WEAK THRESHOLDING GREEDY ALGORITHMS IN BANACH SPACES

S. J. DILWORTH, DENKA KUTZAROVA, TH. SCHLUMPRECHT, AND P. WOJTASZCZYK

Dedicated to the memory of Nigel Kalton

Abstract. We consider weak thresholding greedy algorithms with respect to Markushevich bases in general Banach spaces. We find sufficient conditions for the equivalence of boundedness and convergence of the approximants. We also show that if there is a weak thresholding algorithm for the system which gives the best n-term approximation up to a multiplicative constant, then the system is already “greedy”. Similar results are proved for “almost greedy” and “semi-greedy” systems.

Contents

1. Introduction 1
2. Branch greedy algorithms 5
3. Convergence 6
4. Branch quasi-greedy systems 11
5. Branch greedy systems 14
6. Branch almost greedy systems 15
7. Branch semi-greedy systems 18
References 25

1. Introduction

Let X be an infinite-dimensional Banach space and let (e_i) be a Markushevich basis for X with biorthogonal sequence (e_i^*). The Thresholding Greedy Algorithm (TGA), introduced by Konyagin and Temlyakov

Date: April 15, 2011.
2000 Mathematics Subject Classification. Primary 41A65; Secondary 46B15, 46B20.
is defined as follows. For \(x \in X \) and \(n \geq 1 \), let \(\mathcal{A}_n(x) \subset \mathbb{N} \) be the indices corresponding to a choice of \(n \) largest coefficients of \(x \) in absolute value, i.e. \(\mathcal{A}_n(x) \) satisfies

\[
\min\{ |e_i^*(x)| : i \in \mathcal{A}_n(x) \} \geq \max\{ |e_i^*(x)| : i \in \mathbb{N} \setminus \mathcal{A}_n(x) \}
\]

Then \(G_n(x) := \sum_{i \in \mathcal{A}_n(x)} e_i^*(x)e_i \) is called an \(n \)th greedy approximant to \(x \). The TGA is said to converge if \(G_n(x) \to x \). We say that \((e_i) \) is quasi-greedy (QG) if there exists \(K < \infty \) such that for all \(x \in X \) and \(n \geq 1 \), we have \(\|G_n(x)\| \leq K\|x\| \). Wojtaszczyk [12, Theorem 1] proved that \((e_i) \) is QG if and only if the TGA converges for all initial vectors \(x \in X \).

It is known [4, Remark 6.3] that the Haar basis (normalized in \(L_1[0,1] \)) is not quasi-greedy, i.e., that for certain initial vectors \(x \) the TGA does not converge. Recently, however, Gogyan discovered a weak thresholding version of the TGA for the Haar basis which converges. The new algorithm defined in [7] is of the following general type which we call branch greedy. Fix a weakness parameter \(\tau \) with \(0 < \tau < 1 \). For each \(x \in X \), we define inductively an increasing sequence \((\mathcal{A}_n^\tau(x)) \) of sets of \(n \) coefficient indices such that

\[
\min\{ |e_i^*(x)| : i \in \mathcal{A}_n^\tau(x) \} \geq \tau \max\{ |e_i^*(x)| : i \in \mathbb{N} \setminus \mathcal{A}_n^\tau(x) \}.
\]

Such index sets will be generated by a weak thresholding procedure. Gogyan proved for his algorithm that the branch greedy approximants \(G_n^\tau(x) := \sum_{i \in \mathcal{A}_n^\tau(x)} e_i^*(x)e_i \) converge to \(x \) and are uniformly bounded, i.e., that \(\|G_n^\tau(x)\| \leq K(\tau)\|x\| \), where \(K(\tau) \) is a constant.

The motivation for the term “branch greedy” comes from the fact that weak thresholding generates a tree of possible choices for the coefficients. A branch greedy algorithm is simply a procedure for selecting a branch of this tree. In Section 2 we try to formulate a reasonable and widely applicable definition of branch greedy algorithm. Then our goal is to study convergence and best approximation properties of branch greedy algorithms. In Section 3 we study the analogue of Wojtaszczyk’s theorem on the equivalence of convergence of the TGA and the QG property [12]. We identify some sufficient conditions for this
equivalence to hold for branch greedy algorithms and we show that the equivalence does not hold in general.

In Section 4 we define a system to be branch quasi-greedy (BQG) if the branch greedy approximants are uniformly bounded. Gogyan’s result shows that the Haar basis for $L_1[0,1]$ is BQG but not QG. We show that the QG property is equivalent to the BQG property together with an additional “partial unconditionality” type condition (see e.g. [5]). This fact is used repeatedly in subsequent sections. As an application of this result we show that every weakly null BQG sequence contains a QG subsequence, which sheds some light on an important open problem concerning partial unconditionality.

The remainder of the paper concerns best n-term approximation for branch greedy algorithms. Recall that the error in the best n-term approximation to x (using (e_i)) is given by

$$\sigma_n(x) := \inf \{ \|x - \sum_{i \in A} a_i e_i\| : (a_i) \subset \mathbb{R}, |A| = n \},$$

and the error in the best projection of x onto a subset of (e_i) of size at most n is given by

$$\tilde{\sigma}_n(x) := \inf \{ \|x - \sum_{i \in A} e_i^*(x) e_i\| : |A| \leq n \}.$$

Then (e_i) is said to be greedy with constant C [8] if

$$\|x - G_n(x)\| \leq C \sigma_n(x) \quad (n \geq 1, x \in X),$$

and almost greedy (AG) with constant C [3] if

$$\|x - G_n(x)\| \leq C \tilde{\sigma}_n(x) \quad (n \geq 1, x \in X),$$

Temlyakov [11] proved that the Haar system for $L_p[0,1]^d$ ($1 < p < \infty$, $d \geq 1$) is greedy, which provides an important theoretical justification for the use of thresholding in data compression. We refer the reader to [13] for other examples of greedy bases.

Konyagin and Temlyakov [8] gave a very useful characterization of greedy bases. They proved that a system is greedy if and only if it is unconditional and democratic. The democratic property is defined as follows. We say that (e_i) is democratic with constant Δ if, for all finite
\[A, B \subset \mathbb{N} \text{ with } |A| \leq |B|, \]
we have
\[\left\| \sum_{i \in A} e_i \right\| \leq \Delta \left\| \sum_{i \in B} x_i \right\|. \]

We recall that \((e_i)\) is \textit{unconditional} with constant \(K\) if, for all choices of signs, we have
\[\left\| \sum_{i=1}^{\infty} \pm e_i^*(x)e_i \right\| \leq K \left\| x \right\| \quad (x \in X). \]

We introduce the classes of \textit{branch greedy} systems in Section 5 and \textit{branch almost greedy} systems in Section 6. It turns out, however, that the characterizations discussed above remain valid, so that the class of branch greedy (resp. branch almost greedy) systems coincides with the class of greedy (resp. almost greedy) systems. At the expense of some extra complexity in the proofs, we have formulated all of our results for \textit{finite} systems, thereby avoiding infinite-dimensional arguments that are not valid in the finite-dimensional setting. In particular, we obtain quantitative estimates that are independent of dimension for many of the various constants that arise: for example, we can estimate the democratic and quasi-greedy constants in terms of the branch almost greedy constant and the weakness parameter \(\tau\). None of our estimates here involve the \textit{basis constant} of the system. It follows that our infinite-dimensional results are valid for general biorthogonal systems.

