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Abstract. Let (Σ, σ) be a dynamical system, and let U ⊂ Σ. Consider the survivor
set

ΣU = {x ∈ Σ | σn(x) /∈ U for all n}
of points that never enter the subset U . We study the size of this set in the case when Σ
is the symbolic space associated to a self-affine set Λ, calculating the dimension of the
projection of ΣU as a subset of Λ and finding an asymptotic formula for the dimension
in terms of the Käenmäki measure of the hole as the hole shrinks to a point. Our results
hold when the set U is a cylinder set in two cases: when the matrices defining Λ are
diagonal; and when they are such that the pressure is differentiable at its zero point,
and the Käenmäki measure is a strong-Gibbs measure.

1. Introduction

Study of dynamical systems with holes begins from the question of [19]: Assume you
are playing billiards on table where trajectories of balls are unstable with respect to the
initial conditions, and assume further, that a hole big enough for a ball to fall through
is cut off the table. What is the asymptotic behaviour of the probability that at time
t a generic ball is inside some measurable set on the table, given that it is still on the
table after time t? This and related questions have been studied in many dynamical
systems, see [6, 5, 7, 3] to name only few of many.

We will focus on a related problem of studying the set of those points that never
enter the hole. To put this in rigorous terms, consider a continuous dynamical system
T : Λ → Λ with a hole, the hole being an open subset U ⊂ Λ. Assume further, that
there is an ergodic measure µ on (T,Λ). How large is the survivor set,

ΛU = {x ∈ Λ | T n(x) /∈ U for any n}?
By Poincaré’s recurrence theorem, this set will be of zero µ-measure. Assuming that Λ
is a space where the notions of box-counting or Hausdorff dimension can be defined,
we can continue by asking about the size of the survivor set in terms of its dimension.
This set has also been studied in several contexts [21, 18], and in fact it turns out that,
for example, the set of badly approximable points in Diophantine approximation can
be written in terms of survivor sets under the iteration by the Gauss map [13].

The asymptotic speed at which the measure µ of the system escapes through the hole
U is the escape rate

rµ(U) = − lim
n→∞

1
n

log µ{x ∈ Λ | T i(x) /∈ U for i < n}
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Self-affine sets with holes

(when the limit exists). In many systems the escape rate can be described in terms
of the µ-measure of the hole. In particular, often the escape rate and measure of the
hole can also be used to quantify the asymptotic rate of decrease of the dimension
deficit; that is, speed at which the dimension of the system with a hole approaches the
dimension of the full system [16, 4, 12, 8].

Recently, some interest has arisen in studying classical dynamical problems on self-
affine fractal sets, under the dynamics that naturally arises from the definition of the
set via an iterated function system [17, 2, 11]. (For definitions, see Section 2.) This is
an interesting example to consider since this dynamical system has an easy symbolic
representation in terms of a full shift space, the dynamics of which is generally very
well understood. In the presence of a separation condition the shift space is in fact
conjugate to the dynamical system on the fractal set. However, in the affine case this
dynamical system is not conformal. This means that a lot of the standard methodology
cannot be carried through – for example, the natural geometric potential is not in
general multiplicative or commutative, and the dimension maximizing measure is not
necessarily a Gibbs measure. In this article, as Theorems 4.11 and 2.2, we work out the
asymptotic rate of decrease for the dimension deficit, for some classes of self-affine sets.
As is to be expected from the historical point of view, the deficit is comparable to the
measure of the hole, up to a constant which we quantify explicitly when possible. Our
proofs work in the case when the iterated function system consists of diagonal matrices
(Theorem 4.11, for a simpler corollary see Theorem 2.1) and in the case when the
pressure corresponding to the iterated function system has a derivative at its zero point,
and the Käenmäki measure is a strong-Gibbs measure (Theorem 2.2, for definitions see
Section 2).

2. Problem set-up and notation

Let {A1, . . . , Ak} be a finite set of contracting non-singular d × d matrices, and let
(v1, . . . , vk) ∈ Rd. Consider {f1, . . . , fk}, the iterated function system (IFS) of the affine
mappings fi : Rd → Rd, fi(x) = Ai(x) + vi for i = 1, . . . , k. It is a well known fact that
there exists a unique non-empty compact subset Λ of Rd such that

(2.1) Λ =
k⋃
i=1

fi(Λ).

This set has a description in terms of the shift space. Let Σ be the set of one-
sided words of symbols {1, . . . , k} with infinite length, i.e. Σ = {1, . . . , k}N, and Σn =
{1, . . . , k}n. Let us denote the left-shift operator on Σ by σ. When applied to a finite
word ı ∈ Σn, σ(ı) = i2 . . . in, the word of shorter length with the first digit deleted. Let
the set of words with finite length be Σ∗ =

⋃∞
n=0 Σn with the convention that the only

word of length 0 is the empty word. Denote the length of ı ∈ Σ∗ by |ı|, and for finite or
infinite words ı, , let ı∧  denote their joint beginning. If ı can be written as ı = k for
some finite or infinite word k, denote  < ı. We define the cylinder sets of Σ in the usual
way, that is, by setting [ı] = { ∈ Σ : ı < } for ı ∈ Σ∗. For a word ı = (i1, . . . , in) with
finite length let fı be the composition fi1 ◦ · · · ◦ fin and Aı be the product Ai1 · · ·Ain .
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For ı ∈ Σ∗ ∪ Σ, denote by ı|n the first n symbols of ı, i.e. ı|n = (i1, . . . , in). We define
ı|0 = ∅, A∅ = Id, the identity matrix, and f∅ = Id, the identity function.

