On greedy algorithm approximating Kolmogorov widths in Banach spaces

P. Wojtaszczyk

Abstract

The greedy algorithm to produce \(n \)-dimensional subspaces \(X_n \) to approximate a compact set \(F \) contained in a Hilbert space was introduced in the context of reduced basis method in [12, 13]. The same algorithm works for a general Banach space and in this context was studied in [4]. In this paper we study the case \(F \subset L_p \). If Kolmogorov diameters \(d_n(F) \) of \(F \) decay as \(n^{-\alpha} \) we give an almost optimal estimate for the decay of \(\sigma_n := \text{dist}(F, X_n) \). We also give some direct estimates of the form \(\sigma_n \leq C_n d_n(F) \).

1 Introduction

Let \(X \) be a Banach space with norm \(\| \cdot \| := \| \cdot \|_X \), and let \(F \) be one of its compact subsets. For notational convenience only, unless stated otherwise we shall assume that the elements \(f \) of \(F \) satisfy \(\| f \|_X \leq 1 \). We consider the following greedy algorithm for generating approximation spaces for \(F \).

We first choose a function \(f_0 \) such that

\[
\| f_0 \| = \max_{f \in F} \| f \|. \tag{1}
\]

Assuming \(\{f_0, \ldots, f_{n-1}\} \) and \(V_n := \text{span} \{f_0, \ldots, f_{n-1}\} \) have been selected, we then take \(f_n \in F \) such that

\[
\text{dist}(f_n, V_n)_X = \max_{f \in F} \text{dist}(f, V_n)_X, \tag{2}
\]

*The author was partially supported Polish NCN grant DEC2011/03/B/ST1/04902.
†Keywords: Non-linear approximation, Greedy algorithm, reduced basis method, Kolmogorov widths
‡AMS subject classification (2010) 41A46, 41A25, 46B20, 15A15
and define
\[\sigma_n := \sigma_n(F; X) := \text{dist}(f_n, V_n)_X := \sup_{f \in F} \inf_{g \in V_n} \| f - g \|. \]

This greedy algorithm was introduced, for the case \(X \) is a Hilbert space, in the reduced basis method [12, 13] for solving a family of PDEs. This algorithm and certain variants of it, known as weak greedy algorithms, are now numerically implemented with great success in the reduced basis method applied for various problems, see e.g. [3, 5, 6].

The study of this algorithm in the context of a general Banach space was carried out in [4]. In this paper we continue this line.

We feel that this greedy algorithm and our results can be of interest outside the scope of reduced basis methods. First there is a substantial interest in subspace approximation of large data sets in high dimensional spaces (see e.g. [8] and the references given there). In some cases this reduces to finding an almost optimal subspace for Kolmogorov width, which is the problem we deal with in the present paper. Second, in many cases an almost optimal subspace for Kolmogorov width is given by a random choice (see e.g. [11]). Having a constructive alternative may be of some theoretical interest.

We are interested in how well the space \(V_n \) approximates the elements of \(F \) and for this purpose we compare its performance with the best possible performance which is given by the Kolmogorov width \(d_n(F; X) \) of \(F \) defined for \(n = 0, 1, 2, \ldots \) by
\[d_n := d_n(F) := d_n(F; X) := \inf_{Y} \sup_{f \in F} \text{dist}(f, Y)_X, \]
where the infimum is taken over all \(n \) dimensional subspaces \(Y \) of \(X \). Note that if \(F \subset X \subset Y \) it may happen that \(d_n(F; Y) < d_n(F; X) \). We refer the reader to [11] for a general discussion of Kolmogorov widths.

Of course, if \((\sigma_n)_{n \geq 0} \) decays at a rate comparable to \((d_n)_{n \geq 0} \), this would mean that the greedy selection provides essentially the best possible accuracy attainable by \(n \)-dimensional subspaces. Various comparisons have been given between \(\sigma_n \) and \(d_n \). A first result in this direction, in the case that \(X \) is a Hilbert space \(\mathcal{H} \), was given in [3] and improved in [2] where it was proved that
\[\sigma_n(F; \mathcal{H}) \leq 2^{n+1}3^{-1/2}d_n(F; \mathcal{H}). \]

While this is an interesting comparison, it is only useful if \(d_n(F; \mathcal{H}) \) decays to zero faster than \(2^{-n} \). Other estimates of this type were given in [2] in the
Hilbert space setting and in [4] for general Banach spaces. It was shown in [2] that if \(d_n(F; \mathcal{H}) \leq Cn^{-\alpha}, \ n = 1, 2, \ldots \), then
\[
\sigma_n(F; \mathcal{H}) \leq C' \alpha n^{-\alpha}. \tag{6}
\]
It was shown in [4] that if \(d_n(F; X) \leq Cn^{-\alpha}, \ n = 1, 2, \ldots \), then for any \(\epsilon > 0 \)
\[
\sigma_n(F; X) \leq C(\alpha, \epsilon)n^{-\alpha + \frac{1}{2} + \epsilon}. \tag{7}
\]
A related results are known for sub-exponential decay, \(d_n(F) \leq Ce^{-cn^\alpha} \).