The last section, which is the most technical, concerns the branch analogue of the notion of \textit{semi-greedy} system introduced in [2]. Let us recall that \((e_i)\) is semi-greedy with constant \(C\) if for all \(x \in X\) and \(n \geq 1\) there exist scalars \(a_i (i \in A_n(x))\) such that
\[\left\| x - \sum_{i \in A_n(x)} a_i e_i \right\| \leq C \sigma_n(x). \]

Several questions remain open for semi-greedy systems. In particular, we are not able to show without extra hypotheses that a branch semi-greedy system is semi-greedy. Moreover, our quantitative results involve the basis constant of the system and in some cases also the \textit{co-type} \(q\) \textit{constant} of \(X\). In the infinite-dimensional setting we can show that if \(X\) has finite cotype and \((e_i)\) is a branch semi-greedy Schauder basis then \((e_i)\) is almost greedy. This implies the equivalence of the
2. Branch greedy algorithms

Let X be a finite-dimensional or separable infinite-dimensional Banach space. Let (e_i) be a bounded Markushevich basis for X with biorthogonal functionals (e^*_i). We assume that (e_i) is semi-normalized, i.e. $a \leq \|e_i\| \leq b$ for positive constants a and b, and that $\sup_{i \geq 1} \|e^*_i\| = M < \infty$. We can identify each $x \in X$ with its coefficient sequence $(e^*_i(x))$. The support of x is defined by $\text{supp}(x) := \{i: e^*_i(x) \neq 0\}$.

For every finite $A \subset \mathbb{N}$, we denote by P_A the projection $P_A(x) := \sum_{i \in A} e^*_i(x)e_i$. If A is co-finite, we define $P_A := I - P_{\mathbb{N}\setminus A}$. Now fix a weakness parameter τ with $0 < \tau < 1$. For all $x \neq 0 \in X$, define

$$A^\tau(x) := \{i \in \mathbb{N}: |e^*_i(x)| \geq \tau \max_{i \geq 1} |e^*_i(x)|\}$$

Let $G^\tau : X \setminus \{0\} \to \mathbb{N}$ be any mapping which satisfies the following conditions:

(a) $G^\tau(x) \in A^\tau(x)$;

(b) $G^\tau(\lambda x) = G^\tau(x)$ for all $\lambda \neq 0$;

(c) If $A^\tau(y) = A^\tau(x)$ and $e^*_i(y) = e^*_i(x)$ for all $i \in A^\tau(x)$ then $G^\tau(y) = G^\tau(x)$.

Here $G^\tau(x)$ is to be interpreted as the index of the first coefficient of x that is selected by the algorithm. Subsequent coefficients are then selected by iterating the algorithm on the residuals. Condition (a) simply says that the coefficients are selected by weak thresholding with weakness parameter τ. Condition (b) is a natural homogeneity assumption. Condition (c) says that the choice of the next coefficient should depend only on the set of coefficients (indexed by $A^\tau(x)$) which satisfy the weak thresholding criterion.

Every such mapping G^τ generates a “branch greedy algorithm” as follows. For each finitely supported (resp., infinitely supported) vector
$x \in X$ define the “branch greedy ordering” $\rho^*_x: \{1, 2, \ldots, |\text{supp}(x)|\} \to \mathbb{N}$ (resp., $\rho^+_x: \mathbb{N} \to \mathbb{N}$) inductively:

(i) If $x \neq 0$ then $\rho^*_x(1) = G(x);

(ii) For $i \geq 2$, if $|\text{supp}(x)| \geq 2$ then

$$
\rho^*_x(i) = G(x - \sum_{j=1}^{i-1} e^*_{\rho^*_x(j)}(x)e_{\rho^*_x(j)}).
$$

Henceforth we shall drop the subscript x from ρ^*_x when there is no ambiguity. Finally, we define the branch greedy approximations $G_n(x)$ as follows (setting $e^*_{\rho^*_x(i)}(x) := 0$ if $i > |\text{supp}(x)|)$:

$$
G_n(x) = \sum_{i=1}^{n} e^*_{\rho^*(i)}(x)e_{\rho^*(i)} \quad (n \geq 1).
$$

Set $G_0(x) := 0$ for convenience.

Note that $(\rho^*(i))$ is a generalization of the greedy ordering $(\rho(i))$, which corresponds to $\tau = 1$ and simply rearranges the coefficients of x in decreasing order of magnitude:

$$
|e^*_{\rho^*(1)}(x)| \geq |e^*_{\rho^*(2)}(x)| \geq \ldots,
$$

choosing the smallest index in case of a tie [2, p. 577].

3. CONVERGENCE

In this section we consider the following two desirable properties of the branch greedy algorithms defined above:

(A) Convergence of the algorithm, i.e., $G_n(x) \to x$ for all $x \in X$.

(B) Uniform boundedness of the approximants, i.e., there exists $K < \infty$ such that $\|G_n(x)\| \leq K\|x\|$ for all $n \geq 1$ and $x \in X$.

Proposition 3.1. (A) and (B) are not equivalent in general.

Proof. It suffices to observe that Gogyan’s algorithm for the normalized Haar basis in $L_1[0,1]$ (see [7] or Example 3.2 below) can be modified slightly so that the modified algorithm satisfies (A) but not (B). Rather than giving a precise definition of the mapping G^* we give a more
informal description of the algorithm. To that end, let \(f_k \) be the leftmost branch of the Haar basis, i.e. \(f_k = 2^{k-1}(\chi_{[0,2^{-k}]} - \chi_{(2^{-k},2^{1-k})}) \).

The modification only affects scalar multiples of vectors of the form \(x_n + y \) and their first \(n - 1 \) residuals, where \(x_n = \sum_{k=1}^{2^n} f_k \), \(x_n \) and \(y \) are disjointly supported with respect to the Haar basis, and all the Haar coefficients of \(y \) are smaller than \(\tau \). For such special vectors we modify the definition of the mapping \(G^\tau \) so that the first \(n \) branch greedy approximants of \(x_n + y \) are given by \(G^\tau_k(x_n) := \sum_{j=1}^k f_{2j-1} \) for \(1 \leq k \leq n \). For all other vectors the definition of \(G^\tau \) is unchanged. It is easily verified that the modified algorithm satisfies conditions (a)-(c) of Section 2, that \(\|x_n\| \leq 2 \), and that \(\|G^\tau_n(x_n)\| \geq n/4 \) (see [4, Remark 6.3]). Hence property (B) does not hold. However, for each fixed \(x \in L_1[0,1] \), there is at most one value of \(n \) for which a residual of \(x \) will coincide with one of the first \(n - 1 \) residuals of (a scalar multiple of) \(x_n + y \). So after finitely many iterations the algorithm coincides with Gogyan’s algorithm and hence converges to \(x \). So property (A) holds.

The main result of this section is that (A) and (B) are equivalent for a natural class of branch greedy algorithms. To that end we consider two conditions:

(\(H_1 \)) For all finite \(A \subset \mathbb{N} \) there exists a finite \(\overline{A} \subset \mathbb{N} \) such that \(A \subseteq \overline{A} \) and for all \(x, y \in X \) such that \(\text{supp}(x - y) \subset A \), we have that for all \(m \geq 1 \) there exists \(n \geq 1 \) such that

\[
G^\tau_m(x)_{|_{\mathbb{N}\setminus \overline{A}}} = G^\tau_n(y)_{|_{\mathbb{N}\setminus \overline{A}}},
\]

i.e. \(G^\tau_m(x) \) and \(G^\tau_n(y) \) agree on the complement of \(\overline{A} \).

(\(H_2 \)) For all \(x, y \in X \), if \(\text{supp}(x - y) \) is finite then there exist \(m_1, m_2 \in \mathbb{N} \) such that \(x - G^\tau_{m_1}(x) = y - G^\tau_{m_2}(y) \). (Note that this implies that for all \(k \geq 0 \), \(x - G^\tau_{m_1+k}(x) = y - G^\tau_{m_2+k}(y) \).)

It is easily seen that the TGA (using the greedy ordering) satisfies (\(H_1 \)), with \(\overline{A} = A \), and (\(H_2 \)). The branch greedy algorithm for the
Haar system in $L_1[0,1]$ defined by Gogyan [G] belongs to the following class of algorithms satisfying (H1).

Example 3.2. Let \prec be any tree ordering on \mathbb{N}, i.e. \prec is a partial order such that for every $n \in \mathbb{N}$ the initial segment $\{m \in \mathbb{N}: m \prec n\}$ is finite and totally ordered. If $m \leq n$, let $[m, n]$ denote the segment $\{i \in \mathbb{N}: m \leq i \leq n\}$. For $x \in X$, recall that $\rho_x(1)$ is the smallest integer i_0 at which $i \mapsto |e_i^*(x)|$ is maximized. We define $G'(x)$ as follows: $G'(x) \preceq \rho_x(1)$ and $[G'(x), \rho_x(1)]$ is the largest segment such that $|e_i^*(x)| \geq \tau |e_{\rho_x(1)}^*(x)|$ for all $i \in [G'(x), \rho_x(1)]$.