We define a natural projection π : Σ→ Λ by

π(ı) =
∞∑
k=1

Aı|k−1vik ,

and note that Λ = ∪ı∈Σπ(ı).
Denote by σi(A) the i-th singular value of a matrix A, i.e. the positive square root of

the i-th eigenvalue of AA∗, where A∗ is the transpose of A. We note that σ1(A) = ‖A‖,
and σ2(A) = ‖A−1‖−1, where ‖ · ‖ is the usual matrix norm induced by the Euclidean
norm on Rd. Moreover, |σ1(A) · · ·σd(A)| = | detA|. For s ≥ 0 define the singular value
function ϕs as follows

(2.2) ϕs(A) := σ1 · · ·σs−bscdse ,

where d·e and b·c are the ceiling and floor function. Further, for an affine IFS, define
the pressure function

(2.3) P (s) = lim
n→∞

1

n
log
∑
ı∈Σn

ϕs(Aı).

When it is necessary to make the distinction, we will write P (s, (A1, . . . , Ak)). Given a
measure ν on Σ, we define the entropy

hν = − lim
n→∞

1

n

∑
i∈Σn

ν[ı] log ν[ı],

and energy

Eν(t) = lim
n→∞

1

n

∑
ı∈Σn

ν[ı] logϕt(Aı).

By a result of Käenmäki [14], for all s ≥ 0 equilibrium or Käenmäki measures exist,
that is, for all s there is a measure µ = µ(s) on Σ such that

P (s) = Eµ(s) + hµ.

A classical result of Falconer [9] (see also [20]) asserts that when ‖Ai‖ < 1/2, for
almost all (v1, . . . , vk) ∈ Rdk, the dimension of the self-affine set Λ is given by the s for
which P (s) = 0 (or d if the number s is greater than d), and Käenmäki proves that
dim Λ = dimµ for the equilibrium measure at this value of s.

We will need the notion of a Bernoulli measure, that is, given a probability vector
(p1, . . . , pk) the Bernoulli measure p is the probability measure on Σ giving the weight
pı = pi1 · · · pin to the cylinder [ı]. We will also need the notion of an s-semiconformal
measure, that is, a measure µ for which constants 0 < c ≤ C < ∞ exist such that for
all ı ∈ Σ∗,

ce−|ı|P (s)ϕs(Aı) ≤ µ([ı]) ≤ Ce−|ı|P (s)ϕs(Aı).

In this terminology we are following [15], where the existence of such measures for an
affine iterated function system is investigated. We call an s-semiconformal measure µ a
strong-Gibbs measure, if it is both s-semiconformal and also a Gibbs measure for some
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multiplicative potential. We now define the survivor sets we will be interested in. Fix
some q ∈ Σq and let U = [q]. In the symbolic space Σ we define the survivor set as

ΣU = {ı ∈ Σ | σi(ı) /∈ U for all i}.
Whenever it is the case that fi(Λ) ∩ fj(Λ) = ∅ for i 6= j, then it is possible to define
a dynamical system T : Λ → Λ such that for x ∈ fi(Λ) we let T (x) = f−1

i (x). In this
case it is also true that the projection map π is a bijection, and the dynamical system
(Λ, T ) is conjugate to the full shift (Σ, σ), that is, π ◦ σ = T ◦ π. Hence in this case the
survivor sets in the symbolic space (Σ, σ) and on the fractal (Λ, T ) correspond to each
other, that is,

π(Σ[q]) = {x ∈ Λ | T i(x) /∈ π([q]) for all i}.
This is why we define, also in the general situation, the survivor set on Λ to be
Λπ[q] = π(Σ[q]). In the following we will be interested in the dimension of the set
π(Σ[q]), regardless of whether or not the projection π is bijective and the dynamics
T well-defined.

We can now formulate our main theorems concerning the Hausdorff dimension of the
survivor set. In the following the point q will be fixed and it will cause no danger of
misunderstanding to denote, Λπ[q|q ] = Λq, where q is a positive integer. In Section 4, as
Theorem 4.11, we prove a statement for diagonal matrices. However, the formulation of
the theorem in the diagonal case requires technical notation that we want to postpone
introducing. For the full statement we refer the reader to Theorem 4.11, here we only
give the special case where the diagonal elements are in the same order.