The main aim of this paper is to explain the gap between (6) and (7) and provide an intermediate estimate for \(X = L_p \). This is done in Theorem 2.3 and Corollary 2.5 below. We show

Corollary 2.5 Let \(F \) be a compact subset of the unit ball of an \(L_p \) space \(1 \leq p \leq \infty \). If \(d_n(F; L_p) \leq C_0 n^{-\alpha} \) for some \(\alpha > \mu =: \left| \frac{1}{p} - \frac{1}{2} \right| \) then
\[
\sigma_n(F; L_p) \leq C \left(\frac{\ln(n + 2)}{n} \right)^\alpha n^\mu.
\]

In this paper we will use a standard Banach space notation as explained for example in [17, 1]. Let us make precise the notation dist already used above; for two subsets \(A, B \) of a Banach space \(X \) we denote
\[
\text{dist}(A, B) = \text{dist}(A, B, \|\cdot\|) = \sup_{a \in A} \left(\inf_{b \in B} \|a - b\|_X \right).
\]

2 Estimates for \(L_p \)-spaces

In this section we prove Theorem 2.3 which is our main technical result. The main tool, the Hadamard inequality, is the same as in [4] but the whole argument is quite involved.

General Banach spaces Let us recall some well known notions from the Banach space theory, for details see e.g [17, 1]. For two Banach spaces \(X \) and \(Y \) we consider their Banach-Mazur distance:
\[
d(X, Y) = \inf\{\|T\|\|T^{-1}\| : T : X \rightarrow Y \text{ is a 1-1 and onto linear map}\} \tag{9}
\]
if the spaces are isomorphic and \(d(X, Y) = \infty \) for non-isomorphic spaces. The name 'distance' is somewhat misleading (but very well established in tradition) since for Banach spaces \(X, Y, Z \) we have \(d(X, Y) \leq d(X, Z)d(Z, Y) \) so actually \(\log d(., .) \) satisfies the triangle inequality.
For any pair of finite dimensional isomorphic (i.e. of the same dimension) Banach spaces, by compactness there exists $T : X \to Y$ such that $d(X, Y) = \|T\| \cdot \|T^{-1}\|$. We can additionally assume that $\|T^{-1}\| = 1$. Using such operator we can define a new norm $\|\cdot\|_n$ on X by $\|x\|_n = \|Tx\|_Y$. Clearly it is a norm and T is an isometry between $(X, \|\cdot\|_n)$ and $(Y, \|\cdot\|_Y)$. Also $\|x\|_X \leq \|x\|_n \leq d(X, Y) \|x\|_X$ (10)

because $\|x\|_X = \|T^{-1}Tx\|_X \leq \|Tx\|_Y = \|x\|_n \leq \|T\| \|x\|_X = d(X, Y) \|x\|_X$.

For a fixed (infinite dimensional) Banach space X we introduce a sequence of numbers $\gamma_n(X) = \sup \{d(V, \ell^n_2) : V$ is an n-dimensional subspace of $X\}$. The sequence $\gamma_n(X)$ is non-decreasing and $\gamma_1(X) = 1$. Also if $X_1 \subset X$ is a closed subspace, then $\gamma_n(X_1) \leq \gamma_n(X)$. It is known that for any n-dimensional space V we have $d(V, \ell^n_2) \leq \sqrt{n}$ (see e.g. [17, III.B.9]) so for any Banach space X, $\gamma_n(X) \leq \sqrt{n}$ for $n = 1, 2, \ldots$ and it is also known that for any $L_p(\mu)$ space $1 \leq p \leq \infty$ we have $\gamma_n \leq n^{1/2 - 1/p}$ (see e.g. [17, III.B.9]) and the order is correct.

Let us define a related concept

$$\tilde{\gamma}_n(X) = \sup \{\gamma_n(Z) : Z$ is a quotient space of $X\}. (11)$$

Clearly $\gamma_n(X) \leq \tilde{\gamma}_n(X) \leq \sqrt{n}$. In the future we will need the following fact which is an easy (and probably known to specialists) consequence of classical but highly non-trivial results in Banach space theory.

Theorem 2.1. There exists a constant C_p, $1 \leq p \leq \infty$ such that for every subspace of L_p we have $\tilde{\gamma}_n(X) \leq C_p n^{1/2 - 1/p}$.

Proof: If $p = 1$ or $p = \infty$ the general estimate gives $\tilde{\gamma}_n(X) \leq \sqrt{n}$, i.e. we can take $C_1 = C_\infty = 1$. The case $1 < p < \infty$ is much more involved. We use the notion of type and cotype of Banach spaces. For definition and explanation we refer to [17] or [10]. It is known that any subspace of L_p has type $\min(2, p)$ and cotype $\max(2, p)$ (see [17, III.A.17]). Now let X be a subspace of L_p and let X/V be its quotient space. Then clearly $X/V \subset L_p/V$. By duality $(L_p/V)^*$ is a subspace of L_q with $\frac{1}{p} + \frac{1}{q} = 1$. This implies that $(L_p/V)^*$ has type $r = \min(2, q)$ and cotype $s = \max(2, q)$. Using duality between type and cotype (for explanation and references see [10, pp.52-52]) we get that (L_p/V) and so X/V has cotype r^* with $\frac{1}{r} + \frac{1}{r^*} = 1$.
and type s^* with $\frac{1}{s} + \frac{1}{s^*} = 1$. Now from Proposition 1.4 [16] we infer that

$$\tilde{\gamma}_n(X) \leq C p n^{\frac{1}{2s} - \frac{1}{s^*}}.$$ This gives the claim. ■

We know that $C_1, C_2, C_\infty \leq 1$; it seems to be an open question if $C_p \leq 1$ for other p's.