Proposition 3.3. The branch greedy algorithm determined by G' in Example 3.2 satisfies (H1).

Proof. For a given finite set $A \subset \mathbb{N}$, let $A := \cup_{i \in A} \{j \in \mathbb{N}: j \preceq i\}$. Clearly, A is finite. Suppose that $x, y \in X$ satisfy $\text{supp}(x - y) \subseteq A$.

We shall prove by induction that for all $m \geq 0$ there exists $n_m \geq 1$ such that

(1) \[G_m'(x)|_{\mathbb{N} \setminus A} = G_m'(y)|_{\mathbb{N} \setminus A}. \]

Setting $n_0 := 0$ handles the case $m = 0$. Suppose the result holds for m. If $\rho_x'(m + 1) \in A$ then $G_{m+1}'(x)|_{\mathbb{N} \setminus A} = G_m'(x)|_{\mathbb{N} \setminus A}$, so we can take $n_{m+1} := n_m$. If $\rho_x'(m + 1) \in \mathbb{N} \setminus A$, let

\[n_{m+1} := \min\{k > n_m: \rho_y'(k) \in \mathbb{N} \setminus A\}. \]

It follows easily from the definition of G' and (1) that $\rho_x'(m + 1) = \rho_y'(n_{m+1})$, which gives (1) with m replaced by $m + 1$. \qed

Remark 3.4. It is an instructive exercise to check that the algorithm described in Proposition 3.1 does not satisfy (H1) and hence is not in contradiction with Theorem 3.7 below.

Lemma 3.5. $(H1) \Rightarrow (H2)$.

Proof. Suppose that $x, y \in X$ and that $A := \text{supp}(x - y)$ is finite. We may assume that $\text{supp}(x)$ is infinite, otherwise (H2) is trivially satisfied. Let A be the set postulated by (H1). Let

(2) \[\delta := \min\{|e_i^*(x)|, |e_i^*(y)|: i \in \overline{A} \cap (\text{supp}(x) \cup \text{supp}(y))\}. \]
Since $\text{supp}(x)$ is infinite, we may choose $m \in \mathbb{N}$ such that $0 < |e^*_{\rho(m)}(x)| < \frac{\tau \delta}{2}$. Clearly, $i_0 := \rho(m) \notin \overline{A}$. By (H1) there exists $k \in \mathbb{N}$ such that
\[(3) \quad G^{\tau}_k(y) |_{\mathbb{N} \setminus \overline{A}} = G^{\tau}_m(x) |_{\mathbb{N} \setminus \overline{A}}. \]
Since $i_0 \notin \overline{A}$, we have
\[0 < |e^*_{i_0}(G^{\tau}_k(y))| = |e^*_{i_0}(G^{\tau}_m(x))| < \frac{\tau \delta}{2}, \]
which when combined with (2) implies that
\[G^{\tau}_m(x) |_{\overline{A}} = x |_{\overline{A}} \quad \text{and} \quad G^{\tau}_k(y) |_{\overline{A}} = y |_{\overline{A}}. \]
Combining the latter with (3) and using the fact that $\text{supp}(x - y) = A \subset \overline{A}$, we deduce that $x - G^{\tau}_m(x) = y - G^{\tau}_k(y)$. Hence (H2) is satisfied. \qed

Proposition 3.6. If the algorithm satisfies (H2) then (B) \Rightarrow (A).

Proof. Suppose that (H2) and (B) hold. Given $x \in X$ and $\varepsilon > 0$, choose a finitely supported $z \in X$ with $\|x - z\| < \varepsilon$. Applying (H2) to x and to $y := x - z$ (noting that $\text{supp}(y - x) = \text{supp}(z)$ is finite) there exist $m_1, m_2 \in \mathbb{N}$ such that for all $k \geq 0$
\[x - G^{\tau}_{m_1 + k}(x) = x - z - G^{\tau}_{m_2 + k}(x - z). \]
Now applying (B), we have that for all $k \geq 0$
\[\|x - G^{\tau}_{m_1 + k}(x)\| \leq \|x - z\| + \|G^{\tau}_{m_2 + k}(x - z)\| \leq (1 + K)\varepsilon. \]
Hence $G^{\tau}_n(x) \to x$. \qed

The following theorem generalizes [12, Theorem 1].

Theorem 3.7. If the algorithm satisfies (H1) then (A) \iff (B).

Proof. Suppose that (H1) is satisfied. Then (B) \Rightarrow (A) follows from Lemma 3.5 and Proposition 3.6.

For the converse, we shall assume that (A) holds but that (B) does not hold and obtain a contradiction. First we claim that given a finite $A \subset \mathbb{N}$ and given $K > 0$ there exist a finite set $B \subset \mathbb{N}$ disjoint from A and $x \in X$ such that $\|x\| = 1$, $\text{supp}(x) \subset B$, and $\|G^{\tau}_k(x)\| \geq K$ for some $k \geq 1$. Let \overline{A} be the finite set given by (H1) and let M be the maximum of the norms of the (finitely many) finite-dimensional projections P_Ω ($\Omega \subset \overline{A}$). Since (B) does not hold, given $K_1 > 0$ there
exists \(x_1 \in X\) such that \(\|x_1\| = 1\) and \(\|G^*_m(x_1)\| \geq K_1\) for some \(m \geq 1\). Let \(x_2 = x_1 - P_A(x_1)\). Then \(\|x_2\| \leq \|x_1\| + \|P_A\|\|x_1\| \leq 1 + M\). Since \(\text{supp}(x_1 - x_2) \subset A\), it follows from (H1) that there exists \(k \in \mathbb{N}\) such that
\[
P_{N \setminus A}(G^*_k(x_2)) = P_{N \setminus A}(G^*_m(x_1)).
\]
Now \(P_A(G^*_k(x_2)) = P_\Omega(x_1)\), where \(\Omega = A \cap \text{supp}(G^*_k(x_2))\), so
\[
\|P_A(G^*_k(x_2))\| \leq M\|x_1\| = M.
\]
Hence
\[
\|G^*_k(x_2)\| \geq \|P_{N \setminus A}(G^*_k(x_2))\| - \|P_A(G^*_k(x_2))\|
\geq \|P_{N \setminus A}(G^*_m(x_1))\| - M
\geq \|G^*_m(x_1)\| - 2M
\geq K_1 - 2M.
\]
Let \(x_3 = x_2/\|x_2\|\). Then \(\|G^*_k(x_3)\| \geq (K_1 - 2M)/(M + 1)\). Let
\[
\delta := \min\{|e^*_i(x_3)| : i \in \text{supp}(G^*_k(x_3))\}.
\]
Choose a finite set \(B_1 \subset \mathbb{N}\) such that
\[
\|e^*_i(x_3)\| \leq \frac{\tau \delta}{2} \quad (i \in \mathbb{N} \setminus B_1).
\]
Note that \(\text{supp}(G^*_k(x_3)) \subset B_1\). Since \(\text{supp}(x_3)\) is disjoint from \(A\) and since \(A \cup B_1\) is finite, it follows that, given \(\eta > 0\), using the fact that \((e_i)\) is a bounded Markushevich basis, we may choose a finite set \(B\) disjoint from \(A\) with \(B_1 \subset B\), and we may choose \(x_4 \in X\) such that \(\text{supp}(x_4) \subset B\), \(\|x_3 - x_4\| < \eta\), and
\[
x_4|_{B_1} = x_3|_{B_1}.
\]
It follows that for all \(i \in \mathbb{N} \setminus B_1\), we have
\[
|e^*_i(x_4)| \leq |e^*_i(x_3)| + \left(\sup_{i \in \mathbb{N}} \|e^*_i\|\right)\|x_3 - x_4\| \leq \frac{\tau \delta}{2} + \left(\sup_{i \in \mathbb{N}} \|e^*_i\|\right)\eta \leq \frac{3 \tau \delta}{4}
\]
provided \(\eta\) is sufficiently small. It follows from (4), (5), (6), and (7) that for \(0 \leq j < k\),
\[
\mathcal{A}^*(x_3 - G^*_j(x_3)) = \mathcal{A}^*(x_4 - G^*_j(x_4)).
\]
This implies, in conjunction with (6) and with assumption (c) concerning ρ^τ, that
\[G^\tau_j(x_4) = G^\tau_j(x_3) \quad (1 \leq j \leq k). \]
Hence $\|G^\tau_k(x_4)\| \geq (K_1 - 2M)/(M + 1)$ and $\|x_4\| \leq 1 + \eta$. Since K_1 can be chosen arbitrarily large, $x_5 = x_4/\|x_4\|$ verifies the claim.