Theorem 2.1. Let Λ be a self-affine set corresponding to an iterated function system
{A1 + v1, . . . , Ak + vk} with ‖Ai‖ < 1

2
for all i = 1, . . . , k, and let q ∈ Σ. Assume

that Ai = diag(ai1, . . . , a
i
d) are diagonal for all i = 1, . . . , k, and, furthermore, that the

diagonal elements are in the same increasing order ai1 ≤ . . . ≤ aid in all of the matrices.
Denote by µ the Käenmäki measure for the value of s for which P (s) = 0. Then, for
Lebesgue almost all (v1, . . . , vk) ∈ Rdk,

lim
q→∞

dim Λ− dim Λq

µ[q|q]
=

{
1
Z
, q is not periodic

1−µ[q|`]
Z

, q is periodic with period `,

where the explicit constant Z, which only depends on the diagonal elements of the ma-
trices Ai, is defined in Remark 4.13.

Theorem 2.2. Let Λ be a self-affine set corresponding to an iterated function system
{A1 + v1, . . . , Ak + vk} with ‖Ai‖ < 1

2
for all i = 1, . . . , k, and let q ∈ Σ. Denote by

µ the Käenmäki measure for the value of s for which P (s) = 0, assume also that P
is differentiable at this point. Assume that µ is a strong-Gibbs measure - in particu-
lar, a Gibbs measure for a multiplicative potential ψ. Then, for Lebesgue almost all
(v1, . . . , vk) ∈ Rdk,

lim
q→∞

dim Λ− dim Λq

µ[q|q]
=

{
− 1
P ′(s)

, when q is not periodic

−1−ψ(q|`)
P ′(s)

, when q is periodic with period `.

This theorem will be proved in Section 5.
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Remark 2.3. (1) It might be tempting to think that, since the result above holds for
diagonal matrices it would be easy to extend it to the case of upper triangular
matrices. The temptation is due to [10, Theorem 2.5], which states that for
an iterated function system with upper triangular matrices the pressure only
depends on the diagonal elements of the matrices. However, this does not seem
straightforward, see Remark 4.14.

(2) Notice that in the statements of Theorems 2.2 and 2.1 the normalizing factor in
the denominator of the limit plays the same role as the Lyapunov exponent in,
for example, [12].

3. The pressure formula for the dimension and other facts

From here on we consider the point q ∈ Σ fixed, and denote Λπ[q|q ] = Λq for a choice
of positive integer q. We start by recalling a pressure formula for the dimension of the
surviving set.

Denote, for n ∈ N,

Σn,q = {ı|n ∈ Σn | σi(ı) /∈ [q|q] for all i}.
Define the reduced pressure

Pq(t) = lim
n→∞

1

n
log

∑
ı∈Σn,q

ϕt(Aı).

Theorem 3.1. Let q ∈ Σ, q ∈ N. For an iterated function system {A1 +v1, . . . , Ak+vk}
with ‖Ai‖ < 1

2
, for Lebesgue almost all (v1, . . . , vk) ∈ Rdk,

dim Λq = min{d, tq}
where tq is the unique value for which Pq(tq) = 0.

Proof. This is [15, Theorem 5.2]. �

Remark 3.2. Notice that as q →∞, the reduced pressure approaches the full pressure,
and hence the dimension of the surviving set Λq approaches the dimension of Λ.

Remark 3.3. The set Σn,q can be written in an equivalent form

Σn,q = {ı|n ∈ Σn | ı ∈ Σ is such that σi(ı) /∈ [q|q] for all i < n},
since any point that does not enter the hole in the first n iterations can be completed to
a word that never enters the hole.

The following facts about the Käenmäki measure are standard.

Lemma 3.4. Consider the Käenmäki measure µ at the value s0, where s0 is the root
of P .

a) When there is some A such that Ai = A for all i = 1, . . . , k, then µ is the
Bernoulli measure with equal weights.

b) When Ai are diagonal matrices with the size of the diagonal elements in the same
order, then µ is a Bernoulli measure with cylinder weights ϕs0(A1), . . . , ϕs0(Ak).

Proof. a) Immediate.
—5—
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b) In the diagonal case the singular value function is multiplicative. Hence the zero

of the pressure is obtained at the point where
∑d

i=1 ϕ
s(Ai) = 1, so that ϕs0(Ai)

define a probability vector. The Käenmäki measure is a Bernoulli measure with
these weights.

�

Define the escape rate of a measure ν on Σ as

rν(U) = − lim
n→∞

1

n
log ν{ı ∈ Σ | σi(ı) /∈ U for i < n},

when the limit exists. We quote the following special case of Ferguson and Pollicott [12].
In the theorem we make a reference to P (ψ), the pressure corresponding to a potential
ψ. This is defined analogously to P (s) in (2.3), but with ψ in place of ϕs. We note that
we will, in fact, only apply Theorem 3.5 when P (ψ) = P (s).

Theorem 3.5. Let q ∈ Σ and let Uq = [q|q]. Consider a multiplicative potential ψ for
which P (ψ) = 0. For a Gibbs measure µ on Σ, the escape rate rµ(Uq) always exists and

lim
q→∞

rµ(Uq)

µ(Uq)
=

{
1, if q is not periodic

1− ψ(q|`), if q is periodic with period `.