Basic calculations are summarised in the following

Proposition 2.2. Let \mathcal{K} be a subset of a Banach space \mathcal{X} and let $\sup\{\|f\| : f \in \mathcal{K}\} = B$. Let $(\sigma_j)_{j=0}^N$ be given by the greedy algorithm applied to \mathcal{K}. Then for each $0 < m < N$ we have

$$\left(\prod_{j=0}^N \sigma_j\right)^{\frac{1}{N+1}} \leq \sqrt{2} \gamma_{N+m+1}(\mathcal{X}) B \bar{m} d_m(\mathcal{K}; \mathcal{X}) \frac{N-m}{N}. \quad (12)$$

Proof: If we run the greedy algorithm for the set \mathcal{K} we get sequence f_0, f_1, \ldots, f_N. Let $X = \text{span}\{f_0, f_1, \ldots, f_N\}$. For $m < N + 1$ let us fix an arbitrary number $d > d_m(\mathcal{K}, \mathcal{X})$ and a subspace $T_m \subset \mathcal{X}$ which gives $\text{dist}(\mathcal{K}, T_m) \leq d$. In particular $\|f_j - g_j\| \leq d$ for $j = 0, 1, \ldots, N$ and some $g_j \in T_m$.

We take $Y = \text{span}(X, T_m)$, it has dimension $\leq N + 1 + m$ and X is a subspace of codimension $\leq m$ in Y. From (10) we infer that there exists a euclidean norm $\|\cdot\|_e$ on Y such that $\|y\| \leq \|y\|_e \leq A\|y\|$ where $A \leq \gamma_{\text{dim } Y}(\mathcal{X})$. Let Q be the orthogonal projection from Y onto X (in the norm $\|\cdot\|_e$). We get

$$\|f_j - Q(g_j)\|_e = \|Q(f_j - g_j)\|_e \leq \|f_j - g_j\|_e$$

We denote $\text{dim } Q(T_m) = k$; obviously $k \leq m$.

First we fix a Gram–Schmidt orthogonalisation ϕ_j of f_0, f_1, \ldots, f_N in the norm $\|\cdot\|_e$. Writing matrix $[\phi_j(f_k)]_{j,k=0}^N$ we get a triangular matrix and on the diagonal we have

$$\text{dist}_{\|\cdot\|_e}(f_j, \text{span}(f_0, \ldots, f_{j-1})) \geq \text{dist}_{\|\cdot\|}(f_j, \text{span}(f_0, \ldots, f_{j-1})) = \sigma_j$$

Now let us fix $(x_j)_{j=0}^N$, another orthonormal basis in X, such that $\text{span}(x_j)_{j=0}^{k-1} = Q(T_m)$. If we look at the vector $[x_j(f_k)]_{j=0}^N$ we get

$$\sum_{j=0}^{k-1} |x_j(f_k)|^2 \leq \|f_k\|_e^2 \quad (13)$$
and
\[\sum_{j=k}^{N} |x_j(f_s)|^2 = \text{dist}_{\|\cdot\|_e}(f_s; Q(T_m)). \quad (14) \]

Let \(k_j \) denote the \(j \)-th column of the matrix \([x_j(f_s)]_{j,s=0}^{N}\). Using first the Hadamard inequality, second the arithmetic geometric mean inequality and next (13) and (14) we get

\[
(\det[x_j(f_s)])^2 \leq \prod_{j=0}^{k-1} \|k_j\|_e^2 \cdot \prod_{j=k}^{N} \|k_j\|_e^2 \\
\leq \left(\frac{1}{k} \sum_{j=0}^{k-1} \|k_j\|_e^2 \right)^k \left(\frac{1}{N+1-k} \sum_{j=k}^{N} \|k_j\|_e^2 \right)^{N+1-k} \\
= \left(\frac{1}{k} \sum_{j=0}^{k-1} \sum_{s=0}^{N} |x_j(f_s)|^2 \right)^k \left(\frac{1}{N+1-k} \sum_{j=k}^{N} \sum_{s=0}^{N} |x_j(f_s)|^2 \right)^{N+1-k} \\
\leq \left(\frac{1}{k} \sum_{s=0}^{N} \|f_s\|_e^2 \right)^k \cdot \left(\frac{1}{N+1-k} \sum_{s=0}^{N} \text{dist}_{\|\cdot\|_e}(f_s, Q(T_m))^2 \right)^{N+1-k} \\
\leq \left(\frac{N+1}{k} NB^2 A^2 \right)^k \left(\frac{N+1}{N+1-k} A^2 d^2 \right)^{N+1-k} \\
= \left(\frac{N+1}{k} \right)^k \left(\frac{N+1}{N+1-k} \right)^{N+1-k} B^{2k} A^{2(N+1)} d^{2(N+1-k)} \\
\leq (\prod_{j=0}^{N} \sigma_j)^2 \leq \left(\frac{N+1}{k} \right)^k \left(\frac{N+1}{N+1-k} \right)^{N+1-k} B^{2k} A^{2(N+1)} d^{2(N+1-k)}.
\]

Note that \(|\det[x_j(f_s)]| = |\det[\phi_j(f_s)]| = \prod_{j=0}^{N} |\phi_j(f_j)| \geq \prod_{j=0}^{N} \sigma_j |\phi_j(f_j)|\) so

\[
\left(\prod_{j=0}^{N} \sigma_j \right)^2 \leq \left(\frac{N+1}{k} \right)^k \left(\frac{N+1}{N+1-k} \right)^{N+1-k} B^{2k} A^{2(N+1)} d^{2(N+1-k)}.
\]

Since \(x^{-x}(1-x)^{x-1} \leq 2 \) for \(x \in [0, 1] \)

\[
\left(\prod_{j=0}^{N} \sigma_j \right)^{\frac{k}{(N+1)}} \leq A \sqrt{2} B^{k/(N+1)} d^{(N+1-k)/(N+1)} = A \sqrt{2d} \left(\frac{B}{d} \right)^{k/(N+1)}.
\]

Since \(d \) is arbitrary number \(d \geq d_m(K, \mathcal{X}) \) and \(k \leq m \) we get (12).