Having established the claim we can choose disjointly and finitely supported vectors x_n and positive integers k_n ($n \geq 1$) such that $\|x_n\| \leq 2^{-n}$, $\|G^\tau_{k_n}(x_n)\| \geq n$, and
\[\max\{|e_i^*(x_{n+1})| : i \in \mathbb{N}\} \leq \frac{\tau}{2} \min\{|e_i^*(x_n)| : i \in \text{supp}(x_n)\}. \]
Let $x = \sum_{i=1}^{\infty} x_i$ and let $m_i = |\text{supp}(x_i)|$. Clearly, for $n \geq 1$,
\[G^\tau_{m_1 + \cdots + m_n + k_n}(x) = x_1 + \cdots + x_n + G^\tau_{k_n+1}(x_{n+1}). \]
Hence
\[\|G^\tau_{m_1 + \cdots + m_n + k_n+1}(x)\| \geq \|G^\tau_{k_n+1}(x_{n+1})\| - \sum_{i=1}^{\infty} \|x_i\| \geq (n + 1) - 1 = n. \]
This is the desired contradiction to (A). \qed

4. Branch quasi-greedy systems

Henceforth we shall formulate most of our results in the finite-dimensional setting for greater precision. Let $(e_i)_{i=1}^N$ be an algebraic basis for an N-dimensional normed space X. Let $(e_i^*)_{i=1}^N$ be the corresponding biorthogonal functionals. We shall assume as above that $a \leq \|e_i\| \leq b$ for fixed positive constants a and b. For a fixed weakness parameter $\tau \in (0, 1)$, we shall consider a branch greedy algorithm determined by a mapping G^τ as described above.

Definition 4.1. We say that (e_i) is branch quasi-greedy with weakness parameter τ ($BQG(\tau)$) and constant K if for all $x \in X$ and $0 \leq k \leq N$, we have
\[\|G^\tau_k(x)\| \leq K\|x\|. \]

We begin with an important observation which shows that the definition of a $BQG(\tau)$ system is only meaningful for bounded biorthogonal systems.
Proposition 4.2. Suppose that \((e_i)_{i=1}^N\) is BQG(\(\tau\)) with constant \(K\). Then \(\|e_i^*\| \leq \frac{K}{\tau a}\) for all \(i\).

Proof. \[
\|e_i^*(x)\| \leq \frac{1}{\tau} |e_{\rho^*(1)}^*(x)| \leq \|G_i^*(x)\| \leq \frac{K\|x\|}{\tau a}.
\]

\(\square\)

There exist BQG systems that are not QG, e.g. the Haar basis for \(L_1[0,1]\) [7]. The following slightly technical definition captures the gap between the two notions.

Definition 4.3. Let \(0 < \tau < 1\). Then \((e_j)_{j=1}^N\) has property \(P(\tau)\) if there exists \(C < \infty\) such that for all \(A \subseteq \{1, \ldots, N\}\) and for all scalars \((a_i)_{i \in A}\), with \(1 \leq |a_i| \leq 1/\tau^2\), we have

\[
\max \pm \| \sum_{i \in A} \pm e_i \| \leq C \| \sum_{i \in A} a_i e_i \|
\]

Proposition 4.4. Suppose that \((e_i)_{1 \leq i \leq N}\) is BQG(\(\tau\)) with constant \(K\) and has property \(P(\tau)\) with constant \(C\). Then \((e_i)\) is QG with constant \(K(1 + \frac{2C}{\tau^2})\).

Proof. Fix \(n \geq 1\), and let \(m\) be the least integer such that \((\rho(i))_{i=1}^n \subseteq (\rho^*(i))_{i=1}^m\). Thus, either \(G_m^*(x) = G_n(x)\) (in which case \(\|G_n(x)\| \leq K\|x\|\)) or

\[
G_m^*(x) = G_n(x) + \sum_{i=k}^l \eta_i a_{\rho^*(i)} e_{\rho^*(i)},
\]

where

\[
k = \min \{i \leq m : \rho^*(i) \notin \{\rho(1), \rho(2), \ldots, \rho(n)\}\},
\]

\[
\ell = \max \{i \leq m : \rho^*(i) \notin \{\rho(1), \rho(2), \ldots, \rho(n)\}\} < m,
\]

\[
\eta_i = \begin{cases}
0 & \text{if } \rho^*(i) \in \{\rho(1), \rho(2), \ldots, \rho(n)\}\,
1 & \text{if } \rho^*(i) \notin \{\rho(1), \rho(2), \ldots, \rho(n)\}
\end{cases}
\]

whenever \(i = k, k+1, \ldots, \ell\).

By the choice of \(m\), we have \(\rho^*(l+1) = \rho(j)\) for some \(1 \leq j \leq n\). Hence for \(k \leq i \leq l\), we have

\[
\tau |a_{\rho(n)}| \leq \tau |a_{\rho^*(l+1)}| \leq |a_{\rho^*(i)}| \leq \frac{1}{\tau} |a_{\rho^*(k)}| \leq \frac{1}{\tau} |a_{\rho(n)}|.
\]
so
\[\frac{|a_{\rho(n)}|}{\tau} \leq \frac{|a_{\rho(i)}|}{\tau^2} \leq \frac{1}{\tau^2} \frac{|a_{\rho(n)}|}{\tau}. \]

Thus, using property $P(\tau)$ for the second inequality, we have
\[
\| \sum_{i=k}^{l} \eta_i a_{\rho^\tau(i)} e_{\rho^\tau(i)} \| \leq \frac{|a_{\rho(n)}|}{\tau} \max_{\pm} \left\| \sum_{i=k}^{l} \pm a_{\rho^\tau(i)} e_{\rho^\tau(i)} \right\|
\leq C \frac{\tau}{\tau^2} \left\| \sum_{i=k}^{l} a_{\rho^\tau(i)} e_{\rho^\tau(i)} \right\|
= \frac{C}{\tau^2} \| G_n^\tau(x) - G_{k-1}^\tau(x) \|
\leq \frac{2KC}{\tau^2} \| x \|.
\]

Thus,
\[
\| G_n(x) \| \leq \| G_n^\tau(x) \| + \left\| \sum_{i=k}^{l} \eta_i a_{\rho^\tau(i)} e_{\rho^\tau(i)} \right\| \leq K(1 + \frac{2C}{\tau^2}) \| x \|.
\]

The last result has a converse.

Proposition 4.5. Suppose that (e_i) is QG. Then (e_i) has $P(\tau)$ for all $0 < \tau < 1$ with a uniform constant. Moreover, for every branch greedy algorithm, we have $\| G_n^\tau(x) \| \leq K(\tau) \| x \|$ for all $n \geq 1$ and $x \in X$.

Proof. It is proved in [2, pp. 70-71] that if (e_i) is quasi-greedy with constant K and $(a_i)_{i \in A}$ are scalars such that $|a_i| \geq 1$ then
\[
\max_{\pm} \left\| \sum_{i \in A} \pm a_i e_i \right\| \leq 4K^2 \left\| \sum_{i \in A} a_i e_i \right\|.
\]

Hence (e_i) has $P(\tau)$ for all $0 < \tau < 1$ with uniform constant $4K^2$. The second assertion follows the fact that weak thresholding with respect to a quasi-greedy basis is bounded with constant $K(\tau)$ depending on the weakness parameter τ and the quasi-greedy constant [9, pp. 312-314].