Proof. See [12, Proposition 5.2 and Theorem 1.1] or see [16, Theorem 2.1]. �

Notice that in order for us to apply this theorem in our set-up it is essential that the
measure µ is also s-semiconformal.

Lemma 3.6. Let q ∈ Σ and let Uq = [q|q]. Let s be where the pressure P (s) = 0. Let µ
be the Käenmäki measure at this value s, and assume that it is a strong-Gibbs measure,
in particular, Gibbs for some multiplicative potential ψ. Then

lim
q→∞

P (s)− Pq(s)
µ(Uq)

=

{
1, if q is not periodic

1− ψ(q|`), if q is periodic with period `.

Proof. We have, using the s-semiconformal property

P (s)− Pq(s) = 0− lim
n→∞

1
n

log
∑
ı∈Σn,q

ϕs(Aı)

= − lim
n→∞

1
n

log
∑
ı∈Σn,q

µ[ı]

= rµ([q|q]).
The proof is now finished by Theorem 3.5. �

4. Diagonal matrices

Let us start from a more detailed description of the singular value pressure in the
diagonal case. Let D = (e1, . . . , ed) ∈ Sd be a permutation of {1, . . . , d}. For a diagonal
matrix A = diag(aj) denote

ϕsD(A) = ae1 · . . . · aebsc · a
s−bsc
ebsc+1

.
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Naturally,

ϕsD(A) ≤ ϕs(A) ≤
∑
D

ϕsD(A).

Hence, if we define the D-pressure analogously to the singular value pressure

PD(s) = lim
n→∞

1

n
log
∑
ı∈Σn

ϕsD(Aı)

and the reduced D-pressure analogously to the reduced pressure

PD,q(s) = lim
n→∞

1

n
log

∑
ı∈Σn,q

ϕsD(Aı)

then

P (s) = max
D∈Sd

PD(s), Pq(s) = max
D∈Sd

PD,q(s).

In particular, denoting by tDq the zero of PD,q, we have

dim Λq = min{d,max
D

tDq }

whenever the assumptions of Theorem 3.1 are satisfied.
Thus, in order to find the zero of Pq it will be enough for us to be able to find the

zeroes tDq for all choices of D. Which will be significantly simplified by the fact that,
contrary to ϕs, ϕsD is a multiplicative potential. Moreover, to prove Theorem 2.1 we do
not need to check all possible D: as PD,q → PD when q → ∞, it is enough for us to
only consider those D for which PD(s0) = P (s0) = 0.

Let us start by denoting by µD the Bernoulli measure with the probability vector
(pD1 , . . . , p

D
k ) = (ϕs0D (A1), . . . , ϕs0D (Ak)). Because ϕs0D is multiplicative, as in Lemma 3.4

we see that this really is a probability vector. Observe that even though we only consider
D for which PD(s0) = 0, this measure can still in general depend on D.

Recall Lemma 3.6, and notice that by the multiplicativity of the potential ϕsD, the
proof of Lemma 3.6 goes through unaltered for µD, the D-pressure and reduced D-
pressure. Furthermore, µD is a Gibbs measure for the potential ϕsD.

The idea of the proof of Theorem 2.1 is as follows. We fix some D for which PD(s0) = 0
and then we will bound s0 − tDq from above and below with bounds, the difference
between which approaches 0 faster than −PD,q(s0) as q →∞. This will let us estimate
the limit of (s0 − tDq )/µD([q|q]). To simplify the notation, we will skip the index D in
the rest of this section – but the reader should remember that the potential ϕs we work
with is not the singular value function but an auxiliary multiplicative potential which
is only equal to the singular value function in the case when the diagonal elements
(ai1, . . . , a

i
d) are in the same order for all i.

We need some notation. Denote by ∆ the simplex of length k probability vectors.
Given a finite word ı ∈ Σn, let

freq(ı) =
1

n
(#{i ∈ {1, . . . , n} | ıi = 1}, . . . ,#{i ∈ {1, . . . , n} | ıi = k}) ∈ ∆,
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and for an infinite word ı ∈ Σ,

freq(ı) = lim
n→∞

1

n
freq(ı|n) ∈ ∆,

if the limit exists. Fix ε > 0. Let E = E(ε) be ε-dense in ∆. Then the number of
elements of E, #E = ε1−k =: N . Fix α ∈ ∆, and denote

Fn(α) = {ı ∈ Σn | max
i
| freq(ı)(i)− α(i)| < ε},

where α(i) is the i-th coordinate of α and the same for freq(ı). Assume, without loss of
generality, that E was chosen in such a way that every point in Σn belongs to at most
some Kd of the sets Fn(α), where α ∈ E(ε), with the constant Kd not depending on n.

Further, given some α ∈ ∆, denote

A(α) = diag((a1
e1

)α(1) · · · (ake1)
α(k), . . . , (a1

ed
)α(1) · · · (aked)α(k))

This is a kind of a dummy matrix simulating the frequency α. Finally, let o(ε) be a
function that approaches 0 as ε→ 0, and o(n) a function that approaches 0 as n→∞.

