn) −→
(θ1z1, ..., θnzn).
B is called an equivariantly embedded ball if there exists Λ ∈ Aut(Tn), such that
B is a Λ-equivariantly embedded ball.

Let e1, ..., en be the standard basis of Rn.
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Definition 20. 1. By ∆(r) we denote the set of points in Rn, belonging to the
convex hull of {0, r2e1, ..., r

2en} but not to the convex hull of {r2e1, ..., r
2en}.

2. Let ∆ be a Delzant polytope. A subset ∆w of ∆ is called an admissible
simplex of radius r with center at the vertex w, if ∆w is the image of ∆(

√
r) by

an element of AGL(n,Z) which takes the origin to w and the edges of ∆(
√

r) to
the edges of ∆w meeting w. (AGL(n,Z) is the special affine group of Rn with
integer coefficients).
We define

rw := max{r > 0 : there exists an admissible simplex ∆w of radius r}.
Lemma 21. ([19, Lemma 2.10])

rw = min{l(e)|w ∈ e}.
Thus, keeping the notation of the previous subsection, rw = s(P (X,L), w).

Remark 22. ∆(r) is the image of B(r) ⊂ Cn by the momentum map (for the
action Tn ×B(r) −→ B(r) given by (θ1, ..., θn) · (z1, ..., zn) = (θ1z1, ..., θnzn)).

We have the following facts.

Theorem 23. ([19, Lemma 2.10]). Let (X,L) be a symplectic toric manifold
with Delzant polytope P (X, L). Let w ∈ P (0) be a vertex of P (X,L) Then, there
is an admissible simplex ∆w ⊂ P (X,L) of radius r if and only if 0 ≤ r ≤ rw.

Theorem 24. ([19, Lemma 2.13]) Let (X, L) be as above, let ψ : Tn×X −→ X
and let the momentum map of ψ be µ : X −→ Rn. Let B ⊂ X be a symplecticly
and equivariantly embedded ball of radius r and the center mapped to a fixed
point x ∈ X. Then µ(B) is an admissible simplex of radius r2, with center
µ(x). Conversely, having an admissible simplex ∆w of radius r, there exists
a symplecticaly and equivariantly embedded ball B ∈ X of radius

√
r, with

µ(B) = ∆w.

Summarizing the above, we see that for any symplecticly and equivariantly em-
bedded ball (with the image of the center in a fixed point x of X, corresponding
to the vertex w) we have an admissible simplex (and vice versa).
Let x ∈ X be a fixed point and w the corresponding vertex. From Theorem
23, it follows that if we pack symplecticly and equivariantly a ball into X, so
that x is the image of the center of the ball, then the radius of the ball must
be such, that r2 ≤ rw. Denote by

v1(X, ωL, w) := sup
volB2n(r)

volX
,

where supremum is taken over r such that there exists symplectic and equiv-
ariant embedding of B2n(r) into X, with the image of the center in x.
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5.3 Problem 13 on toric manifolds

From Theorem 18 and from the discussion above we have the following result.

Proposition 25. For a symplectic toric variety (X,L) with a fixed point x
corresponding to the vertex w ∈ P (0), we have

ε(X,L, x) = n
√

Lnv1(X,ωL, w).

Proof. From Theorem 18 we know that

ε(X,L, x) = s(P (X,L), w).

Taking R being the supremum of radii of all balls, such that there exists a
symplectic and equivariant embedding of B2n(r) into X, with the image of the
center in w, we have

v1(X,ωL, w) =
volB2n(R)

Ln/n!
.

On the other hand, we know from Theorems 23 and 24 and from the observation
above, that R2 = rw = s(P (X,L), w). Thus,

v1(X,ωL, w) =
rn
w/n!

Ln/n!
=

s(P (X,L), w)n

Ln
.

So,
n
√

Lnv1(X, ωL, w) = s(P (X, L), w),

and finally
n
√

Lnv1(X,ωL, w) = ε(X, L, w).
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