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Abstract. We study transitive step skew-product maps modeled over a com-

plete shift of k, k ≥ 2, symbols whose fiber maps are defined on the circle
and have intermingled contracting and expanding regions. These dynamics

are genuinely nonhyperbolic and exhibit simultaneously ergodic measures with

positive, negative, and zero exponents.
We introduce a set of axioms for the fiber maps and study the dynamics

of the resulting skew-product. These axioms turn out to capture the key

mechanisms of the dynamics of nonhyperbolic robustly transitive maps with
compact central leaves.

Focusing on the nonhyperbolic ergodic measures (with zero fiber exponent)

of these systems, we prove that such measures are approximated in the weak∗
topology and in entropy by hyperbolic ones. We also prove that they are in the

intersection of the convex hulls of the measures with positive fiber exponent
and with negative fiber exponent. Our methods also allow us to perturb hy-

perbolic measures. We can perturb a measure with negative exponent directly

to a measure with positive exponent (and vice-versa), however we lose some
amount of entropy in this process. The loss of entropy is determined by the

difference between the Lyapunov exponents of the measures.
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1. Introduction

The aim of this paper is to understand the general structure and finer properties
of the space of invariant measures of robustly transitive and robustly nonhyper-
bolic dynamical systems. For a large class1 of such skew-products we approximate
in entropy and in the weak∗ topology ergodic measures which are nonhyperbolic
(with a zero Lyapunov exponent) and have positive entropy by measures supported
on hyperbolic horseshoes, see Theorem 1. This result can be viewed as a nonhy-
perbolic version of a classical result by Katok2 and also as a partial answer to a
question about abundance of hyperbolicity posed by Buzzi in [10, Section 1.5]3.
As a consequence of our main results, in our setting, Theorem 1 can be read as
follows: the intersection of the closed convex hull of ergodic measures with negative
fiber exponent and the closed convex hull of ergodic measures with positive fiber
exponent is non-empty and contains all ergodic measures with zero exponent, see
Corollary 2.

Our results are a step of a program to understand the measure spaces, ergodic
theory, and multifractal properties of general systems (diffeomorphisms, skew-
product maps). As this at the present state of the art is far too ambitious in

1open and dense for C1 step skew-products and dense for general C1 skew-products
2The result of Katok claims that any ergodic hyperbolic measure can be weak* and in entropy

approximated by horseshoes. See [16, 17]) for C1+α diffeomorphisms and also extensions in the

context of C1 diffeomorphisms with a dominated splitting in [11, 22, 14].
3A bit more precisely, his question is the following: Among partially hyperbolic diffeomor-

phisms with one-dimensional center direction, are those with “enough” hyperbolic measures C1

or C2 dense?
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this vast generality, one may aim for gradually less specific classes of systems.4 We
focus on partially hyperbolic systems. The simplest, but still extremely complex,
case occurs when the partially hyperbolic system has a central direction which is
one-dimensional. Simplifying even one more step, in the case of partially hyper-
bolic diffeomorphisms, one may assume that the central bundle is integrable. In
this case, three different scenario can occur: there exist only non-compact leaves
(DA – derived from Anosov – diffeomorphisms), there exist simultaneously com-
pact and non-compact leaves (time-1 maps of Anosov flows), or there exist only
compact central leaves. The latter, and in some sense easiest, of these cases -
compact central leaves - is still extremely rich (see, for instance, the pathological
behaviors of the central foliations in [24, 27]). On the other hand, using ingredients
of one-dimensional dynamics, in this case one often has a very precise picture of
the dynamics (see, for instance, [26, 19]). As further simplification, we will restrict
ourselves to step skew-products over a complete shift with circle-fiber maps. We
hope that one will be able to gradually carry this program to more general settings.
In fact, it turns out that the systems studied in this paper cover already typical
robustly transitive and nonhyperbolic skew-products (see Section 8.3).

Besides the fact that skew-products as a class of systems have an intrinsic interest
(there is a vast literature about different aspects, we do not go into further details
here), they can also serve as a first step on the way to understand general types
of dynamics of diffeomorphisms or endomorphisms. They also allow us to study
essential aspects of a problem while escaping technical difficulties and this way
enable us to study the problem in various steps of increasing difficulty.

To be a bit more precise, still in the partially hyperbolic setting with a non-
hyperbolic central direction, when aiming for general systems, one is confronted
with several problems of completely different nature and origin. First, restricting
to systems with a one-dimensional central fiber enables us to study relatively easily
their Lyapunov exponents which turn into Birkhoff averages of continuous func-
tions, while in the general case they are provided by the Oseledets theorem and are
measurable functions only. Moreover, in this case there is no entropy generated by
the fiber dynamics (for details see Appendix). A second problem is the nonhyper-
bolicity reflected by the coexistence of hyperbolic measures and, consequently, of
hyperbolic periodic points with different behaviour in the central direction. Finally,
there are problems related to the existence and regularity of the central foliations.
Restricting our consideration to skew-products allows us to focus on the difficulty
arising from the nonhyperbolicity, while escaping from the latter one. This ap-
proach also allows us to present our constructions (e.g. the multi-variable-time
horseshoes and their symbolic extensions) in a transparent way. This strategy also
allows us to establish an axiomatic approach, which is in fact completely justified
and turns out to reflect quite well the general features of robustly transitive and
nonhyperbolic systems.

Our axiomatic approach allows us to study the ergodic theory of step skew-
products which mix expanding and contracting fiber dynamics. For instance, in

4An example of this strategy can be found by the line of papers studying, in the same context,

the construction of nonhyperbolic ergodic measures: [15] (step skew-products), [18] (skew-products
and some specific open sets of diffeomorphisms), [13, 5] (generic diffeomorphisms), and [2] (settling

open and densely the case of general diffeomorphisms).
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the robustly transitive case, there are “horseshoes” which are contracting and ex-
panding in the fiber direction, respectively, and there are also ergodic nonhyperbolic
measures [15], even with full support [5] or with positive entropy [2]. This shows
that nonhyperbolic ergodic measures cannot be neglected. Besides this, there is
not much rigorous study of (the set of) points and measures with zero Lyapunov
exponent by means of an analysis of the measure space and entropy properties.
For instance, as a consequence of [1] in our setting hyperbolic periodic measures
are dense5 and, in particular, every nonhyperbolic ergodic measure is accumulated
by hyperbolic ergodic ones. One of our key improvements is the approximation by
entropy.

Our setting and one of our main applications is motivated by the study of par-
tially hyperbolic robustly transitive diffeomorphisms and minimality of their strong
stable and unstable foliations in [6, 25]. We extract some general principles which
we put as a set of axioms. To be more precise, let σ : Σk → Σk, k ≥ 2, be the usual
shift map on the space Σk = {0, . . . , k − 1}Z of two-sided sequences. Consider a
finite family fi : S1 → S1, i = 0, . . . , k − 1, of C1 diffeomorphisms. Associated to
these maps, we consider the step skew-product

(1.1) F : Σk × S1 → Σk × S1, F (ξ, x) =
(
σ(ξ), fξ0(x)

)
.

Seeing the map as an iterated function system (IFS) associated to the fiber maps

{fi}k−1
i=0 , we require that there is some “expanding region” (relative to the fiber

direction) and some “contracting region” and that any of these regions “can be
reached” from any point in the ambient space under forward and backward itera-
tions. More precisely, we say that the map F satisfies Axioms CEC± and Acc± if
there is some nontrivial closed interval J ⊂ S1 such that:

CEC+: (Controlled Expanding forward Covering) Existence of some
forward iteration of the fiber along which any small enough interval H in-
tersecting J is uniformly expanded and covers J (with uniform control on
iteration length and expansion strength which depend on the size of H only).

CEC−: (Controlled Expanding backward Covering) Axiom CEC+ for
the IFS {f−1

i }.
Acc+: (Forward Accessibility) Forward iterations of J cover S1.
Acc−: (Backward Accessibility) Axiom Acc+ for the IFS {f−1

i }.
We call such an interval J ⊂ S1 a blending interval.

If the map F is transitive and satisfies the axioms then every sufficiently small
interval is a blending interval, see Section 2 for details and discussion. For complete-
ness, recall that F is transitive if for any pair of nonempty open sets U, V ⊂ Σk×S1

there is n ≥ 1 such that Fn(U) ∩ V 6= ∅.
These axioms in particular imply that F is robustly transitive, that is, for every

family of diffeomorphisms g0, . . . , gk−1 C
1-close enough to f0, . . . , fk−1 the resulting

skew-product map G is transitive and robustly nonhyperbolic (the spectrum of fiber
Lyapunov exponents defined below is an interval containing 0 in its interior). We
also observe that they appear naturally in robustly transitive step skew-products.
The expanding/contracting regions reflect the co-existence of hyperbolic periodic

5Indeed, this is true for an isolated homoclinic class of a C1 diffeomorphism with a dominated
splitting.
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points with different central behavior and can be identified with a so-called “ex-
panding/contracting blender”, while the other properties reflect the minimality of
the strong stable and unstable foliations (see Section 8).

We are now ready to state our main result. Let M be the space of F -invariant
probability measures supported in Σk × S1. Denote by Merg ⊂ M the subset of
ergodic measures. Given µ ∈ Merg denote by χ(µ) its (fiber) Lyapunov exponent
which is given by

χ(µ)
def
=

∫
log |(fξ0)′(x)| dµ(ξ, x).

A measure µ is called nonhyperbolic if χ(µ) = 0. Otherwise the measure is called
hyperbolic.

Given a compact F -invariant set Γ ⊂ Σk × S1, we will denote by M(Γ) ⊂M the
subset of measures supported in Γ. We equip this space with the weak∗ topology.
We say that Γ has uniform central expansion (contraction) if every ergodic measure
µ ∈M(Γ) has positive (negative) fiber Lyapunov exponent.

We denote by htop(F,Γ) the topological entropy of F on Γ and by h(µ) the
entropy of a measure µ.

Theorem 1. Consider a transitive step skew-product map F as in (1.1) whose fiber
maps are C1. Assume that F satisfies Axioms CEC± and Acc±.

Then for every nonhyperbolic measure µ ∈ Merg (χ(µ) = 0) for every δ >
0 and every γ > 0 there exist compact F -invariant transitive hyperbolic sets Γ+

with uniform central expansion and Γ− with uniform central contraction whose
topological entropies satisfy

htop(F,Γ+), htop(F,Γ−) ∈ [h(µ)− γ, h(µ) + γ].

Moreover, every measure ν± ∈M(Γ±) is δ-close to µ± in the weak∗ topology.
In particular, there are hyperbolic measures ν+, ν− ∈Merg with

χ(ν+) ∈ (0, δ) and χ(ν−) ∈ (−δ, 0)

and
h(ν+), h(ν−) ∈ [h(µ)− γ, h(µ) + γ].

If h(µ) = 0 then Γ− and Γ+ are hyperbolic periodic orbits.