Lemma 4.1. At a given scale we can approximate P (s) by sequences of only one fre-
quency; that is, given ε > 0 and n > 0, there is α ∈ E(ε) such that the numbers

1

n
log
∑
ı∈Σn

ϕs(Aı),
1

n
log

∑
ı∈Fn(α)

ϕs(Aı), and
1

n
log

∑
ı∈Fn(α)

ϕs(A(α))n

are all o(ε, n)-close to each other. The same statement holds when we restrict all these
sums to Σn,q.

Proof. Fix ε > 0 and n > 0. Notice that, when |α− freq(ı)| < ε for ı ∈ Σn, then

(4.1) cεn1 ϕ
s(A(α))n ≤ ϕs(Aı) ≤ cεn2 ϕ

s(A(α))n,

for constants c1, c2 > 0 that do not depend on n and ε. Furthermore, for all α ∈ E∑
ı∈Fn(α)

ϕs(Aı) ≤
∑
ı∈Σn

ϕs(Aı) ≤
∑
α∈E

∑
ı∈Fn(α)

ϕs(Aı).

As E is a finite set, there exists α for which∑
ı∈Fn(α)

ϕs(Aı) ≥
1

#E

∑
ı∈Σn

ϕs(Aı)

and we are done. The proof for sums restricted to Σn,q instead of Σn is exactly the
same. �

Fix ε > 0 and n > 0. Define g̃s, gsq : ∆→ R by setting for all α ∈ ∆

g̃s(α) =
1

n
log

∑
ı∈Fn(α)

ϕs(Aı) and gsq(α) =
1

n
log

∑
ı∈F q

n(α)

ϕs(Aı)

where F q
n(α) ⊂ Σn,q is defined analogously to Fn(α). Further, for α ∈ ∆, denote

gs(α) = f(α) + 〈a(s), α〉
—8—
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for f(α) = −
∑k

i=1 α(i) logα(i) and

a(s) = (log(a1
e1
· · · (a1

edse
)s−bsc, . . . , log(ake1 · · · (a

k
edse

)s−bsc).

By virtue of (4.1), for n large,

(4.2) |g̃s(α)− gs(α)| < o(ε, n).

Given s ≥ 0, denote by αs the point of ∆ where gs achieves maximum, and by αsq
the point (or one of the points, if it is not unique) of ∆ where gsq achieves maximum.
Observe that those are (almost exactly) the maximizing frequencies given by Lemma
4.1. Indeed, for the latter this is obvious, while for the former we have #Fn(α) =
exp(n(−

∑
i αi logαi) + o(ε)), hence maximizing gs means (almost) maximizing the

sum
∑

ı∈Fn(α) ϕ
s(Aı).

Lemma 4.2. For any s, t, there exists w = ws > 0 depending on only one of the
parameters, such that

|αs − αt| ≤ |a(s)− a(t)|
2w

and

gs(αs) ≥ gs(αt) +
|a(s)− a(t)|2

4w
.

Proof. Note that as a function of α, the function gs : ∆ → R is strictly concave for
every s, so that there exists a number w = ws > 0 such that for the second differential
in direction e,

inf
α,e
D2
eg

s(α) ≤ −2w < 0.

That means that

(4.3) gs(α) ≤ gs(αs)− w|α− αs|2.

Next fix t and s and notice that

gt(αt) = f(αt) + 〈a(t), αt〉 = gs(αt) + 〈(a(s)− a(t)), αt〉
≤ gs(αs)− w|αt − αs|2 + 〈(a(t)− a(s)), αt〉.

If the first claim does not hold, that is, |αt − αs| > |a(s)− a(t)|/(2w), we obtain from
the above

gt(αt) < gs(αs)− |a(s)− a(t)|2

4w
+ 〈(a(s)− a(t)), αt〉 < gt(αs),

which is a contradiction with the maximality of αt. The second claim is immediate from
here. �

Lemma 4.3. There is a constant L such that for all s, t ≥ 0,

gs(αs)− gt(αt) ≤ L|a(s)− a(t)|.
—9—
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Proof. By the definition of gs and compactness of ∆, there is an L such that

gs(αs)− gt(αs) = 〈a(s)− a(t), αs〉 ≤ L|a(s)− a(t)|.
Furthermore, by maximality of αt,

gs(αs)− gt(αs) ≥ gs(αs)− gt(αt).
�

Lemma 4.4. The functions gs and gsq are good approximations to P (s) and Pq(s). That
is,

P (s) = gs(αs) + o(ε, n) and Pq(s) = gsq(α
s
q) + o(ε, n).

Proof. The second part of the assertion follows from

max
α

eng
s
q(α) ≤

∑
ı∈Σn

q

ϕs(Tı) ≤
∑
α∈E(ε)

eng
s
q(α) ≤ ε1−k ·max

α∈∆
eng

s
q(α).

This calculation also applies to g̃s, and by (4.2) gs can be approximated o(ε, n)-closely
by g̃s. �

Lemma 4.5. Let s0 satisfy P (s0) = 0. The distance between the frequencies maximizing
gs0 and gs0q is controlled by Pq(s0). That is,

|αs0 − αs0q | ≤
(
−Pq(s0)

ws0

)1/2

+ o(ε, n).