Passage to the quotient space Let us recall the notion of a quotient space. Let \(X \) be a Banach space and \(F \subset X \) its closed subspace. For \(x \in X \)
its coset is

\[[x]_F =: \{ x + f \} =: \{ y \in X \mid y = x + f \text{ for some } f \in F \}. \]

Two cosets are either disjoint or equal. One can check that \([x]_F = [y]_F\) if and only if \(x - y \in F\). The set of all cosets with natural operations i.e. \(\lambda[x]_F + \mu[y]_F = [\lambda x + \mu y]_F\), is a linear space denoted as \(X/F\). The norm on \(X\) induces a natural norm on \(X/F\) given by

\[\| [x]_F \|_\sim = \inf \{ \| z \| : z \in [x]_F \} = \inf_{f \in F} \| x - f \|. \]

In our situation \((X/F, \| \cdot \|_\sim)\) is a Banach space. There is a natural map (quotient map) \(q : X \to X/F\) defined as \(q(x) = [x]_F\).

Suppose we have a set \(F \subset X\) and we run a greedy algorithm to get \(f_0, f_1, \ldots, f_N, f_{N+1}, \ldots\) We fix \(N\) and put \(F = \text{span}\{f_0, f_1, \ldots, f_{N-1}\}\) and consider \(\tilde{X} = \mathcal{X}/F\) with the quotient norm which we denote as \(\| \cdot \|_\sim\). We put \(\tilde{F} = q(F) \subset \tilde{X}\) where \(q\) is the quotient map. For \(s \geq 0\) let us define \(\tilde{f}_s = q(f_{N+s})\). Then for \(s = 0, 1, 2, \ldots\) we have, (we mean \(\text{span}\{\tilde{f}_j\}_{j=0}^{N} = \{0\}\))

\[
\sigma_{N+s}(F; \mathcal{X}) = \text{dist}(f_{N+s}, \text{span}(f_j)_{j<N+s})_{\mathcal{X}} = \inf \{ \| f_{N+s} - g \| : g \in \text{span}(f_j)_{j<N+s} \} = \inf_{g \in \text{span}(f_j)_{j=N}^{N+s-1}} \inf_{f \in F} \| f_{N+s} - g - f \| = \inf_{g \in \text{span}(f_j)_{j=N}^{N+s-1}} \| q(f_{N+s} - g) \|_\sim = \inf_{\tilde{g} \in \text{span}(\tilde{f}_j)_{j=0}^{s-1}} \| \tilde{f}_s - \tilde{g} \|_\sim = \text{dist}(\tilde{f}_s, \text{span}(\tilde{f}_j)_{j=0}^{s-1})_{\tilde{X}}.
\]

Also \(\sigma_{N+s}(F; \mathcal{X}) = \sup_{f \in F} \text{dist}(f, \text{span}(f_j)_{j<N+s})_{\mathcal{X}}\) so using the above reasoning we get

\[
\sigma_{N+s}(F; \mathcal{X}) = \sup_{f \in F} \text{dist}((q(f), \text{span}(\tilde{f}_j)_{j=0}^{s-1})_{\tilde{X}} = \text{dist}(\tilde{F}, \text{span}(\tilde{f}_j)_{j=0}^{s-1})_{\tilde{X}}.
\]

This means that there exists a realisation of a greedy algorithm for \(\tilde{F}\) in \(\tilde{X}\) which produces vectors \(\tilde{f}_0, \tilde{f}_1, \ldots\) and numbers \(\tilde{s}_0, \tilde{s}_1, \ldots\) such that \(\tilde{s}_s = \sigma_{N+s}\). Also for each \(m\) we have

\[
d_{(N+m)}(F, \mathcal{X}) \leq d_m(\tilde{F}, \tilde{X}) \leq d_m(F, \mathcal{X}).
\]

(15)
Thus applying Proposition 2.2 we get for $m < K$

$$\left(\prod_{j=N}^{N+K} \sigma_j(F;\mathcal{X})\right)^{\frac{1}{K+1}} \leq \sqrt{2\tilde{\gamma}_{K+m+1}(\mathcal{X})} \sigma_N(F;\mathcal{X})^{\frac{m}{K}} d_m(F;\mathcal{X})^{\frac{K-m}{K}} \quad (16)$$

which implies

$$\sigma_{N+K}(F;\mathcal{X}) \leq \sqrt{2\tilde{\gamma}_{K+m+1}(\mathcal{X})} \sigma_N(F;\mathcal{X})^{\delta} d_m(F;\mathcal{X})^{1-\delta} \quad (17)$$

where $\delta = m/K$. I particular (take $K = N > m > 0$ so $\delta = m/N$ and use that $\tilde{\gamma}$ is an increasing sequence)

$$\sigma_{2N}(F;\mathcal{X}) \leq \sqrt{2\tilde{\gamma}_{2N}(\mathcal{X})} \sigma_N(F;\mathcal{X})^{\delta} d_m(F;\mathcal{X})^{1-\delta} \quad (18)$$

Now let us prove our general estimate.

Theorem 2.3. Suppose that we apply the greedy algorithm to the compact set F contained in the unit ball of a Banach space \mathcal{X} such that $\tilde{\gamma}_n(\mathcal{X}) \leq Cn^\mu$ for some $C > 0$ and $0 < \mu \leq \frac{1}{2}$.

1. If for $\alpha > \mu$ we have $d_n(F;\mathcal{X}) \leq C_0 n^{-\alpha}$ then

$$\sigma_n(F;\mathcal{X}) \leq C_1 \left(\frac{\ln(n+2)}{n}\right)^\alpha n^\mu \quad (19)$$

for some constant $C_1 = C_1(C, C_0, \mu, \alpha)$.