Next we give an application of Proposition 4.4 to infinite-dimensional spaces.
Corollary 4.6. Suppose that \((x_i)_{i=1}^\infty\) is a weakly null semi-normalized BQG(\(\tau\)) basic sequence in an infinite-dimensional Banach space. Then \((x_i)\) has a quasi-greedy subsequence.

Proof. It follows from Elton’s partial unconditionality theorem [6] that there exists a subsequence \((y_i)\) and a constant \(K(\tau)\) such that for all finite sets \(E \subset \mathbb{N}\) and scalars \((a_i)_{i \in E}\) satisfying \(1 \leq |a_i| \leq 1/\tau^2\), we have

\[
\| \sum_{i \in E} \pm a_i y_i \| \leq K(\tau) \| \sum_{i \in E} a_i y_i \|.
\]

By convexity,

\[
\| \sum_{i \in E} \pm y_i \| \leq \max_{\pm} \| \sum_{i \in E} \pm a_i y_i \| \leq K(\tau) \| \sum_{i \in E} a_i y_i \|.
\]

Hence \((y_i)_{i=1}^\infty\) is BQG(\(\tau\)) and has property \(P(\tau)\) with constant \(K(\tau)\). Thus, \((y_i)\) is quasi-greedy by Proposition 4.4. \(\square\)

Remark 4.7. It is an open question whether or not every semi-normalized weakly null sequence \((x_i)\) in a Banach space has a quasi-greedy subsequence (see [5]). (The answer is positive if the Banach space does not have \(c_0\) as a spreading model [2, Corollary 5.6].) By Corollary 4.6, whether or not \((x_i)\) has a BQG(\(\tau\)) subsequence is an equivalent question.

5. Branch greedy systems

Definition 5.1. Let \(0 < \tau < 1\). We say \((e_i)\) is branch greedy with weakness parameter \(\tau\) (BG(\(\tau\))) and constant \(K\) if for all \(x \in X\) and \(0 \leq k \leq N\), we have

\[
\| x - \mathcal{G}_k^\tau(x) \| \leq K \sigma_k(x),
\]

where

\[
\sigma_k(x) = \min\{\| x - \sum_{i \in A} a_i e_i \| : A \subset \{1, \ldots, N\}, |A| \leq k\}.
\]

Theorem 5.2. Suppose that \((e_i)_{i=1}^N\) is BG(\(\tau\)) with constant \(K\). Then \((e_i)\) is \(K\)-unconditional and democratic with constant \(K(1 + \frac{1}{\tau})\).
Proof. To show unconditionality, suppose that \(x = \sum_{i \in A} a_i e_i \) and that \(B \subset A \). Let \(r := |A \setminus B| \) Consider \(y = \sum_{i \in B} a_i e_i + M \sum_{i \in A \setminus B} e_i \), where \(M > \frac{1}{\tau} \max_{i \in B} |a_i| \). Clearly \(G_r^* (x) = M \sum_{i \in A \setminus B} e_i \), and since \(x - y \) is an \(r \)-term approximation to \(y \) we have
\[
\| \sum_{i \in B} a_i e_i \| \leq K \sigma_r (y) \leq K \| y - (y - x) \| = K \| x \|.
\]
Thus, \((e_i)\) is \(K\)-unconditional. To show that \((e_i)\) is \(K(1 + 1/\tau)\)-democratic, let \(A, B \) satisfy \(|B| \leq |A| := n \). Consider \(x = \theta \sum_{i \in B \setminus A} e_i + \sum_{i \in A} e_i \), where \(0 < \theta < \tau \). Then \(G_n^r (x) = \sum_{i \in A} e_i \), so
\[
\theta \| \sum_{i \in B \setminus A} e_i \| \leq K \sigma_n (x) \leq K \| \sum_{i \in A} e_i \|,
\]
where the second inequality follows from the fact that \(|B \setminus A| \leq n \). By unconditionality, \(\| \sum_{i \in A \cap B} e_i \| \leq K \| \sum_{i \in A} e_i \| \). Hence
\[
\| \sum_{i \in B \setminus A} e_i \| \leq \| \sum_{i \in B \setminus A} e_i \| + \| \sum_{i \in A \cap B} e_i \| \leq K (1 + \frac{1}{\theta}) \| \sum_{i \in A} e_i \|.
\]
Since \(\theta < \tau \) is arbitrary, we get that \((e_i)\) is democratic with constant \(K(1 + \frac{1}{\tau}) \).
\[\square\]

Corollary 5.3. If \((e_i)\) is \(BG(\tau) \) with constant \(K \) then \((e_i)\) is greedy with constant \(K + K^4 (1 + \frac{1}{\tau}) \).

Proof. This follows from the result of Konyagin and Temlyakov that a basis is greedy if and only if it is unconditional and democratic [8, Theorem 1] and from the estimate of the greedy basis constant given in [13, Theorem 1] (see also [1]). \[\square\]

6. Branch almost greedy systems

Definition 6.1. We say that \((e_i)\) is branch almost greedy with weakness parameter \(\tau (BAG(\tau)) \) and constant \(K \) if for all \(x \in X \) and \(0 \leq k \leq N \), we have
\[
\| x - G_k^r (x) \| \leq K \tilde{\sigma}_k (x),
\]
where
\[
\tilde{\sigma}_k (x) = \min \{ \| x - P_A (x) \| : A \subset \{1, \ldots, N\}, |A| \leq k \}.
\]
Recall that the fundamental function \((\varphi_n)\) of \((e_i)\) is defined by
\[
\varphi(n) = \sup\{\|\sum_{i \in A} e_i\| : |A| \leq n\}.
\]

Lemma 6.2. Let \(0 < \tau < 1\). Suppose that \((e_j)_{j=1}^N\) is BQG(\(\tau\)) with constant \(K\) and democratic with constant \(\Delta\). Suppose also that (8) is satisfied with constant \(C\) for all \(A\) with \(|A| \leq N/2\) and for all scalars \((a_i)_{i \in A}\), with \(1 \leq |a_i| \leq 1/\tau^2\). Then \((e_j)_{j=1}^N\) has property \(P(\tau)\) with constant \(6KC\Delta\).

Proof. Suppose that \(|A| := k > N/2\) and that \(x = \sum_{j \in A} a_j e_j\) where \(1 \leq |a_j| \leq 1/\tau^2\) \((j \in A)\). Let \(G^\tau_{[N/2]}(x) := \sum_{j \in B} a_j e_j\). Then
\[
\|\sum_{j \in B} a_j e_j\| = \|G^\tau_{[N/2]}(x)\| \leq K\|x\|.
\]

Since \(|B| = [N/2]|\), we have by assumption that
\[
C\|\sum_{j \in B} a_j e_j\| \geq \|\sum_{j \in B} e_j\|
\]
\[
\geq \frac{\varphi([N/2])}{\Delta}
\]
\[
\geq \frac{\varphi(k)}{3\Delta} \geq \frac{1}{6\Delta} \max \|\sum_{j \in A} \pm e_j\|.
\]

\(\square\)

Remark 6.3. Note that the proof only requires the democratic condition for sets of cardinality at most \(N/2\), i.e., that if \(|E| \leq |F| \leq N/2\) then \(\|\sum_{i \in E} e_i\| \leq \Delta \|\sum_{i \in F} e_i\|\). This observation will be needed in the proof of Theorem 6.4 below.

Theorem 6.4. Suppose that \((e_i)_{i=1}^N\) is BAG(\(\tau\)) with constant \(K\). Then \((e_i)_{i=1}^N\) is democratic with constant \(3(K^2(1 + K)/\tau^2)(1 + (K/\tau))\) and QG with constant \((1 + K)(1 + 12K^5(1 + (K/\tau))/\tau^6)\).