Proof. Notice that by Lemma 4.4 and (4.3)

gs0q (αs0q ) = Pq(s0) + o(ε, n) = P (s0) + Pq(s0) + o(ε, n)

= gs0(αs0) + Pq(s0) + o(ε, n)

≥ gs0(αs0q ) + ws0(α
s0
q − αs0)2 + Pq(s0) + o(ε, n).

Solve for |αs0q − αs0| and recall that

gs0q (αs0q ) ≤ gs0(αs0q ),

(because the sum in definition of gsq is over a smaller set F q
n) to arrive at the conclusion.

�

For the rest of the section, fix s0 to satisfy P (s0) = 0 and define t̃ = t̃q through

Pq(s0) + 〈(a(t̃)− a(s0)), αs0〉 = 0.

Remark 4.6. Notice that

〈(a(t̃)− a(s0)), αs0〉 = (t̃− s0)〈(log a1
eds0e

, . . . , log akeds0e
), αs0〉.

Furthermore, from the definition of t̃,

t̃− s0 =
−Pq(s0)

〈(log a1
eds0e

, . . . , log akeds0e
), αs0〉

.

In order to prove Theorem 2.1 we need to compare s0 and tq. By the above remark,
in fact it suffices to compare t̃ and tq. The next Lemma gives us a tool to do that.
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Lemma 4.7. There are constants 0 < c ≤ C <∞ such that

c|Pq(t̃)| ≤ |tq − t̃| ≤ C|Pq(t̃)|.
Proof. It is standard to check that there are 0 < b ≤ B <∞ such that for all ε > 0, n,

bεn ≤
∑

ı∈Σn,q
ϕt+ε(Aı)∑

ı∈Σn,q
ϕt(Aı)

≤ Bεn.

It follows that there are 0 < c ≤ C < ∞ such that for all t between t̃ and tq, the
absolute value of the left and right derivatives of Pq at t are all bounded from below by
c and above by C. The left and right derivatives exist at all points by convexity of Pq.
Hence, recalling Pq(tq) = 0, the claim follows. �

In the remainder of the section, instead of writing down explicit constants, we will
use the notation O(−Pq(s0)) to mean a function of the form C(−Pq(s0)) where the
constant C > 0 can be chosen to be independent of q, n and ε.

Proposition 4.8. The quantity tq − t̃ has a lower bound in terms of Pq(s0), namely

tq − t̃ ≥ −O(−Pq(s0)3/2).

Proof. Notice that by Lemma 4.4, the definition of t̃, Remark 4.6 and Lemma 4.5

Pq(t̃) ≥ gt̃q(α
s0
q ) + o(ε, n) = gs0q (αs0q ) + 〈(a(t̃)− a(s0)), αs0q 〉+ o(ε, n)

= Pq(s0) + 〈(a(t̃)− a(s0)), αs0〉+ 〈(a(t̃)− a(s0)), (αs0q − αs0)〉+ o(ε, n)

≥ 〈(a(t̃)− a(s0)), (αs0q − αs0)〉+ o(ε, n).

By Lemma 4.5 and Remark 4.6 this yields

Pq(t̃) ≥ −O(−Pq(s0)3/2) + o(ε, n).

Finally, apply Lemma 4.7 and let ε→ 0 and n→∞. �

Lemma 4.9. The distance between αs0q and αt̃q is controlled by Pq(s0), namely

|αs0q − αt̃q| ≤ O((−Pq(s0))1/2) + o(ε, n).

Proof. Notice first that by Lemma 4.2,

(4.4) |αt̃ − αs0| ≤ |a(t̃)− a(s0)|
2w

,

where w = ws0 . Using Lemma 4.3 and Remark 4.6

gt̃(αt̃) ≤ gs0(αs0) + L|a(t̃)− a(s0)|
= L|a(t̃)− a(s0)|+ o(ε, n)

= O(−Pq(s0)) + o(ε, n).

We now obtain from (4.3) and the definition of gsq

w|αt̃ − αt̃q|2 ≤ gt̃(αt̃)− gt̃(αt̃q)

≤ gt̃(αt̃)− gt̃q(αs0q )

= gt̃(αt̃)− gs0q (αs0q )− 〈(a(t̃)− a(s0)), αs0q 〉+ o(ε, n).
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These calculations combined amount to

(4.5) |αt̃ − αt̃q| ≤ O((−Pq(s0))1/2) + o(ε, n).

Finally, through Lemma 4.5, (4.4)and (4.5),

|αs0q − αt̃q| ≤ |αs0q − αs0|+ |αs0 − αt̃|+ |αt̃ − αt̃q| ≤ O((−Pq(s0))1/2) + o(ε, n).

�

Proposition 4.10. The quantity tq − t̃ has an upper bound in terms of Pq(s0), namely

tq − t̃ ≤ O((−Pq(s0))3/2).