2. If for some $\alpha > 0$ we have $d_n(F;\mathcal{X}) \leq C_0 e^{-cn^\alpha}$ then

$$\sigma_n \leq \bar{C}_0 n^\mu e^{-cn^\alpha} \quad (20)$$

for some $\bar{C}_0 \leq 3^\mu \sqrt{2} C \max(1, C_0)$ and $c_1 = c \max_{0 < \delta - \mu \ln(\alpha)}(1 - \delta)\delta^\alpha$.

Proof: (1.) Let $s > 6$ be an integer such that the sequence $(n^{-\alpha+\mu} \ln^\alpha(s+2))_{n \geq s}$ is decreasing. Suppose that our theorem does not hold for $C_1 = D$ such that $D \geq s^{\alpha-\mu} \ln^{-\alpha}(s+2)$. Let M be the first integer such that

$$\sigma_M > DM^{-\alpha+\mu} \ln^\alpha(M + 2). \quad (21)$$

Since $\sigma_n \leq 1$ we get $M > s \geq 6$. Either $M = 2K$ or $M = 2K + 1$ and $K \geq 3$. Using monotonicity of our sequences and (18) we get

$$DM^{-\alpha+\mu} \ln^\alpha(M + 2) < \sigma_M \leq \sigma_{2K} \leq \sqrt{2} C(2K)^\mu \sigma_K d_m^{1-\delta} \quad (22)$$
for any $0 < m < K$ and $\delta = m/K$. Since $2K < M$ our assumptions give
\[DM^{-\alpha + \mu} \ln^\alpha(M + 2) < \sqrt{2}CM^\mu \left[DK^{-\alpha + \mu} \ln^\alpha(K + 2) \right]^{\delta} (C_0m^{-\alpha})^{1-\delta}. \]
so using $K \leq M \leq 3K$ we get
\[C'D^{1-\delta} < K^{\delta \mu} (\ln(K + 2))^{-\alpha(1-\delta)} \delta^{-\alpha(1-\delta)} \tag{23} \]
where $C' > (CC_0^{-1-3\alpha} \sqrt{2})^{-1}$. Now we fix δ such that $\frac{1}{2\ln K} \leq \delta \leq \frac{1}{\ln K}$ (since $K \geq 3$ such a choice is possible) and we get
\[C'D^{1-\delta} \leq \left(K^{\frac{1}{\ln K}} \right)^\mu \left(\frac{2 \ln K}{\ln(K + 2)} \right)^{\alpha(1-\delta)} \leq e^{\mu 2^\alpha}. \tag{25} \]
This gives an upper estimate for D which proves (1.). The proof of (2.) follows the arguments from [2, 4] and is sketched here for completeness. We use (12) to get
\[\sigma_n \leq \sqrt{2}C'^\alpha n^{\mu} \inf_{0 < \delta = \frac{n}{\ln n} < 1} C_0^{1-\delta} e^{-c(1-\delta)\delta^\alpha n^\alpha} \leq C_0^{1-\delta} e^{-c_0 n^{\alpha}}. \]

Remark 2.4. Standard calculation gives that $\max_{0 < t < 1}(1-t)t^\alpha$ is attained for $t = \frac{1}{1+\alpha}$ so for big n it suffices to take c_1 slightly bigger than $\frac{c_1}{(1+\alpha)^{1+\alpha}}$.

Putting together Theorem 2.3 and 2.1 we get

\[\sigma_n(F; X) \leq C \left(\frac{\ln(n + 2)}{n} \right)^\alpha n^{\mu}. \tag{26} \]

Remark 2.6. Let us recall that every separable Banach space \mathcal{X} satisfies $\tilde{\gamma}_n(\mathcal{X}) \leq \sqrt{n}$ so Theorem 2.3 with $\mu = \frac{1}{2}$ improves Corollary 4.2(ii) from [4]. Our estimate (19) is somewhat better than in [4].

Remark 2.7. In the case when $\tilde{\gamma}_n$ is bounded the logarithm in (19) is not needed. We follow the above proof with (21) replaced by $\sigma_M > DM^{-\alpha}$ and (since $\mu = 0$) instead of (23) we get $C'D^{1-\delta} < \delta^{-\alpha(1-\delta)}$. Now the choice $\delta \sim \frac{1}{2}$ does the job. So for $p = 2$ there is no logarithm in (26).
Let us note that $\gamma_n(X)$ bounded implies that X is isomorphic to a Hilbert space (see [9]). This implies that the greedy algorithm in such a space can be interpreted as a realisation of a weak greedy algorithm (with appropriate weakness constant) in a Hilbert space. Thus this remark can also be seen as a corollary of from [2, Theorem 3.1].

Next we present an example which shows that the estimate (26) is optimal up to a logarithmic factor. It is a natural modification of an example given in [4].

Let us take $F =: \{ n^{1-\alpha} \epsilon_n \}_{n=1}^{\infty} \subset \ell_q$ with $2 < q < \infty$ and $\alpha > \frac{1}{q}$. Clearly $\sigma_n(F)_{\ell_q} = (n+1)^{-\alpha}$. In order to estimate the Kolmogorov widths of F we will use the following classical result (see (7.17) from [11, Chap. 14])

$$d_n(B_1^N; \ell_q^N) \leq C(q)^{1/q} n^{-1/2}$$ \hfill (27)

where B_1^N is the unit ball from ℓ_1^N.