Proof. First observe that for all \(x \in X\) and \(k \geq 0\), we have
\[
\|G^\tau_k(x)\| \leq \|x - G^\tau_k(x)\| + \|x\| \leq K\tilde{s}_k(x) + \|x\| \leq (K + 1)\|x\|.
\]
Hence \((e_i)_{i=1}^N\) is \(BQG(\tau)\) with constant \(K + 1\). Next we prove that (8) is satisfied with constant \(\frac{K^2}{\tau^2}\) for all \(A\) with \(|A| \leq N/2\) and for all scalars \((a_i)_{i \in A}\), with \(1 \leq |a_i| \leq 1/\tau^2\). Suppose that \(n := |A| \leq N/2\) and that \(|a_i| \geq 1\) \((i \in A)\). Choose \(D \subset \{1, \ldots, N\}\) such that \(A\) and \(D\) are disjoint and \(|D| = |A|\). Consider \(x = \theta \sum_{i \in D} e_i + \sum_{i \in A} a_i e_i\), where \(0 < \theta < \tau\). Then \(G^\tau_n(x) = \sum_{i \in A} a_i e_i\), and hence

\[
\theta \| \sum_{i \in D} e_i \| \leq K \tilde{\sigma}_n(x) \leq K \| \sum_{i \in A} a_i e_i \|.
\]
(For future reference, note that (9) is valid provided \(|D| \leq |A|\) and \(D \cap A = \emptyset\).) Now consider \(y = \sum_{i \in D} e_i + \theta \sum_{i \in A} \pm e_i\). Then \(G^\tau_n(y) = \sum_{i \in D} e_i\), and hence

\[
\theta \| \sum_{i \in A} \pm e_i \| \leq K \tilde{\sigma}_n(y) \leq K \| \sum_{i \in D} e_i \|.
\]

Combining these estimates, and letting \(\theta \downarrow \tau\), we get

\[
\max_{\pm} \| \sum_{i \in A} \pm e_i \| \leq K \frac{2}{\tau^2} \| \sum_{i \in A} a_i e_i \|.
\]

Next we prove that \((e_i)_{i=1}^N\) is democratic. First suppose that \(|B| \leq n := |A| \leq N/2\). Using (9) with \(A\) replaced by \(A \setminus B\) and \(D\) replaced by \(B \setminus A\) (noting that \(|B \setminus A| \leq |A \setminus B|\)) for the first inequality, and (10) for the third inequality, we get

\[
\| \sum_{i \in B \setminus A} e_i \| \leq K \frac{\tau}{\tau} \| \sum_{i \in A \setminus B} e_i \| \leq \frac{K^3}{\tau^3} \| \sum_{i \in A \setminus B} e_i \|.
\]

Similarly,

\[
\| \sum_{i \in A \cap B} e_i \| \leq \max_{\pm} \| \sum_{i \in A \cap B} \pm e_i \| \leq \frac{K^2}{\tau^2} \| \sum_{i \in A} e_i \|.
\]

Thus,

\[
\| \sum_{i \in B} e_i \| \leq \| \sum_{i \in B \setminus A} e_i \| + \| \sum_{i \in A \setminus B} e_i \| \leq \frac{K^2}{\tau^2} \| \sum_{i \in A} e_i \|,
\]
and hence
\[\varphi(n) \leq \frac{K^2}{\tau^2}(1 + \frac{K}{\tau})\|\sum_{i \in A} e_i\|. \]

Hence from Lemma 6.2 and Remark 6.3 we deduce that \((e_i)\) has property \(P(\tau)\) with constant \((6K^5/\tau^4)(1 + K/\tau)\), and then it follows from Proposition 4.4 that \((e_i)\) is QG with constant \((1 + K)(1 + (12K^5/\tau^6)(1 + K/\tau))(1 + K/\tau)\).

To complete the proof that \((e_i)\) is democratic, suppose that \(n > N/2\) and that \(|A| = n\). There exists \(B \subset A\) with \(|B| = [N/2]\) such that \(G^\tau_{[N/2]}(\sum_{i \in A} e_i) = \sum_{i \in B} e_i\). Then \(\|\sum_{i \in B} e_i\| \leq (1 + K)\|\sum_{i \in A} e_i\|\) and hence
\[\varphi(n) \leq 3\varphi([N/2]) \leq 3\frac{K^2}{\tau^2}(1 + \frac{K}{\tau})\|\sum_{i \in B} e_i\| \]
\[\leq 3\frac{K^2(1 + K)}{\tau^2}(1 + \frac{K}{\tau})\|\sum_{i \in A} e_i\|. \]

This proves that \((e_i)\) is democratic with constant
\[3\frac{K^2(1 + K)}{\tau^2}(1 + \frac{K}{\tau}). \]

\[\square\]

Corollary 6.5. If \((e_i)^N_{i=1}\) is BAG(\(\tau\)) then \((e_i)^N_{i=1}\) is AG with AG constant depending only on \(\tau\) and the BAG constant of \((e_i)^N_{i=1}\).

Proof. This follows from the result [3, Theorem 3.3] that a quasi-greedy and democratic system is almost greedy with constant depending only on the quasi-greedy and democratic constants of the system. \(\square\)

7. **Branch semi-greedy systems**

For \(x = \sum_{i=1}^{N} a_i e_i\) and \(1 \leq n \leq N\), let us say that \(\Lambda^\tau(x, n) \subseteq \{1, \ldots, N\}\) is a weak thresholding set with weakness parameter \(\tau\) if \(|\Lambda^\tau(x, n)| = n\) and
\[\min\{|a_i| : i \in \Lambda^\tau(x, n)\} \geq \tau \max\{|a_i| : i \in \{1, \ldots, N\} \setminus \Lambda^\tau(x, n)\}. \]

We begin with a weak thresholding version of [2, Theorem 3.2]. We omit the proof as only minor changes to the proof given in [2] are required.
Theorem 7.1. Let \((e_i)_{i=1}^N\) be an AG system with QG constant \(K\) and democratic constant \(\Delta\). Then, for all \(x \in X\) and weak thresholding sets \(\Lambda^\tau(x,n)\), there exist scalars \(c_i (i \in \Lambda^\tau(x,n))\) such that
\[
\|x - \sum_{i \in \Lambda^\tau(x,n)} c_i e_i\| \leq (1 + 3K + 16K^2 \Delta / \tau) \sigma_n(x).
\]

Combining Theorem 6.4 and Corollary 6.5 yields the following.

Corollary 7.2. Suppose that \((e_i)_{i=1}^N\) is BAG(\(\tau\)) with constant \(K\). Then there exists a constant \(C(K, \tau)\) such that for all \(x \in X\) and weak thresholding sets \(\Lambda^\tau(x,n)\), there exist scalars \(c_i (i \in \Lambda^\tau(x,n))\) such that
\[
\|x - \sum_{i \in \Lambda^\tau(x,n)} c_i e_i\| \leq C(K, \tau) \sigma_n(x).
\]

The following definition generalizes the notion of semi-greedy basis introduced in [2, Section 3].

Definition 7.3. We say that \((e_i)\) is branch semi-greedy with weakness parameter \(\tau\) (BSG(\(\tau\))) and constant \(K\) if for all \(x \in X\) and \(0 \leq k \leq N\), there exist scalars \(c_1, \ldots, c_k\) such that
\[
\|x - k \sum_{i=1}^k c_i e_{\rho\tau x}(i)\| \leq K \sigma_k(x).
\]

Theorem 7.4. Let \((e_i)_{i=1}^N\) be a BSG(\(\tau\)) with constant \(K\). Then \((e_i)_{i=1}^N\) is superdemocratic, i.e. there exists a constant \(C > 0\) (depending only
on \(K, \tau, \) and \(\beta \) such that for all \(D \subseteq \{1, \ldots, N\} \), we have
\[
\varphi(|D|) \leq C \min_{\pm} \| \sum_{i \in D} \pm e_i \|.
\]