Proof. Using Lemma 4.4 and the definition of t̃, Remark 4.6 and Lemmas 4.9 and 4.5

Pq(t̃) = gt̃q(α
t̃
q) + o(ε, n) = 〈a(t̃)− a(s0), αt̃q〉+ gs0q (αt̃q) + o(ε, n)

≤ 〈a(t̃)− a(s0), αt̃q〉+ gs0q (αs0q ) + o(ε, n)

= 〈a(t̃)− a(s0), αs0〉+ 〈a(t̃)− a(s0), (αs0q − αs0)〉

+ 〈a(t̃)− a(s0), (αt̃q − αs0q )〉+ Pq(s0) + o(ε, n)

≤ O((−Pq(s0))3/2) + o(ε, n).

Finally, apply Lemma 4.7 and let ε→ 0 and n→∞. �

We are now ready to formulate the main theorem (in the diagonal case). Please recall
the notation introduced in the beginning of the section. Denote

(4.6)

Z(D) = −
(

lim
h↘0

1

h
(PD(s0)− PD(s0 − h))

)−1

=
−1

〈(log a1
eds0e

, . . . , log akeds0e
), αs0〉

.

Theorem 4.11. Let Λ be a self-affine set corresponding to an iterated function system
{A1 + v1, . . . , Ak + vk} with ‖Ai‖ < 1

2
for all i = 1, . . . , k, and let q ∈ Σ. Assume that

all the matrices Ai are diagonal. Then, for Lebesgue almost all (v1, . . . , vk) ∈ Rdk,

dimH Λq = max
D∈Sd

tDq .

Moreover, if q is not periodic then

(4.7) lim
q→∞

dim Λ− dim Λq

minD∈Sd;PD(s0)=0 Z(D)µD([q|q])
= 1,

while if q has period ` then

(4.8) lim
q→∞

dim Λ− dim Λq

minD∈Sd;PD(s0)=0 Z(D)(1− µD([q|`]))µD([q|q])
= 1.

Proof. For a fixed D the limit

lim
q→∞

s0 − tDq
Z(D)µD([q|q])
—12—
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exists: the value comes from Lemma 3.6, where the upper bound is from Proposition 4.8
and Remark 4.6, and the lower bound is obtained analogously, but using Proposition
4.10. To obtain the theorem we pass with q to ∞ and for each q use the D for which
tDq is maximal. �

Remark 4.12. Observe that in general situation we cannot write the usual formula
‘the dimension deficit divided by the measure of the hole converges to the left derivative
of the pressure’. The reason: Consider an iterated function system as in [15, Example
6.2] with linear parts, say,(

4/9 0
0 1/9

)
and

(
1/9 0
0 4/9

)
.

Then s0 = 1/2 and the collection of permutations which satisfies PD(s0) = 0 consists
of two elements, and the corresponding Käenmäki measures are the Bernoulli measures
with weights (1/3, 2/3) and (2/3, 1/3), respectively. Now choose a very rapidly increasing
sequence of natural numbers (mj) and set q = (1m12m21m3 ...). Then the limits in (4.7)
and (4.8) do not exist for either fixed D.

Remark 4.13. However, the following shows that sometimes we can: Consider the case
that Ai are diagonal for all i = 1, . . . , k, and, furthermore, the diagonal elements are
in the same order in all of the matrices. Then the Käenmäki measure µ for the value
of s for which P (s) = 0 is a Bernoulli measure with weights (ϕs(A1), . . . , ϕs(Ak)) (by
Lemma 3.4), and one can check that in Theorem 4.11, µ is the maximizing measure (or
one of them, if there are many). Hence we obtain the statement of Theorem 2.1

lim
q→∞

dim Λ− dim Λq

µ([q|q])
=


−1

〈(log a1ds0e
,...,log akds0e

),αs0 〉 , q is not periodic

−1+µ([q|`])
〈(log a1ds0e

,...,log akds0e
),αs0 〉 , q is periodic with period `.

Remark 4.14. Fix some β < α < 1/2, and let γ < α, β. Consider the iterated function
system which has as the linear parts of the mappings

A =

(
α γ
0 β

)
and B =

(
β γ
0 α

)
.

Then for s < 1, ϕs(AnBn) grows like α2ns, whereas ϕs(BnAn) grows like αnsβns so
that there is an exponential gap between the values, due to the off-diagonal element.
Our proof of Theorem 4.11 depends on the exact connection between the singular value
function and the Bernoulli measures given by the diagonal elements. Hence, despite the
fact that according [10, Theorem 2.6] the pressure only depends on the diagonal elements
of A and B, our proof does not easily extend to the upper triangular case.

5. The case of strong-Gibbs measures (Theorem 2.2)

In this section, recall the assumptions that s0 is such that P (s0) = 0, that the
Käenmäki measure µ at s0 is a strong-Gibbs measure, and given q, denote by tq the
value where Pq(tq) = 0. Furthermore, we assume that the derivative P ′(s0) exists. We
do not assume that Pq is differentiable, but since it is convex we know that left and
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right derivatives exist at all points. We know that Pq is a convex function not larger
than P , which is also convex.

Let us begin with a simple lemma. Here by f ′(x− 0) and f ′(x+ 0) we denote the left
and right derivatives of f at x.