Let us fix an integer N and $\epsilon = 2^{-\alpha N}$. For $N > k > \alpha(\frac{1}{2} + \alpha - \frac{1}{q})^{-1} =: \mu N$ we consider vectors $F_k =: \{ n^{1-\alpha} \epsilon_n \}_{n=2^k+1}^{2^{k+1}}$. From (27) we see that there exists a subspace $F_k \subset \text{span}\{ e_n \}_{n=2^k+1}^{2^{k+1}}$ of dimension n_k such that $\text{dist}(F_k, F_k) \leq \epsilon$ and

$$n_k \leq C(q)^2 2^{2N}\alpha 2^{2k(\frac{1}{2}-\alpha)} + 1.$$ \hfill (28)

We define the space

$$V = \text{span} \left(\{ e_n : n \leq 2^{\mu N} \} \cup \bigcup_{N>k>\mu N} F_k \right).$$

We have $\text{dist}(F, V) \leq \epsilon$ and $\dim V \leq 2^{\mu N} + \sum_{N>k>\mu N} n_k$. Using (28) we obtain

$$\sum_{N>k>\mu N} n_k \leq N + C(q)^2 2^{2N}\alpha \sum_{N>k>\mu N} 2^{2k(\frac{1}{2}-\alpha)} \leq C(q, \alpha)^2 2^{2N}\alpha 2^{\mu N(\frac{1}{2}-\alpha)} = C(q, \alpha)2^{\mu N}$$

so $\dim V \leq C'(q, \alpha)2^{\mu N} =: m(N) =: m$. Thus $d_{m(N)}(F; \ell_q) \leq \epsilon$. On the other hand

$$\sigma_{m}(F; \ell_q) \geq (m+1)^{-\alpha} \geq d_m \epsilon^{-1} (m+1)^{-\alpha} \geq d_m C''2^{2N}\alpha 2^{-\mu N}\alpha$$

$$= C''d_m 2^{\frac{1}{2}-\alpha} 2^{-\frac{1}{2}} \geq C'''d_m 2^{\frac{1}{2}-\alpha} m^{-\frac{1}{2}} \geq C m^{-\frac{1}{2}} d_m.$$

3 Direct estimates

Let us note that approximating subspace given by the greedy algorithm is always spaned by elements from \(F \) while there is no such requirement for subspaces used to calculate Kolmogorov widths. Thus it may seem more fair to compare \(\sigma_n \) with the following quantities:

\[
\bar{d}_n(F; X) = \inf_{f_1, \ldots, f_n \in F} \{ \text{dist}(F, V) : V = \text{span}\{f_1, \ldots, f_n\} \}.
\]

Examples that \(\bar{d}_n > d_n \) are known, cf [14, Chap. II.1] even for convex, centrally symmetric sets.

Theorem 3.1. The following hold:

(i) For any compact set \(F \) in any Banach space \(X \) and any \(n \geq 0 \), we have \(\bar{d}_n(F) \leq (n+1)d_n(F) \).

(ii) Given any \(n > 0 \) and \(\epsilon > 0 \), there is a set \(F \) such that \(\bar{d}_n(F) \geq (n-1-\epsilon)d_n(F) \).

For \(X \) being the Hilbert space this theorem was proved in [2]. We find it somewhat surprising that exactly the same result holds for general Banach spaces.

Proof of (i). Assume first that \(X \) is finite dimensional and that \(d_n(F; X) < d_{n-1}(F; X) \). Let \(Y \subset X \) be an \(n \)-dimensional optimal Kolmogorov subspace i.e. \(\text{dist}(F, Y) = d_n(F) \), which exists because \(X \) is finite dimensional. If \(d_n = 0 \) then \(F \subset Y \) so \(\bar{d}_n(F) = 0 \). Now assume that \(d_n(F) > 0 \) and fix a basis \((\lambda_1, \ldots, \lambda_n) \) in \(Y^* \). For an element \(f \in X \) let \(P(f) \) denote an element from \(Y \) which realizes \(\inf_{y \in Y} \| f - y \| \). Such an element always exists, however it may be not unique. Moreover there may not exist a continuous selection of \(P(f) \), see [15, C.6.3.]. For arbitrary system \(\{f_1, \ldots, f_n\} \subset F \) and arbitrary choice of \(P(f_j) \)’s we consider the determinant

\[
D(P(f_1), \ldots, P(f_n)) = \det[\lambda_i P(f_j)]_{i,j=1}^n
\]

and put \(\beta = \sup D(P(f_1), \ldots, P(f_n)) \) where the sup is taken over all choices of \(f_j \)’s and \(P \). Since

\[
|\lambda_j(P(f_s))| \leq \| \lambda_j \| \cdot \| f_s \| \leq \| \sup_{f \in F} \| f \|
\]

we infer that \(\beta < \infty \).
Now we show that if \(d_n < d_{n-1} \) then \(\beta > 0 \). Note that \(\beta = 0 \) means that for each system \(\{f_1, \ldots, f_n\} \subset \mathcal{F} \) and every choice of \(P(f_j) \)'s vectors \(P(f_1), \ldots, P(f_n) \) are linearly dependent. Let \(k < n \) be the biggest dimension of the space they span. Let us fix vectors \(f_1, \ldots, f_k \in \mathcal{F} \) such that \(P(f_1), \ldots, P(f_k) \) span a space \(V \subset Y \) of dimension \(k \). Now let us take arbitrary \(f \in \mathcal{F} \) and arbitrary \(P(f) \). Vectors \(P(f_1), \ldots, P(f_k), P(f) \) span \(V \) so \(P(f) \in V \). This implies that \(d_k \leq \text{dist}(\mathcal{F}; V) = d_n \).