Proof. We assume for convenience that \(N \) is even. Suppose that \(A \subseteq \{1, \ldots, N/2\} \) and \(B \subseteq \{N/2 + 1, \ldots, N\} \) with \(|A| = |B| := k\). For any choice of signs, consider
\[
x := \frac{\tau}{2} \sum_{i \in A} \pm e_i + \sum_{i \in B} \pm e_i.
\]
Since \((e_i)_{i=1}^N \) is BSG(\(\tau \)) there exist scalars \(c_i (i \in B) \) such that
\[
\| \frac{\tau}{2} \sum_{i \in A} \pm e_i + \sum_{i \in B} c_i e_i \| \leq K \sigma_k(x),
\]
where \(K \) is the BSG(\(\tau \)) constant. Hence
\[
\| \sum_{i \in A} \pm e_i \| \leq \frac{2K\beta}{\tau} \sigma_k(x) \leq \frac{2K\beta}{\tau} \| \sum_{i \in B} \pm e_i \|.
\]
Similarly,
\[
\| \sum_{i \in B} \pm e_i \| \leq \frac{2K(\beta + 1)}{\tau} \| \sum_{i \in A} \pm e_i \|.
\]
Combining these inequalities, we get
\[
\| \sum_{i \in A} e_i \| \leq \frac{4K^2\beta(1 + \beta)}{\tau^2} \| \sum_{i \in A} \pm e_i \|
\]
and
\[
\| \sum_{i \in B} e_i \| \leq \frac{4K^2\beta(1 + \beta)}{\tau^2} \| \sum_{i \in B} \pm e_i \|.
\]
For \(1 \leq k \leq N/2 \), define
\[
\psi(k) := \max\{ \| \sum_{i \in D} e_i \| : D \subseteq \{1, \ldots, N/2\} \quad \text{or} \quad D \subseteq \{N/2 + 1, \ldots, N\}, |D| \leq k\}.
\]
By the triangle inequality, \(\varphi(n) \leq 4\psi(n/2) \leq 4\varphi(n/2) \) for \(1 \leq n \leq N \) provided \(n \) is even. From the above, we obtain
\[
\| \sum_{i \in D} \pm e_i \| \geq \frac{\tau^2}{4K^2\beta(1 + \beta)} \psi(|D|).
\]
for all \(D \subset \{1, \ldots, N/2\} \) and \(D \subset \{N/2 + 1, \ldots, N\} \). For \(D \subset \{1, \ldots, N\} \), set \(A := D \cap \{1, \ldots, N/2\} \) and \(B := D \cap \{N/2 + 1, \ldots, N\} \). Then, provided \(|D|\) is even, we obtain

\[
\| \sum_{i \in D} \pm e_i \| \geq \frac{1}{2(1 + \beta)} \left(\| \sum_{i \in A} \pm e_i \| + \| \sum_{i \in B} \pm e_i \| \right) \\
\geq \left(\frac{1}{2(1 + \beta)} \right) \left(\frac{\tau^2}{4K^2 \beta (1 + \beta)} \right) \phi(|D|/2) \\
\geq \frac{\tau^2}{8K^2 \beta (1 + \beta)^2} \frac{\phi(|D|)}{4}.
\]

\[\square\]

Minor adjustments to the previous proof yield the following stronger result which is needed below.

Proposition 7.5. Let \((e_i)_{i=1}^N\) be BSG(\(\tau\)) with constant \(K\). There exists \(C > 0\), depending only on \(K\), \(\tau\), and \(\beta\), such that

\[
\varphi(|D|) \min_{i \in D} |a_i| \leq C \| \sum_{i \in D} a_i e_i \|
\]

for all \(D \subset \{1, \ldots, N\} \) and all scalars \(a_i\) \((i \in D)\). In particular, \((e_i)\) has property \(P(\tau)\) (with constant depending only on \(K\), \(\tau\), and \(\beta\)).

The greedy approximants have the semigroup property: \(G_m(G_n(x)) = G_m(x)\) for \(m \leq n\) and \(x \in X\). However, branch greedy approximants \(G^*_m(x)\) satisfying our conditions (a)-(c) need not have the semigroup property, and this complicates the proof of Theorem 7.7 below. The following lemma circumvents this difficulty.

Lemma 7.6. Let \((e_i)_{i=1}^N\) be BSG(\(\tau\)) with constant \(K\). Suppose that \(1 \leq n \leq N\) and that \(n/2 \leq m \leq n\). Then for all \(x \in X\), we have

\[
\|G^*_m(x)\| \leq C \max_{m \leq k \leq n} \|G^*_k(G^*_n(x))\|
\]

where \(C\) depends only on \(K\), \(\tau\), and \(\beta\).

Proof. Let \(x := \sum_{i=1}^N a_i e_i\) have branch greedy ordering \(\rho^*\). Let \(k\) be the least integer such that \(\text{supp}(G^*_k(G^*_n(x))) \supseteq \text{supp}(G^*_m(x))\). Then \(G^*_k(G^*_n(x)) = \sum_{i \in A} a_i e_i\) for some \(A \subset \{1, \ldots, N\}\). From the definition
of k we get that
\begin{equation}
\min_{i \in A} |a_i| \geq \tau \min_{1 \leq i \leq m} |a_{\rho^r(i)}|.
\end{equation}
For some $B \subset \{1, \ldots, N\}$ we have
\begin{equation}
G_\tau^r(G_n^r(x)) = G_m^r(x) + \sum_{i \in B} a_i e_i.
\end{equation}
Note that by definition of the branch greedy ordering,
\begin{equation}
\tau \max_{i \in B} |a_i| \leq \min_{1 \leq i \leq m} |a_{\rho^r(i)}|
\end{equation}
and that $|B| \leq n/2 \leq m \leq k$. Combining (11) and (13), we have that
\begin{equation}
\tau^2 \max_{i \in B} |a_i| \leq \min_{1 \leq i \leq m} |a_i|.
\end{equation}
Hence, using Proposition 7.5, there exists $C_1(K, \tau, \beta)$ such that
\begin{align*}
\| \sum_{i \in B} a_i e_i \| &\leq 2(\max_{i \in B} |a_i|) \varphi(|B|) \\
&\leq 2 \frac{\tau^2}{\tau^2} \left(\min_{i \in A} |a_i| \right) \varphi(k) \\
&\leq C_1 \frac{\tau^2}{\tau^2} \| \sum_{i \in A} a_i e_i \| \\
&= \frac{C_1}{\tau^2} \| G_\tau^r(G_n^r(x)) \|.
\end{align*}
Finally, (12) and the triangle inequality yield
\begin{equation}
\| G_m^r(x) \| \leq (1 + C_1 \frac{\tau}{\tau^2}) \| G_\tau^r(G_n^r(x)) \|.
\end{equation}

Finally, we give a partial answer to the open question raised after Definition 7.3 for a BSG(τ) basis with estimates involving the cotype q constant of X. Let $2 \leq q < \infty$. The cotype q constant C_q of X is the smallest constant such that
\begin{equation}
\left(\sum_{j=1}^n \| x_j \|^q \right)^{\frac{1}{q}} \leq C_q (\text{Ave}_{\epsilon_j = \pm 1} \| \sum_{j=1}^n \epsilon_j x_j \|^q)^{\frac{1}{q}}
\end{equation}
for all $x_1, \ldots, x_n \in X$ and $n \in \mathbb{N}$. We recall that an infinite-dimensional Banach space X has finite cotype, i.e., $C_q < \infty$ for some $q < \infty$, if and only if there exist $n \in \mathbb{N}$ and $\epsilon > 0$ such that X does not contain a $(1 + \epsilon)$-isomorphic copy of ℓ_∞^n [10].
Theorem 7.7. Let $2 \leq q < \infty$. Suppose that $(e_i)_{i=1}^N$ is BSG(τ) with constant K. Then $(e_i)_{i=1}^N$ is AG with constant depending only on K, τ, β, q, and the cotype q constant C_q of X.