Lemma 5.1. Let P be a convex function. Let Pq be a sequence of convex functions such
that Pq ≤ P but limq Pq(s0) = P (s0). Then

P ′(s0 − 0) ≤ lim
q→∞

P ′q(s0 − 0) ≤ lim
q→∞

P ′q(s0 + 0) ≤ P ′(s0 + 0).

Proof. It is enough to prove the first inequality: the second is immediate from convexity,
and the third can be proved analogously to the first. Assume to the contrary, that there
exists ε > 0, and we can choose a subsequence of convex functions Pq ≤ P with
Pq(s0)→ P (s0), such that

P ′q(s0 − 0) < P ′(s0 − 0)− ε.
As Pq is convex, P ′q(s− 0) ≤ P ′q(s0 − 0) for all s < s0. On the other hand,

P ′(s0 − 0) = lim
s↗s0

P ′(s− 0),

hence there exists δ > 0 depending only on P such that

P ′(s− 0) > P ′(s0 − 0)− ε/2
for all s > s0 − δ. Hence, decreasing δ > 0 further if necessary

Pq(s0 − δ) ≤ Pq(s0)− δP ′q(s0 − 0)

≤ [P (s0)− δP ′(s0 − δ − 0)] + Pq(s0)− P (s0) + δε/2

≤ P (s0 − δ) + Pq(s0)− P (s0) + δε/4

Therefore, choosing q so large that Pq(s0) > P (s0) − δε/4, we obtain Pq(s0 − δ) >
P (s0 − δ), which is a contradiction. �

Relying on Lemma 3.6, we wish to understand s0− tq in terms of Pq(s0). That is the
content of the following lemma.

Lemma 5.2. Let P be a convex function. Let Pq be a sequence of convex functions such
that Pq ≤ P , limq Pq(s0) = P (s0) = 0, and limq P

′
q(s0 − 0) = P ′(s0 − 0). Then

lim
q→∞

−Pq(s0)

s0 − tq
= −P ′(s0 − 0).

Proof. We have

Pq(s0) =

∫ s0

tq

P ′q(s− 0)ds.

As P ′q(s− 0) ≤ P ′q(s0 − 0) for all s < s0, the upper bound follows immediately.
For the lower bound, assume that it fails: for a subsequence of Pq we have

−Pq(s0)

s0 − tq
< −P ′(s0 − 0)− ε.
—14—
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Then, necessarily,
P ′q(tq − 0) < P ′(s0 − 0)− ε.

Hence, for all s < tq we have

(5.1) Pq(s) ≥ −(tq − s)(P ′(s0 − 0)− ε).
On the other hand, like in the previous lemma, we can find δ > 0 not depending on

q such that

P ′(s− 0) > P ′(s0 − 0)− ε/2
for all s > s0 − δ. Thus,

(5.2) P (s0 − δ) ≤ −δ(P ′(s0 − 0)− ε/2).

Comparing (5.1) with (5.2) we see that choosing q such that tq is so close to s0 that

(s0 − tq − δ)(P ′(s0 − 0)− ε) > −δ(P ′(s0 − 0)− ε/2),

that is

s0 − tq < −
δε

2(P ′(s0 − 0)− ε)
,

then we get Pq(s0 − δ) > P (s0 − δ), a contradiction. �

Under the assumption that P ′(s0) exists, by Lemma 5.1 we can apply Lemma 5.2.
The statement of Theorem 2.2 is now an immediate corollary of Lemmas 5.2 and 3.6,
and Theorem 3.5.

Remark 5.3. The assumptions of Theorem 2.2 may look difficult to satisfy, but there
are at least two classes of systems for which the Käenmäki measure is strong-Gibbs.

(1) Homogeneous case: Assume that all the matrices Ai are powers of one matrix
A. To demonstrate our result, consider the simplest case where Ai = A for all
i. Then the Käenmäki measure is a Bernoulli measure with equal weights by
Lemma 3.4 so that, in particular, it is strong-Gibbs. Writing σ1, . . . , σd for the
singular values of A and assuming that the dimension s0 of Λ is not an integer,
one can obtain

P ′(s0) = log σds0e.

(2) Dominated case: Assume that d = 2 and the cocycle generated by matrices Ai is
dominated, that is, there exist C > 0, 0 < τ < 1 such that for all n and ı ∈ Σn,

det(Aı)

|Aı|2
≤ Cτn.

It is proved in [1] that also in this case the Käenmäki measure satisfies the
strong-Gibbs assumption, and if s0 is not an integer then P ′(s0) is well defined.
The dominated cocycles are an open subset of GL(2,R)-cocycles, we refer the
reader to [1] for the discussion.

For more on the s-semiconformality of Käenmäki measures, see [15].
—15—
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Remark 5.4. As one can see in Lemma 5.2, in both examples presented above the
assertion of our theorem stays true for integer s0 (with P ′(s0) replaced by P ′(s0 − 0)).
Indeed, while the singular value pressure is nondifferentiable at integer points because
of nondifferentiability at those points of the definition of singular value function, the
assumptions of Lemma 5.2 are satisfied (for those examples) at integer points as well.
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