We fix elements \(f_1, \ldots, f_n \in \mathcal{F} \) and their best approximations \(P(f_1), \ldots, P(f_n) \) such that \(D(P(f_1), \ldots, P(f_n)) \geq \beta(1 - \eta) \). Clearly for any \(f \in \mathcal{F} \) and its best approximation \(P(f) \in Y \) and any \(i = 1, 2, \ldots, n \) we have

\[
|\beta^{-1}D(P(f_1), \ldots, P(f_{i-1}), P(f), P(f_{i+1}), \ldots, P(f_n))| \leq 1.
\]

Let \(f \in \mathcal{F} \) be an element where the distance from \(\mathcal{F} \) to \(Y \) is achieved. Since \(\beta > 0 \) elements \(P(f_1), \ldots, P(f_n) \) form a basis in \(Y \). We write \(Pf = \sum_{k=1}^{n} \alpha_k P(f_k) \). Note that for \(i = 1, \ldots, n \)

\[
D(P(f_1), \ldots, P(f_{i-1}), P(f), P(f_{i+1}), \ldots, P(f_n))
\]

\[
= \sum_{k=1}^{n} (-1)^{k+i} D(P(f_1), \ldots, P(f_{i-1}), P(f_k), P(f_{i+1}), \ldots, P(f_n))
\]

\[
= (-1)^{2i} \alpha_i D(P(f_1), \ldots, P(f_n))
\]

so \(|\alpha_i| \leq (1 - \eta)^{-1} \). This gives

\[
\tilde{d}_n(\mathcal{F}) \leq \text{dist}(\mathcal{F}, \text{span}(f_i)_{i=1}^{n}) \leq \|f - \sum_{i=1}^{n} \alpha_i f_i\|
\]

\[
\leq \|f - P(f)\| + \|\sum_{i=1}^{n} \alpha_i [P(f_i) - f_i]\| \leq (1 - \eta)^{-1} (n + 1) \text{dist}(\mathcal{F}, Y)
\]

\[
\leq \frac{n + 1}{1 - \eta} d_n(\mathcal{F}).
\]

Since \(\eta \) is an arbitrary positive number we get i) under our additional assumptions. Now if \(X \) is infinite dimensional and \(\mathcal{F} \subset X \) let us fix \(\epsilon > 0 \). Let us take an \(n \)-dimensional subspace \(V_1 \subset X \) such that \(\text{dist}(\mathcal{F}; V_1) \leq (1 + \epsilon) d_n(\mathcal{F}; X) \), a \(n \)-dimensional subspace \(V_2 \) spanned by elements of \(\mathcal{F} \) such that \(\text{dist}(\mathcal{F}; V_2) \leq (1 + \epsilon) d_n(\mathcal{F}; X) \) and a finite \(\epsilon \)-net \(\mathcal{F}_\epsilon \subset \mathcal{F} \) which contains a basis of \(V_2 \). Let \(\bar{X} = \text{span}\{\mathcal{F}_\epsilon \cup V_1 \cup V_2\} \). Now let \(k \leq n \) be the
biggest integer such that \(d_k(\mathcal{F}_e; \hat{X}) = d_n(\mathcal{F}_e; \hat{X})\). Now we have
\[
\bar{d}_k(\mathcal{F}_e; \hat{X}) \leq (k + 1)d_k(\mathcal{F}_e; \hat{X})
= (k + 1)\inf \{\text{dist}(\mathcal{F}_e, V) : V \subseteq \hat{X}, \dim V = k\}
\leq (k + 1)(\inf \{\text{dist}(\mathcal{F}_e, V) : V \subseteq \hat{X}, \dim V = k\} + \epsilon)
\leq (k + 1)(\text{dist}(\mathcal{F}_e, V_1) + \epsilon)
\leq (n + 1)((1 + \epsilon)d_n(\mathcal{F}; X) + \epsilon).
\]

On the other hand
\[
\bar{d}_k(\mathcal{F}_e; \hat{X}) = \inf \{\text{dist}(\mathcal{F}_e, V) : V \text{ spanned by } k \text{ elements of } \mathcal{F}_e\}
\geq \inf \{\text{dist}(\mathcal{F}_e, V) : V \text{ spanned by } k \text{ elements of } \mathcal{F}\}
\geq \bar{d}_k(\mathcal{F}; X) - \epsilon \geq \bar{d}_n(\mathcal{F}; X) - \epsilon.
\]

Since \(\epsilon\) is arbitrary the above estimates give us (i).

Examples proving (ii) were constructed, even for \(X\) being a Hilbert space, in [2, Th 4.1].

It is worth noting that for convex symmetric sets the situation is somewhat different. Namely we have the following

Proposition 3.2. Let \(\mathcal{F}\) be a convex, centrally symmetric subset of a Banach space \(\mathcal{X}\), then

1. if \(\mathcal{X}\) is arbitrary Banach space then we have \(\bar{d}_n(\mathcal{F}; \mathcal{X}) \leq (\sqrt{n}+1)d_n(\mathcal{F}; \mathcal{X})\)

2. if \(\mathcal{X} = L_p\) for some \(1 < p < \infty\) then we have
\[
\bar{d}_n(\mathcal{F}; \mathcal{X}) \leq (n^\frac{1}{p} - \frac{1}{2} + 1)d_n(\mathcal{F}; \mathcal{X})
\]

3. if \(\mathcal{X}\) is a Hilbert space then we have \(\bar{d}_n(\mathcal{F}; \mathcal{X}) = d_n(\mathcal{F}; \mathcal{X})\).