We will prove Theorem 1 only in the case h(µ) > 0. If h(µ) = 0 the same proof
allows us to construct a periodic orbit (in the place of a compact, F -invariant,
hyperbolic, and transitive set Γ± with positive entropy, according to the case) with
the required Lyapunov exponent.

Investigating the structure of the space of invariant measures, this theorem can
be stated in slightly different terms. For that recall that the set M equipped with the
weak∗ topology is a Choquet simplex, the ergodic measures are its extreme points,
and any µ ∈M has a unique ergodic decomposition (see [29, Chapter 6.2]). In some
contexts it can be shown that the set of ergodic measures Merg is dense in its closed
convex hull M (in this case, if M is non-trivial, this is called a Poulsen simplex ).
In the general case, M does not have such a property. However, in our setting,
by [7] the subset of ergodic measures with positive fiber Lyapunov exponent (with
negative fiber Lyapunov exponent) is indeed a Poulsen simplex. We investigate
further these simplices and study the remaining set of (ergodic) measures with zero
fiber exponent. We consider the decomposition

Merg = Merg,<0 ∪Merg,0 ∪Merg,>0
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conv(Merg,>0)conv(Merg,<0)

conv(Merg,0)

Figure 1. Schematic form of simplices of invariant measures

into ergodic measures with negative, zero, and positive (fiber) Lyapunov exponent,
respectively. We will sometimes also consider the corresponding spaces Merg,≤0 and
Merg,≥0. We consider this decomposition as an important step towards the study
of ergodic theory of general nonhyperbolic systems.

Corollary 2. Under the assumptions of Theorem 1, the intersection of the closed
convex hull of ergodic measures with negative fiber exponent and the closed convex
hull of ergodic measures with positive fiber exponent is non-empty and contains all
ergodic measures with zero exponent.

We observe that the axioms guarantee the existence of “horseshoes” and therefore
the map F has positive topological entropy. We have the following particular
variational principle of entropy.

Theorem 3. Under the assumptions of Theorem 1, we have

htop(F ) = sup
µ∈Merg,<0

h(µ) = sup
µ∈Merg,>0

h(µ).

Observe that the statement of Theorem 1 naturally extends to any invariant
measure which is in the closed convex hull of Merg,0. However, in general there
may exist invariant measures with zero exponent that are not in this hull and those
would not necessarily be approximated by ergodic measures. The existence of such
measures so far remains as an open question. If they do exist, then we provide
some of their properties in Corollary 6. Compare Figure 1 for illustration.

Investigating finer properties of the measure space, we can quickly observe the
following general “twin principle” (the simple proof is given in Section 7.3).

Fact 4 (Twin measures). Consider a transitive step skew-product map F as in (1.1)
whose fiber maps are C1.

Then for every µ ∈M with χ(µ) < 0 there exists µ̃ ∈M satisfying χ(µ̃) ≥ 0 and
h(µ̃) = h(µ). If µ was ergodic, then µ̃ can be chosen ergodic.

Note that the construction in the proof of the above fact does not provide any
information about the value of the exponent of the twin measure µ̃. One might
be tempted to prove a “perfect twin” in the sense that to each hyperbolic ergodic
positive entropy measure there is an ergodic measure with equal entropy and neg-
ative fiber Lyapunov exponent. As a first attempt, we can establish the following
relation. We can “push” entropy of negative exponent measure to “the other side”,
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though some amount of entropy and exponent is lost in the construction and this
amount may increase the further away we are from zero exponent measures.

For the next – more quantitative – result we need to be a bit more precise.
Assuming that F is transitive and satisfies Axioms CEC± and Acc±, by Lemma 2.3
below every closed sufficiently small interval is a blending interval J . In order to
be slightly more precise let us announce one of the properties required for Axiom
CEC+(J): there are constants K2,K4 so that for every sufficiently small interval
H ⊂ S1 intersecting J there exists a finite sequence (η0 . . . η`−1) for some positive
integer ` ∼ K2 |log |H|| such that

fη`−1
◦ · · · ◦ fη0(H) = f[η0... η`−1](H) ⊃ B(J,K4),

where B(J,K4) denotes the K4-neighborhood of J . Given a blending interval J ⊂
S1, let K2(J) be the smallest number having this property for the interval J . Define

K2(F )
def
= inf{K2(J) : J blending interval}.

This number is intimately related with the inverse Lyapunov exponents. However,
in general it might be much bigger. One task, in particular in view of the estimates
in Theorem 5, is to minimize this number. We conjecture that in some important
cases this number is equal to the inverse of the maximal fiber Lyapunov exponent,
namely,

(1.2) K2(F )
def
=

1

χ(F )
, where χ(F )

def
= max{χ(µ) : µ ∈Merg}.

At this point we can only get the following natural lower bound:

K2(F )−1 ≥ log ‖F‖

where

(1.3) ‖F‖ def
= max

i=0,...,k−1
max
x∈S1

max
{
|f ′i(x)|, |(f−1

i )′(x)|
}
.

Theorem 5. Consider a transitive skew-product map F as in (1.1) whose fiber
maps are C1. Assume that F satisfies Axioms CEC± and Acc±.

Then for every µ ∈Merg with α = χ(µ) < 0 for every δ > 0 and γ > 0, for every

β > 0, there is a compact F -invariant topologically transitive hyperbolic set Γ̂ such
that

1. its topological entropy satisfies

htop(F, Γ̂) ≥ h(µ)

1 +K2(F )(β + |α|)
− γ,

2. for every ν ∈Merg(Γ̂) we have

β

1 +K2(F )(β + |α|)
− δ < χ(ν) <

β

1 + 1
log‖F‖ (β + |α|)

+ δ,

3. for every ν ∈M(Γ̂) we have

d(ν, µ) <
K2(F )(β + |α|)

1 +K2(F )(β + |α|)
+ δ,

where d is a metric which generates the weak∗ topology.
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The same conclusion is true for α > 0 and every β < 0, changing in the assertion
β + |α| to |β|+ α.

If h(µ) = 0 then Γ̂ is a hyperbolic periodic orbit.

As for Theorem 1, we will prove Theorem 5 only in the case h(µ) > 0.
Theorems 1 and 5 have the following immediate “twin property” corollary for

nonhyperbolic measures.

Corollary 6. Under the assumptions of Theorem 1, for every µ ∈M with χ(µ) = 0
for which there is a sequence (µ−n )n ⊂ Merg,<0 which converges to µ in the weak∗
topology there is also a sequence (µ+

n )n ⊂Merg,>0 which converges to µ in the weak∗
topology and satisfies limn h(µ+

n ) = limn h(µ−n ).

Let us now describe the organization and the essential ingredients of this paper.
First, we state and investigate the above mentioned set of axioms, see Section 2,
which are completely justified, see the examples and discussion in Section 8. To deal
with nonhyperbolic measures, we will require some very general distortion results
which are give in Section 3. Our constructions are essentially based on so-called
skeletons for the dynamics which are orbit pieces that on one hand approximate well
entropy, Lyapunov exponents, and measures and, on the other hand, are connected
with a given reference blending interval provided by the axioms, see Section 4.
Such skeletons allow us to construct hyperbolic sets “around them”, for this we
introduce the so-called multi-variable-time horseshoes generalizing an idea in [22],
this will be done in Section 5. Thereafter in Section 6 we will construct explicit
multi-variable-time horseshoes in our setting. Finally, Theorems 1, 3, and 5, and
Fact 4 are proved in Section 7.

2. nonhyperbolic setting

2.1. Standing notation. We equip the shift space Σk with the standard metric
d1(ξ, η) = 2−n(ξ,η), where n(ξ, η) = sup{|`| : ξi = ηi for i = −`, . . . , `}. We equip
Σk × S1 with the metric d((ξ, x), (η, y)) = sup{d1(ξ, η), |x− y|}.

The step skew-product structure of F allows us to reduce the study of its dy-
namics to the study of the IFS generated by the family of maps {fi}k−1

i=0 . We use
the following notations. Every sequence ξ = (. . . ξ−1.ξ0ξ1 . . .) ∈ Σk is given by

ξ = ξ−.ξ+, where ξ+ ∈ Σ+
k

def
= {0, . . . , k − 1}N0 and ξ− ∈ Σ−k

def
= {0, . . . , k − 1}−N.

Given finite sequences (ξ0 . . . ξn) and (ξ−m . . . ξ−1), we let

f[ξ0... ξn]
def
= fξn ◦ · · · ◦ fξ1 ◦ fξ0 and

f[ξ−m... ξ−1.]
def
= (fξ−1 ◦ . . . ◦ fξ−m)−1 = (f[ξ−m... ξ−1])

−1.

For n ≥ 0, for notational convenience, we sometimes also write

fnξ
def
= f[ξ0... ξn−1] and f−mξ

def
= f[ξ−m... ξ−1.].

We will study (fiber) Lyapunov exponents of F . They correspond to the Lya-
punov exponents of the associated IFS defined as follows: given X = (ξ, x) ∈ Σk×S1

let

χ(X)
def
= lim

n→±∞

1

n
log |(fnξ )′(x)|

and in this definition we assume that both limits n → ∞ and n → −∞ exist and
that they are equal. Note that in our context the Lyapunov exponent is nothing
but the Birkhoff average of a continuous function.



NONHYPERBOLIC STEP SKEW-PRODUCTS 9

2.2. Axioms. Consider fiber maps f0, . . . , fk−1 : S1 → S1 and its associated skew-
product map F defined as in (1.1). We now introduce the properties satisfied by
the associated IFS {fi}.

Given a point x ∈ S1, define its forward and backward orbits under the IFS by

O+(x)
def
=
⋃
n≥0

⋃
(θ0...θn−1)

f[θ0... θn−1](x) and O−(x)
def
=
⋃
m≤1

⋃
(θ−m...θ−1)

f[θ−m... θ−1.](x),

respectively. Consider also the full orbit

O(x)
def
= O+(x) ∪ O−(x).

Similarly, we define the orbits O+(J),O−(J),O(J) for any subset J ⊂ S1.
The first axiom is very natural and is the corner stone of our constructions.

Axiom T (Transitivity). There is a point x ∈ S1 such that the sets O+(x) and
O−(x) are both dense in S1.

The next two axioms refer to the existence of intervals where appropriate com-
positions of the IFS {fi} have expanding and contracting behavior.

Axiom CEC+(J) (Controlled Expanding forward Covering relative to a
closed interval J ⊂ S1). We say that the IFS {fi} satisfies CEC+(J) if there
exist positive constants K1, . . . ,K5 such that for every interval H ⊂ S1 intersecting
J and satisfying |H| < K1 we have

• (controlled covering) there exists a finite sequence (η0 . . . η`−1) for some pos-
itive integer ` ≤ K2 |log |H||+K3 such that

f[η0... η`−1](H) ⊃ B(J,K4),

• (controlled expansion) for every x ∈ H we have

log |(f[η0... η`−1])
′(x)| ≥ `K5.