Proof. By the previous result the superdemocratic constant S depends only on K, β, and τ. It is shown in [3, Proposition 4.1] that the fundamental function of a superdemocratic basis has the lower regularity property, i.e. φ satisfies
\[(15) \quad \varphi(mn) \geq \frac{1}{S^2C_q}m^{1/q}\varphi(n) \quad (m, n \geq 1).\]
We may assume that N is even. We shall not keep track of the constants, so C_1, C_2 etc., will denote constants depending only on K, τ, β, q, and C_q. Recall that a system is AG if and only if it is QG and democratic [3, Theorem 3.3]. Since (e_i) is superdemocratic, it suffices to show that (e_i) is QG. Let $F \subset \{1, \ldots, N/2\}$ and let $n := |F|$. Consider a vector $x = \sum_{i \in F} a_i e_i$ with $\|x\| = 1$ and supp$(x) \subset F$. Let ρ^τ be the branch greedy ordering for x and let $1 \leq k \leq n$. Note that $|e_i^\tau(x - G_k^\tau(x))| \leq |a_{\rho^\tau(k)}|/\tau$ $(1 \leq i \leq N)$. Hence
\[\|x - G_k^\tau(x)\| \leq \frac{2}{\tau}|a_{\rho^\tau(k)}|\varphi(n - k).\]
By Proposition 7.5,
\[\|G_k^\tau(x)\| \geq \frac{1}{C_1} (\min_{1 \leq i \leq k} |a_{\rho^\tau(i)}|)\varphi(k) \geq \frac{\tau}{C_1}|a_{\rho^\tau(k)}|\varphi(k).\]
Hence
\[\frac{\|G_k^\tau(x)\| - 1}{\|G_k^\tau(x)\|} \leq \frac{\|x - G_k^\tau(x)\|}{\|G_k^\tau(x)\|} \leq \frac{2C_1 \varphi(n - k)}{\tau^2 \varphi(k)}.\]
By (15) the right-hand side tends to zero as $k/n \to 1$. Hence there exists $\alpha < 1$ (depending on K, τ, β, q, and C_q) such that
\[(16) \quad \|G_k^\tau(x)\| \leq C_2 \quad \text{for all } k \geq \alpha n.\]
Now we iterate (16). Let $n_1 := [\alpha n]$ and suppose $k \geq \alpha^2 n$. By Lemma 7.6 and (16) we get
\[\|G_k^\tau(x)\| \leq \max_{\alpha^2 n \leq j \leq n_1} C_3\|G_j^\tau(G_{n_1}^\tau(x))\| \leq C_3C_2\|G_{n_1}^\tau(x)\| \leq C_3C_2^2.\]
Clearly, we can continue iterating (16) in this way. Iterating m times, where $\alpha^m \leq 1/2$, we get

\begin{equation}
\|G^k_{\tau}(x)\| \leq C_4 \quad \text{for all } k \geq n/2.
\end{equation}

Fix $1 \leq k \leq n$. Let $A := \{\rho^\tau(1), \ldots, \rho^\tau(k)\}$ and let $B := \{\rho^\tau(k+1), \ldots, \rho^\tau(2k)\}$. Choose $D \subseteq \{N/2+1, \ldots, N\}$ with $|D| = k$ and consider

$$y := \frac{\tau}{2} \sum_{i \in F \setminus A} a_i e_i + |a_{\rho^\tau(k)}| \left(\sum_{i \in D} e_i\right).$$

Then

\begin{equation}
\sigma_k(y) \leq \left\| \frac{\tau}{2} x + |a_{\rho^\tau(k)}| \left(\sum_{i \in D} e_i\right) \right\| \leq \frac{\tau}{2} + |a_{\rho^\tau(k)}| \phi(k).
\end{equation}

Since (e_i) is BSG(τ) and $D = \{\rho^\tau_y(i): 1 \leq i \leq k\}$ there exist scalars c_i ($i \in D$) such that

\begin{equation}
\left\| \frac{\tau}{2} \sum_{i \in F \setminus A} a_i e_i + \sum_{i \in D} c_i e_i \right\| \leq K \sigma_k(y).
\end{equation}

(18) and (19) yield

$$\frac{\tau}{2} \left\| \sum_{i \in F \setminus A} a_i e_i \right\| \leq K \beta \left(\frac{\tau}{2} + |a_{\rho^\tau(k)}| \phi(k)\right).$$

Hence

\begin{equation}
\|G^k_{\tau}(x)\| = \left\| \sum_{i \in A} a_i e_i \right\| \leq 1 + K \beta \left(\frac{\tau}{2} + |a_{\rho^\tau(k)}| \phi(k)\right).
\end{equation}

Let $z := x - \sum_{i \in A} a_i e_i$. Then $\sigma_k(z) \leq \|x\| \leq 1$. Since (e_i) is BSG(τ) there exist scalars (c_i) ($i \in B$) with $\|z - \sum_{i \in B} c_i e_i\| \leq K \sigma_k(z) \leq K$.

Hence

\begin{equation}
\left\| \sum_{i \in A} a_i e_i + \sum_{i \in B} c_i e_i \right\| = \|x - (z - \sum_{i \in B} c_i e_i)\| \leq 1 + K.
\end{equation}

Let $E := \{i \in B: |c_i| \geq \tau^2 |a_{\rho^\tau(k)}|\}$. Note that $E \supseteq \{i \in B: |c_i| \geq \tau \min_{1 \leq j \leq k} |a_{\rho^\tau(j)}|\}$ Hence there exist $E_1 \subseteq E$ and m with $k \leq m \leq 2k$ such that

$$\sum_{i \in A} a_i e_i + \sum_{i \in E_1} c_i e_i = G^\tau_m \left(\sum_{i \in A} a_i e_i + \sum_{i \in E_1} c_i e_i\right)$$
So (17) and (21) yield
\begin{equation}
\| \sum_{i \in A} a_i e_i + \sum_{i \in E_1} c_i e_i \| \leq C_4(1 + K).
\end{equation}

On the other hand, Proposition 7.5 yields
\begin{equation}
\tau^2 |a_\rho^{\tau(k)}| \varphi(k) \leq C_1 \| \sum_{i \in A} a_i e_i + \sum_{i \in E_1} c_i e_i \|.
\end{equation}

Combining (20), (22), and (23), we get
\begin{equation*}
\| G_\tau^k(x) \| \leq C_5. \text{ By Proposition 7.5 again, } (e_i) \text{ has property } P(\tau). \text{ Thus, by the proof of Proposition 4.4, we get that the greedy approximants } G_\tau^k(x) \text{ satisfy } \| G_\tau^k(x) \| \leq C_6.
\end{equation*}

Similarly, we get \(\| G_\tau^k(x') \| \leq C_5 \) for all \(x' = \sum_{i \in F'} a_i e_i \), where \(F' \subset \{ N/2 + 1, \ldots, N \} \).

Finally, consider \(x = \sum_{i=1}^N a_i e_i \) and set \(x = y + z \), where \(y = \sum_{i=1}^{N/2} a_i e_i \) and \(z = \sum_{i=N/2+1}^N a_i e_i \). Then \(G_\tau^k(x) = G_\tau^k_1(y) + G_\tau^k_2(z) \), for some \(k_1, k_2 \) with \(k = k_1 + k_2 \). Thus,
\begin{align*}
\| G_\tau^k(x) \| & \leq \| G_\tau^k_1(y) \| + \| G_\tau^k_2(z) \| \\
& \leq C_6(\| y \| + \| z \|) \\
& \leq C_6(1 + 2\beta)\| x \|.
\end{align*}

Thus, \((e_i)_{i=1}^N \) is greedy with constant \(C_6(1 + 2\beta) \).

Combining Theorem 7.2 and Theorem 7.7 yields the following.

Corollary 7.8. Let \((e_n) \) be a Schauder basis for a Banach space of finite cotype. Then \((e_n) \) is semi-greedy if and only if \((e_n) \) is BSG(\(\tau \)).

References

Department of Mathematics, University of South Carolina, Columbia, SC 29208, U.S.A.
E-mail address: dilworth@math.sc.edu

Institute of Mathematics, Bulgarian Academy of Sciences, Sofia, Bulgaria.
Current address: Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A.
E-mail address: denka@math.uiuc.edu

Department of Mathematics, Texas A & M University, College Station, TX 78712, U.S.A.
E-mail address: thomas.schlumprecht@math.tamu.edu

Institute of Applied Mathematics, Warsaw University, 02-097 Warsaw, Banacha 2, Poland.
E-mail address: wojtaszczyk@mimuw.edu.pl