Proof: For a given \(n\) and \(\epsilon > 0\) we fix a subspace \(X \subset \mathcal{X}\) of dimension \(n\) such that \(\text{dist}(\mathcal{F}, X) \leq (1 + \epsilon)d_n(\mathcal{F}; \mathcal{X})\). Let \(F\) be a closed span of \(\mathcal{F}\) and let \(F_1\) be a closed linear span of \(F \cup X\). Let us take a projection \(P\) from \(F_1\) onto \(F\) and let \(\hat{X} = P(X)\). Since \(\mathcal{F}\) is convex and symmetric set \(\bigcup_{t>0} t\mathcal{F}\) is a linear subspace dense in \(\mathcal{F}\). This implies that there exists a subspace \(\hat{X} \subset F\) such that \(\dim \hat{X} = \dim \hat{X}\) which is spaned by elements from \(\mathcal{F}\) and \(\text{dist}(\hat{X}, \hat{X}) \leq \epsilon\). Thus \(\text{dist}(\mathcal{F}, \hat{X}) \leq \epsilon + \text{dist}(\mathcal{F}, \hat{X}) \leq \epsilon + \|P\|(1 + \epsilon)d_n(\mathcal{F}; \mathcal{X})\).

It is clear that for Hilbert space we can have \(\|P\| = 1\) and the estimates for other cases are also known (see [17, III.B.11]).

Now we will present a general direct comparison which is a generalisation of (5) to Banach spaces. Clearly it is only useful for \(d_n\)'s decaying essentially faster then exponential, but then it may give better results than Proposition 2.2.
Theorem 3.3. For a compact set $\mathcal{F} \subset L_p$ and $n = 0, 1, 2, \ldots$ we have

$$\sigma_n(\mathcal{F}; L_p) \leq C n^{\frac{2}{p} - \frac{1}{2}} 2^n d_n(\mathcal{F}; L_p).$$

Proof: Applying the greedy algorithm to \mathcal{F} we get vectors f_0, f_1, \ldots, f_n. Let $Y \subset L_p$ be a subspace of dimension n which almost attains $d_n(\mathcal{F})$ i.e. $\text{dist}(\mathcal{F}, Y) \leq (1 + \epsilon) d_n(\mathcal{F})$. There is a projection P from L_p onto $X = \text{span}\{f_0, \ldots, f_n\}$ of norm $\leq n^{\frac{2}{p} - \frac{1}{2}}$ see e.g. [17, Theorem III.B.10]. Let $\hat{Y} = P(Y) \subset X$. We will assume that $\dim \hat{Y} = n$; we can enlarge $P(Y)$ if needed. We have

$$\max_j \text{dist}(f_j, \hat{Y}) = \max_j \inf_{y \in Y} \|f_j - Py\| \leq \|P\| \max_j \inf_{y \in Y} \|f_j - y\| \leq (1 + \epsilon) \|P\| d_n(\mathcal{F}).$$

We fix $\lambda_0, \ldots, \lambda_n$ functionals on X such that $\|\lambda_j\| = 1$, $\lambda_j(f_s) = 0$ for $s < j$ and $\lambda_j(f_j) = \text{dist}(f_j, V_j)$; such functionals exist by the Hahn-Banach Theorem (see e.g. [7, Chap. IV, Corollary 14.13]). Note that for $s > j$ we have $|\lambda_j(f_s)| \leq \text{dist}(f_s, V_j) \leq \sigma_j$. Let $(e_j)_{j=0}^n$ be vectors in X biorthogonal to $(\lambda_j)_{j=0}^n$. Let ϕ be a functional on X, $\|\phi\| = 1$ and $\ker \phi = \hat{Y}$. We have

$$\sigma_n = \text{dist}(f_n, V_j) = \lambda_n(f_n)$$

and for $j = 0, 1, \ldots, n$

$$|\sigma_n \phi(e_j)| \leq \sigma_j |\phi(e_j)| = |\phi(\sigma_j e_j)|.$$

We write $\sigma_j e_j = \sum_{s=0}^n \gamma_s^j f_s$. For each $k = 0, 1, \ldots, n$ we have

$$\sigma_j \delta_{k,j} = \sigma_j \lambda_k(e_j) = \sum_{s=0}^n \lambda_k(f_s).$$

Let us consider the following matrices; Σ which is diagonal with diagonal elements $\sigma_0, \sigma_1, \ldots, \sigma_n$, $\Gamma = [\gamma_s^j]$ and $\Lambda = [\lambda_k(f_s)]$. The above relations can be written as $\Sigma = \Gamma \Lambda$, so $\Gamma = \Sigma \Lambda^{-1}$. Since Λ is lower triangular with diagonal elements σ_j and elements in the j-th column at most σ_j in absolute value we infer that $\Lambda \Sigma^{-1}$ is a lower triangular matrix with diagonal elements 1 and elements in the j-th column at most 1 in absolute value. So Γ is lower triangular i.e. $\sigma_j e_j = \sum_{s=j}^n \gamma_s^j f_s$, and calculating the inverse by backsubstitution we get $|\lambda_s^j| \leq 2^{s-j}$. This gives
\[|\phi(\sigma_j e_j)| \leq \sum_{s=j}^{n} |\gamma_s^j||\phi(f_s)| \leq 2^{j+1}\text{dist}(\mathcal{F}, \tilde{\mathcal{Y}}) \leq 2^{j+1}\|P\|(1 + \epsilon)d_n(\mathcal{F}) \]

Since \(\phi = \sum_j \phi(e_j)\lambda_j \) we get
\[1 = \|\phi\| \leq \sum_j |\phi(e_j)| \]
so
\[
\sigma_n \leq \sigma_n \sum_{j=0}^{n} |\phi(e_j)| \leq \sum_{j=0}^{n} 2^{j+1}\|P\|(1 + \epsilon)d_n(\mathcal{F}) \\
\leq 2^{n+2}n^{\frac{1}{2} - \frac{1}{p}}(1 + \epsilon)d_n(\mathcal{F}).
\]

Since \(\epsilon > 0 \) is arbitrary the proof is completed. ■

References

Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, 02-838 Warszawa, ul. Prosta 69, Poland, wojtaszczyk@icm.edu.pl