Axiom CEC−(J) (Controlled Expanding backward Covering relative to
a closed interval J ⊂ S1). We say that the IFS {fi} satisfies CEC−(J) if the
IFS {f−1

i } satisfies the Axiom CEC+(J).

We observe that although Axioms CEC±(J) do not provide an explicit lower
bound for `, such a bound is obtained in Lemma 2.7 at the end of this section.

Finally, the last two axioms refer to covering properties of the IFS {fi}. Note
that Axiom T implies immediately that for any nontrivial interval J ⊂ S1 one has
that the sets O+(J) and O−(J) are both dense. We require a slightly stronger
property.

Axiom Acc+(J) (Forward Accessibility relative to a closed interval J).
We say that the IFS {fi} satisfies Acc+(J) if O+(int J) = S1.

Axiom Acc−(J) (Backward Accessibility relative to a closed interval J).
We say that the IFS {fi} satisfies Acc−(J) if O−(int J) = S1.

We note that the IFS we consider has invertible fiber maps and hence has a
naturally associated IFS generated by these inverse maps. By this correspondence,
Axiom CEC±(J) turns into CEC∓(J) and Axiom Acc±(J) turns into Acc∓(J),
respectively.

In the remainder of this paper we will mostly switch back to the point of view of
the associated step skew-product F and will say that F satisfies the above axioms if
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the IFS does. It follows from a standard genericity argument that if F is transitive
then there is a residual subset of Σk×S1 consisting of points having simultaneously
forward and backward dense orbits. Having this in mind, Axiom T is nothing but
transitivity of F .

We close this section with some simple consequences of the axioms above that
we will use throughout the paper. The next remark follows straightforwardly from
the definition of the Axioms CEC± and Acc±.

Remark 2.1. Assume that Axiom CEC+(J) holds for some interval J . Then for
any closed subinterval I of J Axiom CEC+(I) holds with the same constants. The
same assertion holds for Axiom CEC−(J).

Assume Axiom CEC+(J) and Axiom Acc(+J) hold for some interval J . Then
for any subinterval I of J Axiom Acc+(I) also holds. The same assertion holds for
Axiom Acc−(J) with Axiom CEC−(J).

We state first an immediate consequence of compactness of S1.

Lemma 2.2. Assume that there is a closed interval J ⊂ S1 such that the IFS {fi}
satisfies Acc+(J) (satisfies Acc−(J)).

Then there exists a number mf ≥ 1 (a number mb ≥ 1) depending only on J
such that for every x ∈ S1 there is a finite sequence (θ1 . . . θr), r ≤ mf , (a finite
sequence (β1 . . . βs), s ≤ mb) depending on x, such that

f[θ1... θr.](x) ∈ J
(
such that f[β1... βs](x) ∈ J

)
.

Lemma 2.3 (Transitivity gives a common interval). Assume that the IFS {fi}
satisfies Axiom T. Assume that there are closed intervals J+ and J− such that the
IFS {fi} satisfies CEC+(J+), Acc+(J+), CEC−(J−), and Acc−(J−).

Then there are positive constants K1, . . . ,K5, and K6 > 0 such that for every
x ∈ S1, for every δ < K6 the interval J = B(x, δ) satisfies Axioms CEC+(J),
Acc+(J), CEC−(J), and Acc−(J) with these constants.

Proof. Assume that CEC+(J+) holds with constants K1, . . . ,K5. By compactness
of S1 and Axiom Acc+(J+), the circle S1 is covered by a finite union of open sets
which are images of int J+,

S1 ⊂
m⋃
i=1

f[θi1... θ
i
ri

](int J+).

Let r̄
def
= maxi=1,...,m ri.

Let J ′ be the concentric interval contained in J+ of length |J+|/2 (that is, the
distance of each point of the boundary of J ′ to the boundary of J+ is |J+|/4). By
Axiom T, for each x ∈ S1 there are s(x) ≥ 1 and a finite sequence (β1 . . . βs(x))
such that f[β1... βs(x)](x) ∈ J ′. We also fix δ(x) > 0 sufficiently small such that

f[β1... βs(x)](B(x, 4δ(x))) ⊂ J+. An argument of compactness provides δ+ > 0 and

s̄ ≥ 1 such that for every x ∈ S1 there is a sequence (β1 . . . βs), s ≤ s̄, such that
f[β1... βs](B(x, 2δ+)) ⊂ J+.

Take any interval H+ ⊂ f[β1... βs](B(x, 2δ+)) with |H+| < K1. By CEC+(J+)

applied to H+, there exists a finite sequence (η0 . . . η`−1) with

` ≤ K2|log |H+||+K3

such that

f[η0... η`−1](H
+) ⊃ J+ and log |(f[η0... η`−1])

′(y)| ≥ `K5
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for every y ∈ H+.

Let now J
def
= B(x, δ+). For every interval H ⊂ S1 intersecting J with |H| < δ+

one has H ⊂ B(x, 2δ+), thus by the above choices, there is some i such that

f[η̄0... η̄j−1](H) ⊃ B(x, δ), where (η̄0 . . . η̄j−1)
def
= (β1 . . . βsη0 . . . η`−1θ

i
1 . . . θ

i
ri).

Since j = s + ` + ri where s ≤ s̄ and ri ≤ r̄ we get the announced covering and
expanding properties after replacing the constants.

We repeat the previous construction with properties CEC−(J−) and Acc−(J−)
obtaining a number δ−. Now it is enough to take δ = min{δ+, δ−}. �

The next two lemmas follow straightforwardly from the definitions and their
proofs are omitted.

Lemma 2.4 (A common interval gives transitivity and density of periodic points).
Assume that there is a closed interval J such that the IFS {fi} satisfies Axioms
CEC+(J), Acc+(J), CEC−(J), and Acc−(J).

Then the IFS satisfies Axiom T. Moreover, Σk × S1 is the closure of periodic
orbits with negative/positive fiber exponents.

Lemma 2.5. Assume that there are intervals J+ and J− such that the IFS sat-
isfies Axioms CEC+(J+) and Acc±(J+) and Axioms CEC−(J−) and Acc±(J−).
Suppose that every x ∈ S1 has a forward and a backward iterate in the interior of
J+ and has a forward and a backward iterate in the interior of J−.

Then, the IFS satisfies Axiom T and there is an interval J such that the IFS
satisfies Axioms CEC±(J) and Acc±(J).

Having in mind the previous results we introduce the following definition.

Definition 2.6. We say that a step skew-product map F as in (1.1) satisfies Axioms
CEC± and Acc± if there is some closed interval J ⊂ S1 satisfying Axioms CEC±(J)
and Acc±(J).

Axiom CEC+(J) demands only an upper bound for the size ` of the covering
sequence (η0 . . . η`−1), depending uniformly on the size of the interval H inter-
secting J . The next lemma claims that the size of the covering sequence can be
also bounded from below. One can state an analogous statement for the Axiom
CEC−(J).

Lemma 2.7. Assume that the IFS {fi} satisfies Axiom CEC+(J) with constants
K1, . . . ,K5. Then for every interval H intersecting J and satisfying |H| < K1,

there is a subinterval Ĥ ⊂ H and a constant ι = ι(H) satisfying

• there is a finite sequence (ρ0 . . . ρι−1),

K2 |log |H||+K3 ≤ ι ≤ 2(K2 |log |H||+K3),

such that

f[ρ0... ρι−1](Ĥ) ⊃ B(J,K4),

• for every x ∈ Ĥ we have

log |(f[ρ0... ρι−1])
′(x)| ≥ ιK5.

Proof. The proof is by induction. Let H0 = H and consider (η0
0 . . . η

0
`0−1) given by

Axiom CEC+(J) applied to H0. Now for j ≥ 0 consider the following recursion:
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i) if `0 + · · · + `j < K2 |log |Hj || + K3 then we pick an interval Hj+1 ⊂
f[ηj0... η

j
`j−1](Hj) satisfying |Hj+1| = |Hj | = |H0| and repeat the recursion;

ii) otherwise stop the recursion and let ι
def
= `0 + · · ·+ `j .

Clearly, in the above recursion there is a first j ≥ 0 such that case ii) applies and
therefore, by construction and the fact that `j ≤ K2|log|H||+K3, we have

K2 |log |H||+K3 ≤ ι ≤ 2K2 |log |H||+ 2K3

and we put

(ρ0 . . . ρι−1) = (η0
0 . . . η

0
`0−1 . . . η

j
0 . . . η

j
`j−1).

We pick the subinterval Ĥ = (f[ρ0... ρι−1])
−1
(
B(J,K4)

)
⊂ H. By construction, Ĥ

satisfies the covering property. To get the expansion just note that

log |(f[ρ0... ρι−1])
′(x)| ≥ (`0 + . . .+ `j)K5 = ιK5.

This proves the lemma. �

3. Some general tools

In this section, we continue to consider a step skew-product map F as in (1.1)
with C1 fiber maps. We derive a number of “uniformization” results for ergodic
measures following Littlewood’s heuristic principles (here using the fact that due
to Egorov’s theorem every pointwise converging sequence of measurable functions
is nearly uniformly convergent). We also state some very general distortion results
which, in particular, allow us to deal with zero exponent orbits.

3.1. Approximation of positive entropy ergodic measures. The following
statement is a consequence of ergodicity, the definition of a Lyapunov exponent,
the Brin-Katok theorem, the Birkhoff ergodic theorem, and the Egorov theorem.
Recall the definition of separated points, see [29, Chapter 7].

Proposition 3.1. Consider a skew-product map F as in (1.1) whose fiber maps
are C1. Let µ ∈ Merg be a measure satisfying h(µ) > 0. Let α = χ(µ). Consider
continuous functions ϕ1, . . . , ϕ` : Σk × S1 → R and put ϕj =

∫
ϕj dµ. Let A ⊂

Σk × S1 be a measurable set with µ(A) > 0.
Given κ ∈ (0, µ(A)/4), r ∈ (0, 1), and εH ∈ (0, 1), for every εE > 0 small enough

there exist n0 = n0(κ, εH) ≥ 1 and a set Λ′ ⊂ Σk×S1 satisfying µ(Λ′) > 1−κ such
that:

(1) there exists K0 = K0(κ, εE) > 1 such that for every n ≥ 0 and every X =
(ξ, x) ∈ Λ′ we have

K−1
0 en(α−εE) ≤ ‖(fnξ )′(x)‖ ≤ K0e

n(α+εE),

and for every j = 1, . . . , ` we have

−K0 + n(ϕj − εE) ≤
n−1∑
`=0

ϕj(F
`(X)) ≤ K0 + n(ϕj + εE),

(2) for every n ≥ n0 there is m ∈ {n, . . . , n + drne + 1} and a set of (m, 1)-
separated points {Xi} ⊂ A ∩ Λ′ of cardinality Mm(A) satisfying

Mm(A) ≥
(
µ(A)− κ

)
· em(h(µ)−εH)
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and
Fm(Xi) ∈ A .

Before proving the proposition we make some preliminary remarks. Given a
positive integer n and a positive number %, for a point X ∈ Σk × S1 we consider
the (n, %)-Bowen ball centered at X

Bn(X, %)
def
=

n−1⋂
`=0

F−`
(
B
(
F `(X), %

))
,

where B(Y, %) denotes the open ball of radius % centered at Y . We will also consider
the analogously defined (n, 1)-Bowen ball relative to the base dynamics σ : Σk → Σk
and recall that for given ξ ∈ Σk it is simply the nth level cylinder

Bn(ξ, 1)
def
= [ξ0 . . . ξn−1] = {η ∈ Σk : ηi = ξi for i = 0, . . . , n− 1}.

We also note that any pair of disjoint level n cylinders gives rise to (n, 1)-separated
sequences in Σk and hence to (n, 1)-separated points in Σk × S1, we will use this
fact a couple of times.

Consider the natural projection $ : Σk×S1 → Σk : (ξ, x) 7→ ξ to the first coordi-

nate and observe that the pushforward measure ν
def
= $∗µ is ergodic invariant with

respect to σ : Σk → Σk. Note that h(ν) = h(µ) (this follows from (8.2)).

Proof of Proposition 3.1. Fix κ, r, εH > 0 as in the hypotheses. We start with a

preliminary estimate. Given µ as in the proposition let ν
def
= $∗µ.

Lemma 3.2. There is a set Λ1 ⊂ Σk×S1 of measure at least 1−κ/4 and a number
n1 = n1(κ, εH) ≥ 1 such that for every m ≥ n1 and every X = (ξ, x) ∈ Λ1 we have

e−m(h(µ)+εH/2) ≤ µ(Bm(X, 1)) ≤ e−m(h(µ)−εH/2)

and

(3.1) e−m(h(µ)+εH/2) ≤ ν([ξ0 . . . ξm−1]) ≤ e−m(h(µ)−εH/2).

Proof. By the Brin-Katok theorem [9], there is a set Λ ⊂ Σk × S1 with µ(Λ) = 1
so that every X ∈ Λ satisfies

lim
%→0

lim sup
n→∞

− 1

n
logµ(Bn(X, %)) = lim

%→0
lim inf
n→∞

− 1

n
logµ(Bn(X, %)) = h(µ).

Analogously, for ν-almost every ξ ∈ $(Λ)

lim sup
n→∞

− 1

n
log ν([ξ0 . . . ξn−1]) = lim inf

n→∞
− 1

n
log ν([ξ0 . . . ξn−1]) = h(ν) = h(µ).

Now apply the Egorov theorem. �

We now prove (1) in the proposition. We will only derive the conclusion for the
Lyapunov exponents, the one for the potentials ϕj is completely analogous. By
ergodicity, for µ-almost every X = (ξ, x) we have

lim
n→∞

1

n
log |(fnξ )′(x)| = α.

By the Egorov theorem, there is a set Λ2 ⊂ Σk × S1 of µ-measure at least 1− κ/4
and a number n2 = n2(κ, εE) such that for every X = (ξ, x) ∈ Λ2 and every m ≥ n2

we have

(3.2) em(α−εE) ≤ |(fmξ )′(x)| ≤ em(α+εE).
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Let

K0
def
= max

n=0,...,n2−1
max

(ξ0...ξn−1)
max
x∈S1{

|(f[ξ0...ξn−1])
′(x)| e−n(α+εE), |(f[ξ0...ξn−1])

′(x)|−1en(α−εE)
}
.

With this choice, for every X = (ξ, x) ∈ Λ2 for every n = 0, . . . , n2 − 1 we have the
assertion of (1) while for every n ≥ n2 we have (3.2) proving (1).

To show (2), let now

(3.3) C
def
= min

{
κ, r,

µ(A)

4

}
∈ (0, 1).

Lemma 3.3. There exists a measurable set Λ3 ⊂ Σk×S1 of measure at least 1−κ/4
and a number n3 = n3(κ, r,A) ≥ 1 such that for every X ∈ Λ3 and m ≥ n3 we
have ∣∣∣∣ 1

m
card

{
` ∈ {0, . . . ,m− 1} : F `(X) ∈ A

}
− µ(A)

∣∣∣∣ ≤ C2.

Proof. By the Birkhoff theorem, there is a full measure set Λ such that for every
X ∈ Λ we have

lim
n→∞

1

n
card

{
` ∈ {0, . . . , n− 1} : F `(X) ∈ A

}
= µ(A).

Now apply the Egorov theorem. �

We can assume that n3 has been chosen large enough such that

(3.4) n3 r(µ(A)− 3C) > 1

and thus for every X ∈ Λ3 and every n ≥ n3

card{` : n ≤ ` < n(1 + r), F `(X) ∈ A}
≥ n(1 + r)

(
µ(A)− C2

)
− (n− 1)µ(A)− (n− 1)C2

= (nr + 1)µ(A)− (2n+ nr − 1)C2

≥ nr
(
µ(A)− C2

)
− 2nC2

(with (3.3)) > nr
(
µ(A)− C

)
− 2nrC

= nr(µ(A)− 3C) > 1,

where the last inequality follows from (3.4).
Now let n0 = max{n1, n2, n3} and Λ = Λ1∩Λ2∩Λ3. Assume also that for every

n ≥ n0 we have

(3.5) n < enεH/2.

Observe that µ(Λi) > 1− κ/4 for i = 1, 2, 3 implies µ(Λ) > 1− κ.
Observe that the set A ∩ Λ consists of points having orbits which start and end

in A, however which need possibly different number of iterations for that (between
n and n + drne). We will now consider the separated subsets with equal return
time and select a subset with maximal cardinality having this property. In this
way, the cardinality of the selected set is still comparable with entropy. For each `
with n ≤ ` < n+ drne+ 1 let

R`
def
=
{
Xi ∈ Λ: F `(Xi) ∈ A

}
be the set of points which have the same time ` of return to A.
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In order to obtain a large separated set of points with equal return times we do
the following construction. Pick an index m ∈ {n, . . . , n+ drne+ 1} satisfying

cardRm = max
n≤`<n+drne+1

cardR`.

Let

A′
def
= A ∩ Λ and S′

def
= $(A′).

and observe that ν(S′) ≥ µ(A′) ≥ µ(A)− κ > 0. Choose any point X1 = (ξ1, x1) ∈
A′. Let S1 = S′ \ [ξ1

0 . . . ξ
1
m−1]. We continue inductively: choose any ξ` ∈ S`−1, let

S` = S`−1 \ [ξ`0 . . . ξ
`
m−1], rinse and repeat. As by (3.1)

ν(S`) ≥ ν(S′)− `e−m(h(µ)−εH/2),

we can continue the procedure for at least M steps, where

(3.6) M ≥
⌈
ν(S′) · em(h(µ)−εH/2)

⌉
≥
(
µ(A)− κ

)
· em(h(µ)−εH/2).

By construction, the resulting set of sequences {ξ1, . . . , ξM} ⊂ S′ is (m, 1)-separated
set (with respect to σ : Σk → Σk). For every sequence ξi there exists a point
Xi ∈ A′ with Xi = (ξi, xi) for some xi ∈ S1. Note that the set {X1, . . . , XM} is
(m, 1)-separated (with respect to F ).

With (3.5) we have nr < n < enεH/2 and hence with (3.6) we obtain

cardRm ≥
M

nr
≥
(
µ(A)− κ

)
· em(h(µ)−εH/2)e−mεH/2 =

(
µ(A)− κ

)
· em(h(µ)−εH).

This proves item (2) and completes the proof of the proposition. �

3.2. Distortion. We will need some auxiliary distortion results. They include, in
particular, distortion in a neighborhood of orbits with zero fiber Lyapunov expo-
nent.

Given a set Z ⊂ S1 and a differentiable map g on Z, we denote by

Dist g|Z
def
= sup

x,y∈Z

|g′(x)|
|g′(y)|

the maximal distortion of g on Z. Given δ > 0, we consider the modulus of conti-
nuity of the function log |g′| defined by

Mod(log |g′|, δ, x)
def
= max

{∣∣ log |g′(y)| − log |g′(x)|
∣∣ : |y − x| ≤ δ}.

Considering the IFS {fi}, let

(3.7) Mod(δ)
def
= max

i=0,...,k−1
max
x∈S1

Mod(log |f ′i |, δ, x).

Clearly, Mod(δ)→ 0 as δ → 0.

Proposition 3.4 (Distortion). Consider a skew-product map F as in (1.1) whose
fiber maps are C1. Given εD > 0, choose δ0 > 0 such that Mod(2δ0) ≤ εD. Assume
that (ξ, x) ∈ Σk × S1 is such that there are r > 0 and m ≥ 1 such that for every
` = 0, . . . ,m− 1 we have

|(f `ξ )′(x)| < 1

r
δ0e
−`εD .

Then for every ` ∈ {0, . . . ,m} we have∣∣ log Dist f `ξ |[x−r,x+r]

∣∣ ≤ `εD .
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Proof. Let Z = B(x, r). The proof is by (finite) induction on `. Note that the
claim holds for ` = 0. Suppose that the claim holds for ` = i. This means that we
have |log Dist f iξ|Z | ≤ iεD, which by the hypothesis of the proposition implies that

|f iξ(Z)| ≤ 1

r
δ0e
−iεD · eiεD · |Z| = 2δ0.

Hence |log Dist f |fiξ(Z)| ≤ εD. Now the chain rule implies |log Dist f i+1
ξ |Z | ≤ (i +

1)εD which is the claim for i+ 1. This proves the proposition. �

In a similar manner the following result can be shown.

Corollary 3.5 (Distortion for zero exponents). Consider a skew-product map F
as in (1.1) whose fiber maps are C1. Given εD > 0, choose δ0 > 0 such that
Mod(2δ0) ≤ εD. Given ε ∈ (0, 1), m ≥ 1, K0 > 0, and (ξ, x) ∈ Σk × S1 satisfying
for all ` ∈ {0, . . . ,m}

|(f `ξ )′(x)| ≤ K0e
`ε.

Then with Z = B(x, δ0K
−1
0 e−m(ε+εD)) for every ` ∈ {0, . . . ,m} we have∣∣log Dist f `ξ |Z

∣∣ ≤ `εD .
We now provide one more distortion result. It is more specific to our step skew-

product axiomatic setting, and not in the general C1 setting as above. We show
that Axiom Acc−(J) allows us to strengthen Axiom CEC+(J) in the following way.

Lemma 3.6. Consider a skew-product map F as in (1.1) whose fiber maps are
C1. Assume that there is a closed interval J ⊂ S1 such that Axiom CEC+(J) is
satisfied with constants K1, . . . , K5 and that Axiom Acc−(J) is satisfied.

Then for every εD > 0 there exist positive constants K ′3 and KD such that for
every interval H ⊂ S1 intersecting J and satisfying |H| < K1 we have

• (controlled covering) there exists some finite sequence (ξ0 . . . ξι−1) for some
positive integer ι ≤ K2|log |H||+K ′3 such that

f[ξ0... ξι−1](H) ⊃ B(J,K4),

• (controlled distortion) we have

log Dist f[ξ0... ξι−1]|H ≤ |log |H|| · εD + logKD.

Proof. Recall the definition of modulus of continuity Mod(·) in (3.7) and, given εD,
fix δ > 0 so that

δ < K1 and Mod(δ) <
εD
K2

.

We fix an interval H as in the hypothesis and consider the corresponding finite
sequence (η0 . . . η`−1) provided by Axiom CEC+(J). Let t ∈ {1, . . . , `} be the
smallest integer when

|H ′| > δ, where H ′
def
= f[η0... ηt−1](H).

By Axiom CEC+(J) we have

t ≤ ` ≤ K2 |log |H||+K3.

Assuming Acc−(J), by Lemma 2.2, there is a universal number mb (depending
only on J) such that there is a finite sequence (β1 . . . βs), s ≤ mb, such that

H ′′ ∩ J 6= ∅, where H ′′
def
= f[β1... βs](H

′).
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By the definition of the universal constant ‖F‖ in (1.3), we have

|H ′′| ≥ ‖F‖−mb · |H ′| > ‖F‖−mb · δ.
Finally, we apply Axiom CEC+(J) to the interval H ′′ we obtain a finite sequence

(η0 . . . ηr−1) with r ≤ K2 |log |H ′′||+K3 for which

f[η0... ηr−1](H
′′) ⊃ J.

Define now the finite sequence

(ξ0 . . . ξι−1)
def
= (η0 . . . ηt−1β1 . . . βsη0 . . . ηr−1).

We have
ι = t+ s+ r

≤ (K2| log |H||+K3) +mb + (K2 |log |H ′′||+K3)

≤ (K2| log |H||+K3) +mb + (K2mb log‖F‖+K2|log δ|+K3)

= K2| log |H||+K ′3,

where K ′3 = K ′3(δ) is the sum of the above remaining constants. This completes
the proof of the first part of the lemma (controlled covering).

To get the control of the distortion note that the previous estimate shows s+r ≤
K ′3. Recalling again the choice of δ and t, we get

log Dist f[ξ0... ξι−1]|H ≤ t
εD
K2

+(s+r) log ‖F‖ ≤ |log |H||·εD+
K3

K2
εD+(s+r) log ‖F‖.

Letting KD = KD(δ)
def
= K3

K2
εD + (s+ r) log ‖F‖, this shows the lemma. �

4. Skeletons

The systems we consider provide “skeletons” of the dynamics, that is, orbit
pieces approximating dynamical properties such as entropy and fiber exponent.
These skeletons will serve as building pieces to construct transitive hyperbolic sets
which are, in a certain sense, dynamically and ergodically homogeneous. Here,
these orbit pieces will approximate either certain invariant sets (Skeleton property)
or certain invariant measures (Skeleton∗ property), respectively. Compare Figure 2.
Throughout this section we continue to consider a skew-product map F as in (1.1).

Definition 4.1 (Skeleton property). Given an interval J ⊂ S1 and numbers h ≥ 0
and α ≥ 0, we say that F has the Skeleton property relative to J , h, and α if there
exist mb,mf ∈ N (connecting times) such that for any εH ∈ (0, h) and εE > 0 there
exist K0, L0 ≥ 1, and n0 ≥ 1 such that for every m ≥ n0 there exists a finite set
X = X(h, α, εH , εE ,m) = {Xi} of points Xi = (ξi, xi) (Skeleton) satisfying:

(i) the set X has cardinality

cardX ≥ L−1
0 em(h−εH),

(ii) the sequences (ξi0 . . . ξ
i
m−1) are all different,

(iii) for every n = 0, . . . ,m

K−1
0 en(α−εE) ≤ |(f[ξi0... ξ

i
n−1])

′(xi)| ≤ K0e
n(α+εE).

Moreover, there are sequences (θi1 . . . θ
i
ri), ri ≤ mf , and (βi1 . . . β

i
si), si ≤ mb, and

points x′i ∈ J such that for every i we have

(iv) f[θi1... θ
i
ri

](x
′
i) = xi,
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f[θi1... θiri ]

f[ξi0... ξim−1]

f[βi1... βisi ]

x′
i

xi

(m, 1)-separated
orbit pieces

S1
J

Figure 2. Skeleton property

(v) f[ξi0... ξ
i
m−1β

i
1... β

i
si

](xi) ∈ J .

Definition 4.2 (Skeleton∗ property). Given an interval J ⊂ S1 and a measure µ ∈
Merg, let h = h(µ) and α = χ(µ). We say that F has the Skeleton property relative
to J and µ if for every finite family of continuous potentials ϕ1, . . . , ϕ` : Σk×S1 → R
the Skeleton property relative to J, h, and α holds true which in addition satisfies
the following property:

(vi) for every j = 1, . . . , `

−K0 +m(ϕj − εE) ≤
m−1∑
k=0

ϕj
(
F k(Xi)

)
≤ K0 +m(ϕj + εE),

where ϕj =
∫
ϕj dµ,

with the respective quantifiers.

In Section 4.2 we will prove that our axioms imply the existence of skeletons.

4.1. Skeleton-based hyperbolic sets. In this section we see that the Axioms
CEC± together with the Skeleton property provide transitive hyperbolic sets with
quite homogeneous properties. The construction of these sets will be based on the
so-called multi-variable-time horseshoes built close to skeleton-orbit pieces. These
horseshoes will be defined in Section 5.

Theorem 4.3. Consider a transitive skew-product map F as in (1.1) whose fiber
maps are C1. Assume that it satisfies Axiom CEC+(J) for some closed interval J
and has the Skeleton property relative to the interval J and some numbers h > 0
and α ≥ 0.

Then for every γ ∈ (0, h) and every λ > 0 there is a compact F -invariant

topologically transitive hyperbolic set Γ̂ ⊂ Σk × S1 such that

1. its topological entropy with respect to F satisfies htop(F, Γ̂) ∈ [h − γ, h + γ]
and

2. for every ν ∈Merg(Γ̂) we have χ(ν) ∈ (α− λ, α+ λ) ∩ R+.

We have the following version obtained for the inverse map F−1.

Theorem 4.4. Consider a transitive skew-product map F as in (1.1) whose fiber
maps are C1. Assume that it satisfies Axiom CEC−(J) for some closed interval J
and has the Skeleton property relative to J and some numbers h > 0 and α ≤ 0.
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Then for every γ ∈ (0, h) and every λ > 0 there is a compact F -invariant

topologically transitive hyperbolic set Γ̂ ⊂ Σk × S1 such that

1. its topological entropy with respect to F satisfies htop(Γ̂) ∈ [h− γ, h+ γ] and

2. for every ν ∈Merg(Γ̂) we have χ(ν) ∈ (α− λ, α+ λ) ∩ R−.

Considering a family of continuous potentials instead of the potential ϕ(ξ, x) =
log |f ′ξ0(x)|, we obtain a more general version of the above result, their proofs are
almost identical so we state and will prove them together.

Theorem 4.5. Consider a transitive skew-product map F as in (1.1) whose fiber
maps are C1. Assume that it satisfies Axiom CEC+(J) for some closed interval
J and has the Skeleton∗ property relative to J and some measure µ ∈ Merg with
χ(µ) ≥ 0 and h = h(µ) > 0.

Then for every γ ∈ (0, h), every λ > 0, and every κ > 0 there is a compact
F -invariant topologically transitive hyperbolic set Γ such that properties 1. and 2.
in Theorem 4.3 are true and in addition d(ν, µ) < κ for every ν ∈ M(Γ), where d
is a metric which generates the weak∗ topology.

And there is again an “inverse version”.

Theorem 4.6. Consider a transitive skew-product map F as in (1.1) whose fiber
maps are C1. Assume that it satisfies Axiom CEC−(J) for some closed interval J
and has the Skeleton∗ property relative to J , some measure µ ∈Merg with χ(µ) ≤ 0
and h = h(µ) > 0.

Then for every γ ∈ (0, h), every λ > 0, and every κ > 0 there is a compact
F -invariant topologically transitive hyperbolic set Γ such that properties 1. and 2.
in Theorem 4.4 are true and in addition d(ν, µ) < κ for every ν ∈ M(Γ), where d
is a metric which generates the weak∗ topology.

We finally state a result that allows us to “push entropy to the other side” in
the sense that we “perturb” an ergodic measure with negative fiber exponent to an
ergodic measure with positive exponent. However, comparing with the construction
in the proof of the above results, we obtain some lower bound on entropy and
some rough estimate of fiber exponent and weak∗ distance (which get worse when
considering measures with exponents further away from zero).

Theorem 4.7. Consider a transitive skew-product map F as in (1.1) whose fiber
maps are C1. Assume that it satisfies Axioms CEC+(J) and Acc±(J) for some
closed interval J ⊂ S1. Let µ ∈Merg with α = χ(µ) < 0 and assume that F satisfies
the Skeleton∗ property relative to J and µ.

Then for every β > 0, γ ∈ (0, h(µ)), λ > 0, and κ > 0 there is a compact

F -invariant topologically transitive hyperbolic set Γ̂ such that

1. its topological entropy satisfies

htop(F, Γ̂) ≥ h(µ)

1 +K2(|β|+ |α|)
− γ,

2. for every ν ∈Merg(Γ̂) we have χ(ν)β < 0 and

|β|
1 +K2(|β|+ |α|)

− λ < |χ(ν)| < |β|
1 + 1

log‖F‖ (|β|+ |α|)
+ λ,

where K2 is as in Axiom CEC+(J) and ‖F‖ is as in (1.3).
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3. for every ν ∈M(Γ̂) we have

d(ν, µ) <
K2(|β|+ |α|)

1 +K2(|β|+ |α|)
+ κ.

The same conclusion is true for α > 0 and every β < 0.

The proofs of the above results are postponed to Section 6. We will only prove
Theorems 4.3 and 4.5, the proofs of Theorems 4.4 and 4.6 are analogous, and we
will sketch the proof of Theorem 4.7.

4.2. Existence of skeletons. In this section we verify skeleton properties under
the Axioms CEC±(J) and Acc±(J) for some interval J .

Below we deal with the topological entropy of certain sets, that is, to find a
separated set of points. Since these sets may be noncompact this is a bit delicate,
recall the definition of entropy in Appendix.

Proposition 4.8. Consider a skew-product map F as in (1.1) whose fiber maps are
C1 and assume that it satisfies Axioms CEC±(J) and Acc±(J) for some interval
J ⊂ S1. Given α ≥ 0, suppose that

L(α)
def
=
{

(ξ, x) ∈ Σk × S1 : lim
n→±∞

1

n
log |(fnξ )′(x)| = α

}
6= ∅,

and let

h = htop(F,L(α)).

Then the F has the Skeleton property relative to J, h, and α.

Proof. Given J , consider the constants mf ,mb provided by Lemma 2.2.
Now let εH ∈ (0, h) and εE > 0.
We introduce a filtration of the set L(α) into sets LN (α) where the finite-time

Lyapunov exponents are uniformly εE-close to α. Given N ≥ 1 define

LN (α)
def
=
{
X = (ξ, x) ∈ L(α) :

∣∣∣ 1
n

log |(f[ξ0... ξn−1])
′(x)| − α

∣∣∣ ≤ εE ∀n ≥ N}.
Note that we have the countable union

L(α) =
⋃
N≥1

LN (α).

Since entropy is countably stable, for n2 = n2(α, εH) large enough for every N ≥ n2

we have

htop(F,LN (α)) > h− 1

3
εH .

We have the following intermediate results. Consider the natural projection
$ : Σk × S1 → Σk.

Lemma 4.9. For any set Θ ⊂ Σk × S1 we have htop(F,Θ) = htop(σ,$(Θ)).

Proof. Given Θ ⊂ Σk × S1, let Θ′ = {{ξ} × S1 : ξ ∈ $(Θ)}. It is almost straight-
forward from the definition of entropy to show that htop(F,Θ′) = htop(σ,$(Θ′)).
This immediately implies the lemma. �

Lemma 4.10. Let Θ ⊂ Σk × S1 be a set with entropy htop(F,Θ) > h− εH . Then
there is n1 = n1(Θ) ≥ 1 such that for every n ≥ n1 we have

Mn(Θ) ≥ en(h−εH) and Mn($(Θ)) ≥ en(h−εH),
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where Mn(Θ) is the maximal cardinality of a set of (n, 1)-separated points in Θ and
Mn($(Θ)) denotes the number for corresponding points in $(Θ).

Proof. By Lemma 4.9, h
def
= htop(F,Θ) = htop(σ,$(Θ)).

Recall the definition of entropy in Appendix. Let us first prove the relation for
Mn($(Θ)). By contradiction, assume that this is not the case and that there is a
sequence n` →∞ such that for every ` we have

(4.1) Mn`($(Θ)) < en`(h−γ).

We consider the finite open cover A of $(Θ) by the level-1 cylinders [i], i =
0, . . . , k− 1. For each ` consider a (n`, 1)-separated set {ξ`,j}j in $(Θ) of maximal

cardinality and their associated level-n` cylinders U`,j = [ξ`,j0 . . . ξ`,jn`−1]. Observe
that, by construction, U` = {U`,j}j is a cover of $(Θ). For each U`,j we have
nσ,A (U`,j) = n`. Take any d > h − γ. Hence, with the estimate (4.1) of the
cardinality of this cover, we obtain∑

j

e−dnσ,A (U`,j) ≤ en`(h−γ) · e−dn` ,

which converges to 0 when ` → ∞. By definition of entropy, this would imply
htop(σ,$(Θ)) ≤ h − γ, which is a contradiction, proving the first estimate in the
lemma.

To prove the second estimate, recall that any pair of (n, 1)-separated points in
Σk is also (n, 1)-separated in Σk × S1. �

Applying the Lemma 4.10 to Θ = LN (α), we obtain a number n1. Let n0
def
=

max{N,n1}, L0
def
= 1, and

K0
def
= max

`=0,...,n0−1
max

X=(ξ,x)∈Σk×S1

{ |(f[ξ0... ξ`−1])
′(x)|

e−`(α−εE)
,

e−`(α+εE)

|(f[ξ0... ξ`−1])′(x)|

}
.

Hence, for everym ≥ n0, again by the lemma, we obtain a set X = {Xi} ⊂ LN (α)
of (m, 1)-separated points Xi = (ξi, xi) which has cardinality cardX ≥ em(h−εH).
Clearly, the choice of this set X depended on h, α, εH , εE , and m, only. Thus, we
already checked (i) in the Skeleton property.

By construction, the sequences ξi are (m, 1)-separated and, in particular, this
implies (ii).

Further, the choice of K0 above implies (iii). Finally, (iv) and (v) follow from
Lemma 2.2. This completes the proof of the proposition. �

Proposition 4.11. Consider a skew-product map F as in (1.1) whose fiber maps
are C1 and assume that it satisfies Axioms CEC±(J) and Acc±(J) for some inter-
val J ⊂ S1. Let µ ∈Merg.

Then the Skeleton∗ property relative to J and µ holds.

Proof. Let ϕ1, . . . , ϕ` : Σk × S1 → R be continuous functions. Put

α = χ(µ), h = h(µ).

Given J , consider the constants mf ,mb provided by Lemma 2.2. By this lemma,
there is some r ≤ mf and a finite sequence (θ1 . . . θr) such that

µ
(
Σk × f[θ1... θr](J)

)
> 0.
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Let I
def
= f[θ1...θr](J). By this lemma there is also some s ≤ mb and a finite sequence

(β1 . . . βs) such that
µ
(
Σk × f[β1... βs.](J)

)
> 0.

Let I ′
def
= f[β1... βs.](J). Hence, as both sets are of positive measure, by ergodicity of

µ, there is some finite sequence (δ0 . . . δ`−1) such that

µ
(
Σk ×

(
f[δ0... δ`−1](I) ∩ I ′

))
> 0.

Let now I ′′
def
= f[δ0... δ`−1](I)∩I ′ and A

def
= Σk×I ′′. To simplify notation, we continue

to denote (θ1 . . . θrδ0 . . . δ`−1) by (θ1 . . . θr).
Fix κ ∈ (0, µ(A)/4) and t ∈ (0, 1).
By Proposition 3.1 applied to A = Σ2 × I ′′ there are n0 = n0(κ, γ) ≥ 1, K0 =

K0(κ) > 1, and a set Λ′ ⊂ Λ satisfying µ(Λ′) > 1 − κ such that for every n ≥ n0

there is m ∈ {n, . . . , n(1 + t)} and a set of (m, 1)-separated points {Xi} ⊂ A ∩ Λ′,
Xi = (ξi, xi), satisfying

xi ∈ I ′′, f[ξi0... ξ
i
m−1](xi) ∈ I ′′.

Moreover, this set has cardinality

card{xi} ≥
(
µ(A)− κ

)
· em(h(µ)−γ)

Letting L0
def
= 1/(µ(A)− κ), this shows items (i) and (ii) of the Skeleton∗ property.

Moreover, for every n ≥ 0 we have

K−1
0 en(α−εE) ≤ |(f[ξi0... ξ

i
n−1])

′(xi)| ≤ K0e
n(α+εE),

which shows item (iii). And for every j = 1, . . . , ` and n ≥ 0 we have

−K0 + n(ϕj − εE) ≤
n−1∑
k=0

ϕj(f[ξi0... ξ
i
n−1](xi)) ≤ K0 + n(ϕj + εE),

which shows item (vi).
By the choice of I ′′, we have

x′i = f−1
[θ1... θr](xi) ∈ J,

which implies item (iv). By our choice of (β1 . . . βs), k ≤ mb, such that

f[β1... βs]

(
f[ξi0... ξ

i
k−1](xi)

)
= f[ξi0... ξ

i
k−1β1... βs](xi) ∈ J,

which implies item (v). This finishes the proof of the Skeleton∗ property. �

5. Multi-variable-time horseshoes

In this section we introduce multi-variable-time horseshoes which will provide
the essential pieces of our construction. Here we refer to a concept similar to the
“interval” horseshoes in the sense of Misiurewicz and Szlenk [23] rather than the
“standard” one in the sense of Smale. The connection with the skeletons from
Section 4 will become clear in Section 6. A key step is to estimate the entropy of
these objects, see Proposition 5.2.

Definition 5.1 (Multi-variable-time horseshoes). Let X be a compact metric space
and T : X → X a local homeomorphism.

Markov rectangles and transition maps. Let {Si}Mi=1 be a family of disjoint
compact subsets ofX that we call Markov rectangles. Assume that there are positive
integers tmin, tmax, tmin ≤ tmax, such that for every i, j ∈ {1, . . . ,M}
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S1

Σ+
M

S1

S2

S3

S13
T t13

T t11

S11

S12

T t12

Figure 3. Construction of the multi-variable-time horseshoe, be-
fore choosing admissible transitions.

• there exists a transition times tij ∈ {tmin, . . . , tmax} so that Sj ⊂ T tij (Si)
and

• the transition map T tij |Si∩T−tij (Sj)
is injective.

Let (compare Figure 3)

Sij
def
= T−tij (Sj).

Coding the allowed transitions. Consider a subshift of finite type ΣA ⊂
{1, . . . ,M}Z defined as follows: For each i let t = t(i) be a length6 for which
the number of j’s with transition times of length tij = t is maximal. Consider the
transition matrix A = (aij)

M
i,j=1, where

(5.1) aij
def
=

{
1 if tij = t(i),

0 otherwise.

This defines a transition matrix for a subshift of finite type, that is, the subset of
all A-admissible sequences:

ΣA
def
=
{

(c1c2 . . .) ∈ {1, . . . ,M}Z : acici+1 = 1 for all i ≥ 1
}
.

Construction of the invariant set. For a given finite A-admissible sequence
(c0 . . . cn−1) we define inductively

Sc0...ck−1

def
= T−tck−2ck−1 (Sc0...ck−2

).

Let
Γ′

def
=
⋂
n≥1

⋃
[c0... cn−1]

Sc0...cn−1
,

where the union is taken over all nth level cylinders of ΣA. Let

Γ
def
=

tmax−1⋃
k=0

T k(Γ′).

We call (T,Γ) a multi-variable-time horseshoe.

6This choice is in general not unique but this fact is inessential for our purposes, see Remark 5.3
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Below we will prove the following proposition:

Proposition 5.2. Let X be a compact metric space and T : X → X a local home-
omorphism. Assume that (T,Γ) is a multi-variable-time horseshoe as above. Then
the topological entropy of T : Γ→ Γ satisfies

logM − log(tmax − tmin + 1)

tmax
≤ htop(T,Γ) ≤ logM

tmin
.

Before going to the details of the proof of this proposition we make some com-
ments on the above definition.

Remark 5.3. Note that this subshift ΣA is not necessarily transitive. However,
there exists7 a subshift of finite type of ΣA which is transitive and has the same
topological entropy, hence we will for simplicity assume that ΣA is transitive.

We remark that our choice of A is not unique: given i there could exist more
than one length t for which the number of j’s with transition time t is maximal.
But any choice would not alter our estimates of entropy.

Remark 5.4. Let us explain the reason to study some subsystem only. Clearly,
the inverse maps T−tij : Sj → Sij = Si ∩ T−tij (Sj) are all well-defined. How-
ever, the sets Sij are, in general, not pairwise disjoint8. Or choice of admissible
sequences (5.1) guarantees that for every A-admissible pairs ij and i`, j 6= `, the
sets Sij and Si` are indeed disjoint and that hence our symbolic description of the
horseshoe is indeed well-defined. For example, in Figure 3, t11 6= t13 and at most
one of the transitions 11 or 13 will be admissible in the sense of (5.1).

Remark 5.5. To relate the above defined object to other contexts, note that the
various transition times tij for A-admissible transitions ij can be related to a so-
called jump transformation T : Γ′ → Γ′ by setting

T(x)
def
= T t(i)(x) for every x ∈ Γ′ ∩ Si,

generalizing the classical concept of first return maps. Such transformations were
considered, for example, by Schweiger [28]. By construction, (σ,Σ+

A) is conjugate
to (T,Γ′) via πA.

The multi-variable-time horseshoe is a more general version of the variable-time
horseshoe of Luzzatto and Sanchez-Salas [22]. In their approach, given i, the tran-
sition times are tij = t(i) constant for all j.

Remark 5.6. It is useful to introduce a symbolic description of the system. By
the above, for every x ∈ Γ′ there is a unique sequence c ∈ Σ+

A such that x ∈⋂
n≥1 Sc0...cn−1 . Hence, we have naturally given a projection

πA : Γ′ → Σ+
A, π(x)

def
= c if x ∈

⋂
n≥1

Sc0...cn−1 .

7Recall that the subshift of finite type is represented by a transition graph and that transi-
tive invariant subsets correspond to irreducible components in this graph (see, for example, [21,

Chapter 4.4]). Since the graph has finitely many edges only, there are at most finitely many such
components. Now apply countable stability of entropy, see (8.1).

8Consider, for example, the two one-point sets S1 = {P}, S2 = {Q} and the map T : {P,Q} →
{P,Q} defined by T (P ) = Q, T (Q) = P and let t11 = t22 = 2, t12 = t21 = 1. The map T has
entropy zero. The associated multi-variable-time horseshoe also does. Note that the bound in
Proposition 5.2 is sharp in this case.
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Observe that we do not assume that T is expansive. In particular, there might
exist a symbolic sequence c which corresponds to more than one point in Γ.

Naturally, the symbolic description applies to the set Γ′ only, which is invariant
under the jump transformation only.

Finally, note that Γ ⊂ X is a compact T -invariant set. Indeed, by construction,
Γ is the forward orbit of the set Γ′ by T . It is the smallest T -invariant set containing
Γ′.

Proof of Proposition 5.2. We begin with the following auxiliary result. Let d be
the minimum of the Hausdorff distance between the rectangles Si.

Lemma 5.7. Given a pair of A-admissible sequences c, c′, for every ` ≥ 0 with
cn 6= c′n for some n ∈ {0, . . . , ` − 1}, every pair of points x ∈ Sc0...c`−1

and y ∈
Sc′0...c′`−1

are (n tmax, d)-separated.

Proof. If c0 6= c′0 then the orbits are (at least) d-separated (they start in points
which are in disjoint sets Si and thus at distance at least d). Otherwise, if c0 = c′0
and c1 6= c′1 then orbits get separated after time tc0c1 (observe that by our choice of
admissible transitions A we have tc0c1 = tc′0c′1) and hence are (tmax, d)-separated.
To finish the proof, continue by induction on `. �

Continuing with the proof of the proposition, observe that, by the pigeonhole
principle, for every i ∈ {1, . . . ,M} the number of indices j with aij = 1 is bounded
from below by M/(tmax − tmin + 1) and, trivially, from above by M . This immedi-
ately implies that the entropy satisfies

(5.2) log
M

tmax − tmin + 1
≤ htop(σ,Σ+

A) ≤ logM.

Recall that we always have

htop(T,Γ) ≥ lim inf
n→∞

1

n
log sn(d,Γ′),

where sn(d,Γ′) denotes the maximal cardinality of a (n, d)-separated set of points
in Γ′. Denote by sn(1,Σ+

A) the analogous number, that is, the number of distinct

cylinders of level n in Σ+
A. Observe that sntmax(d,Γ′) ≥ sn(1,Σ+

A). Therefore,

htop(T,Γ) ≥ lim inf
m→∞

1

mtmax
log sm(1,Σ+

A) =
1

tmax
h(σ|Σ+

A
),

To obtain the equality, just recall that σ|Σ+
A

is a subshift of finite type. The lower

bound now follows from (5.2)
To get the upper bound, note that there is a universal constant K such that for

every (n, d)-separated set of points in Γ there is a (n + tmax,Kd)-separated set in
Γ′. With this in mind, similarly we can conclude

htop(T,Γ) ≤ 1

tmin
logM.

This proves the proposition. �

6. Multi-variable-time horseshoes in our setting

In this section, we consider a step skew-product F with k circle fiber maps as
in (1.1) and prove Theorems 4.3–4.7.
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6.1. Main ingredients and sketch of the construction. The general idea is
to use the Skeleton property together with CEC+ to construct a multi-variable-
time horseshoe with the desired properties. In the entire Section 6 we consider
an interval J ⊂ S1 such that Axiom CEC+(J) holds with associated constants
K1, . . . ,K5. Moreover, we assume that the Skeleton property holds relative to J
and numbers h ≥ 0 and α ≥ 0 with connecting times mb,mf ≥ 1. For any set of
appropriate quantifiers, this gives a skeleton X = {Xi}, Xi = (ξi, xi).

We first briefly sketch the construction of multi-variable-time horseshoes which
will provide the claimed transitive hyperbolic sets, more details are given below.

Items (iv) and (v) of the Skeleton property provide us with a family of itineraries

(6.1) (ζi0 . . . ζ
i
mi−1)

def
= (θi1 . . . θ

i
riξ

i
0 . . . ξ

i
m−1β

i
1 . . . β

i
si), mi

def
= ri +m+ si,

where ri ≤ mf , si ≤ mb and a family of points {xi} ⊂ S1 and {x′i} ⊂ J satisfying

(6.2) f[θi1... θ
i
ri

](x
′
i) = xi and f[ξi0... ξ

i
m−1β

i
1... β

i
si

](xi) ∈ J,

where m will be sufficiently big and specified below. For certain εH , we also have

M
def
= cardX ≥ L−1

0 em(h−εH).

Without loss of generality, as we can simply disregard some sequences, we can
assume

(6.3) L−1
0 em(h−εH) ≤M def

= cardX ≤ L0e
m(h+εH).

To obtain the multi-variable-time horseshoe we consider the compact metric
space Σ+

k × S1 and for each i ∈ {1, . . . ,M} we consider the Markov rectangles

(6.4) Si = [ξi0 . . . ξ
i
m−1]× Ii,

where Ii ⊂ S1 are sufficiently small (according to controlled distortion) intervals
each centered at its corresponding point xi. Axiom CEC+(J) gives finite expanding
and covering sequences (ηi0 . . . η

i
`i−1). We consider the projection to “the unstable

direction”

π̂ : Σk × S1 → Σ+
k × S

1, π̂(ξ−.ξ+, x)
def
= (ξ+, x)

and let

T : X → X, T
def
= π̂ ◦ F.

Then we consider the concatenations and transition times

(6.5) (ξi0 . . . ξ
i
m−1β

i
1 . . . β

i
siη

i
0 . . . η

i
`i−1θ

j
1 . . . θ

j
rj ), tij

def
= m+ si + `i + rj

having the covering property

(6.6) T tij (Si) = Σ+
k × f[ξi0... ξ

i
m−1β

i
1... β

i
si
ηi0... η

i
`i−1θ

j
1... θ

j
rj

](Ii) ⊃ Σ+
k × Ij ⊃ Sj .

This defines a multi-variable-time horseshoe Γ ⊂ Σ+
k × S1. This set symbolically

extends in a unique way to a compact F -invariant set Γ̂ ⊂ Σk × S1 which will give
the set in the theorems.

We now sketch the content of the following subsections which contain the steps
to prove Theorems 4.3–4.5. We first explain a bit more precisely the construction
of the multi-variable-time horseshoes using the Skeleton property. Then we will
estimate from below their entropy based on Proposition 5.2. The estimate of the
exponent (and Birkhoff averages of a family of potentials) will also be a result of
the explicit construction.
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In Section 6.2 we select some quantifiers. In Section 6.3 we choose the finite se-
quences (θi1 . . . θ

i
ri), (ξ

i
0 . . . ξ

i
m−1), (βi1 . . . β

i
si), and (ηi1 . . . η

i
`i

) in (6.5). We also choose
some intermediate intervals I ′i which eventually lead to the definition of the inter-
vals Ii. Concatenating appropriate blocks of finite sequences as in (6.5), we define
the maps T tij (see Figure 4). This will complete the definition of the Markov
rectangles and transition maps, that is, of the multi-variable-time horseshoes. In
Section 6.4 we estimate the Lyapunov exponents. In Section 6.5 we estimate the
topological entropy from below. In Section 6.7 we estimate Birkhoff averages in
order to derive the weak∗ approximation. At the end of Section 6 we complete the
proofs of Theorems 4.3 and 4.5.

6.2. Choosing quantifiers. As a reference point, the quantifiers are chosen in the
following order: Given the interval J and numbers h, α, γ, λ, we choose ε, εE , εH ,
and εD. Then we will choose m sufficiently large which allows us to choose δ0 small.

Given h > 0 and α ≥ 0, fix γ ∈ (0, h) and λ > 0.
We let εH , εE much smaller than γ, λ. Associated to these numbers, by the

Skeleton property, there are K0, L0 ≥ 1 and n0 ≥ 1 such that for every m ≥ n0

there is a skeleton X = X(h, α, εH , εE ,m) = {Xi} with Xi = (ξi, xi). Note that m
can be chosen arbitrarily large.

Recall the definition of the universal constant ‖F‖ of the IFS in (1.3) and the
numbers mb and mf in the Skeleton property. Let

(6.7) K̂0
def
= K0‖F‖mb+mf .

We now take εD > 0 and δ0 > 0 satisfying the assumption in distortion Corol-
lary 3.5 applied to εD such that

(6.8) δ0 < exp(−m
√
εD + εE ).

In particular, for sufficiently large m, the number δ0 is much smaller than γ and λ
and also satisfies

(6.9) δ0 < min{K1,K4}.

Moreover, for sufficiently large m, there is some ϑ > 0 such that we have

(6.10) K2K5|log δ0| −m(εE + εD)− log K̂0 +K3K5 ≥ ϑ

From (6.8), when εD was initially chosen sufficiently small and m is sufficiently
large, we can also guarantee that

(6.11) ε1
def
=
|log δ0|
m

� min{γ, λ}.

6.3. Choosing the Markov rectangles and transition times of the horse-
shoe. We now specify the rectangles (6.4). Recall the family of points {xi} ⊂ S1

and {x′i} ⊂ J given in (6.2) and itineraries in (6.1) obtained from the Skeleton
property. Define the auxiliary intervals

(6.12) I ′i
def
= B

(
x′i, δ0K̂

−1
0 e−m(α+εE+εD)

)
which finally lead to the intervals Ii defining the rectangles (6.4), compare Figure 4.
We now are going to verify that with this choice, these rectangles have the covering
property (6.6). By doing so, we will also collect some estimates needed to estimate
entropy and exponents.
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f[θi1... θiri ]

f[ξi0... ξim−1]

f[βi1... βisi ]

f[ηi0... ηi`i−1
]

x′
i
I ′i

xi Ii

H ′
i

(m, 1)-separated
orbit pieces

CEC+(J)

Acc−(J)

Acc+(J)

S1
J

Skeleton

Figure 4

Recall the definition of K̂0 in (6.7) and the skeleton sequences (ζi0 . . . ζ
i
mi−1) in

(6.1), with mi = m + si + ri and ri ≤ mf , si ≤ mb. By Corollary 3.5, for every
x ∈ I ′i we have

(6.13) K̂−1
0 em(α−εE−εD) ≤ |(f[ζi0... ζ

i
mi−1])

′(x)| ≤ K̂0e
m(α+εE+εD).

Let now
H ′i

def
= f[ζi0... ζ

i
mi−1](I

′
i)

and observe that this interval intersects J , recall (6.2). We also observe that

|H ′i| ∼ |I ′i| · |(f[ζi0... ζ
i
mi−1])

′(xi)|

up to a multiplicative factor due to distortion, indeed it follows from (6.12) and
(6.13) that

(6.14) δ0K̂
−2
0 e−2m(εE+εD) ≤ |H ′i| ≤ δ0 < K1,

where we also used (6.9). Thus, we can apply Axiom CEC+(J) to each interval
H ′i.

Observe that by Lemma 2.7 there is a subinterval Ĥ ′i ⊂ H ′i having the covering
and expansion properties for an iteration length which is in fact bounded from above
and below. Therefore, without loss of generality and for notational simplicity, we

can assume Ĥ ′i = H ′i and that there are sequences (ηi0 . . . η
i
`i−1) such that

(6.15) f[ηi0...η
i
`i−1](H

′
i) ⊃ B(J,K4) ⊃

M=cardX⋃
i=1

I ′i,

where the last inclusion follows from (6.9), with integers `i satisfying

(6.16) K2 |log|H ′i||+K3 ≤ `i ≤ 2(K2 |log|H ′i||+K3).

Finally, based on the sequences of the skeleton, see (6.1), we define the rectangles
by

Ii
def
= f[θi1... θ

i
ri
.](I
′
i) and Si = [ξi0 . . . ξ

i
m−1]× Ii.

By our choices, for every pair i, j ∈ {1, . . . ,M}, with

(ξi0 . . . ξ
i
m−1β

i
1 . . . β

i
siη

i
0 . . . η

i
`i−1θ

j
1 . . . θ

j
rj ), tij

def
= m+ si + `i + rj
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by the covering property (6.15), we have

F tij (Si) ⊃ Σ+
k × f[ξi0... ξ

i
m−1β

i
1... β

i
si
ηi0... η

i
`i−1θ

j
1... θ

j
rj

](Ii) ⊃ Σ+
k × Ij ⊃ Sj .

Thus, we obtain the desired covering property in the hypotheses of the definition
of a multi-variable-time horseshoe.

6.4. Controlling Lyapunov exponents. For the sequel, we need some prelimi-
nary estimates. We observe that from (6.16) and (6.14) we have

(6.17) K2|log δ0|+K3 ≤ `i ≤ 2
(
K2

(
|log(δ0K̂

−2
0 )|+ 2m(εE + εD)

)
+K3

)
.

Hence,

`i ≤ 2
(
K2

(
|log(δ0K̂

−2
0 )|+ 2m(εE + εD)

)
+K3

)
with (6.11) = 2

(
K2

(
2 log K̂0 +m(ε1 + 2εE + 2εD)

)
+K3

)
and

K2mε1 +K3 ≤ `i.
From this, using the Landau symbol and recalling again that mi = m + si + ri
where ri ≤ mf , si ≤ mb, we can conclude

(6.18)
m

mi + `i
= 1 +O

(
εE + εD + ε1 +

1

m

)
.

Moreover, by Axiom CEC+(J) and (1.3) for every x ∈ H ′i we have

(6.19) `iK5 ≤ log |(f[ηi0... η
i
`i−1])

′(x)| ≤ `i log ‖F‖ .

To estimate the exponents in the horseshoe, we first look at the “finite-time”
Lyapunov exponents. We will use the concatenate sequences

(σi0 . . . σ
i
mi+`i−1)

def
= (ζi0 . . . ζ

i
mi−1 η

i
0 . . . η

i
`i−1)

= (θi1 . . . θ
i
ri ξ

i
0 . . . ξ

i
m−1 β

i
1 . . . β

i
si η

i
0 . . . η

i
`i−1),

for i = 1, . . . ,M . Observe that for x ∈ I ′i we have

log |(f[σi0... σ
i
mi+`i−1])

′(x)| = log |(f[ζi0... ζ
i
mi−1])

′(x)|+ log |(f[ηi0... η
i
`i−1])

′(f[ζi0... ζ
i
mi−1](x))|

by (6.13) and (6.19) ≥ − log K̂0 +m(α− εE − εD) + `iK5

by (6.17) ≥ − log K̂0 +m(α− εE − εD) +
(
K2|log δ0|+K3

)
K5

reordering = mα+K2K5|log δ0| −m(εE + εD)− log K̂0 +K3K5

by (6.10) ≥ mα+ ϑ.

By the above and (6.18) we get9

1

mi + `i
log |(f[σi0... σ

i
mi+`i−1])

′(x)| ≥ m

mi + `i
α+

1

mi + `i
ϑ

> max
{

0, α−O(εE + εD + ε1 +
1

m
)
}
.(6.20)

This provides the lower bound of the finite-time Lyapunov exponent.

9Recall that the hypotheses of the theorem permit that α = 0.
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On the other hand, acting as above, we have

log |(f[σi0... σ
i
mi+`i−1])

′(x)|

= log |(f[ζi0... ζ
i
mi−1])

′(x)|+ log |(f[ηi0... η
i
`i−1])

′(f[ζi0... ζ
i
mi−1](x))|

by (6.13) and (6.19) ≤ log K̂0 +m(α+ εE + εD) + `i log ‖F‖

by (6.17) ≤ log K̂0 +m(α+ εE + εD)+

2
(
K2

(
|log(δ0K̂

−2
0 )|+ 2m(εE + εD)

)
+K3

)
log ‖F‖

≤ mα+mO(εE + εD + ε1 +
1

m
).

Observing that m ≤ mi + `i, with (6.18) we obtain

(6.21)
1

mi + `i
log |(f[σi0... σ

i
mi+`i−1])

′(x)| ≤ α+O(εE + εD + ε1 +
1

m
).

This provides the upper bound of the finite-time Lyapunov exponent.
With the right choices of εE , εD,m and δ0 in Section 6.2, the bounds in (6.20)

and (6.21) will each be positive and λ-close to α.
It remains to observe that we have the estimates (6.21), (6.20) at each point in

I ′i. Hence, it is immediate that at every point in the horseshoe Γ (and hence in

its symbolic extension Γ̂) the Lyapunov exponent is between α − λ and α + λ for
λ = O(εE + εD + ε1 + 1/m).

6.5. Controlling entropy. Recall the construction of a multi-variable-time horse-
shoe in Section 6.1. We have obtained a multi-variable-time horseshoe Γ and its
symbolic extension Γ̂ ⊂ Σk × S1, which is a compact F -invariant set.

Observe that the transition times in the horseshoe tij = m + si + `i + rj vary
between numbers tmin ≥ m+ 1 and tmax ≤ m+ S(m), where

S(m)
def
= mb +mf + max

i
`i.

As (F, Γ̂) symbolically extends (T,Γ), we have

htop(F, Γ̂) = htop(T,Γ).

By Proposition 5.2, we have

htop(T,Γ) ≥ logM − log(tmax − tmin + 1)

tmax
≥ logM − logS(m)

m+ S(m)

and

htop(T,Γ) ≤ 1

tmin
logM ≤ 1

m+ 1
logM.

It follows from (6.17) that

S(m) = mO(εE + εD + ε1 +
1

m
).

Hence, from (6.3) we get

logM − logS(m)

m+ S(m)
≥ h− εH −O(εE + εD + ε1 +

logm

m
).

and
1

m+ 1
logM ≤ h+ εH +O(

1

m
).
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With the right choices of εE , εD,m in Section 6.2, this gives the estimates for
the topological entropy of F |Γ̂.

6.6. Proof of Theorem 4.3. It is now a consequence of Sections 6.1–6.5.

6.7. Controlling Birkhoff averages – Proof of Theorem 4.5. We continue to
consider the ingredients of Sections 6.1–6.5, where now we consider some measure
µ ∈ Merg and assume that the Skeleton∗ property holds relative to J and µ. We
take h = h(µ) and α = χ(µ).

Pick a countable dense subset {ψi}i≥1 of continuous (nonzero) functions in the
space of all continuous functions on Σk × S1. Recall that in the space of invariant
probabilities on Σk × S1 the following function d : M×M→ [0, 1]

(6.22) d(µ, ν)
def
=

∞∑
i=1

2−i
1

2‖ψi‖∞

∣∣∣ ∫ ψi dµ−
∫
ψi dν

∣∣∣ , ‖ψ‖∞
def
= sup |ψ|

provides a metric which induces the weak∗ topology on M.
As in Section 6.2, we fix γ ∈ (0, h) and λ > 0 and we specify the other quantifiers

as before. Especially important is εE � γ.
Fixing some preliminary constants, let K be a positive integer satisfying

(6.23) 2−K+1 <
γ

2

and choose γ0 ∈ (0, γ) such that

(6.24) γ0(1− 2−K) max
i=1,...,K

‖ψi‖−1
∞ < γ.

Moreover, assume that K was chosen large enough such that {ψ1, . . . , ψK} is γ-
dense, that is, for every continuous ϕ : Σk×S1 → R there exists ψi, i ∈ {1, . . . ,K},
such that

‖ψi − ϕ‖∞ <
γ

2
.

Choose also a number ε0 > 0 sufficiently small such that the modulus of continuity
of each φ ∈ {ψ1, . . . , ψK} satisfies

(6.25) sup
X∈Σk×S1

sup
Y ∈B(X,ε0)

|φ(Y )− φ(X)| < γ0.

Now apply the Skeleton∗ property to J and µ and the finite family of functions
ψj and obtain a skeleton X = {Xi} of points Xi = (ξi, xi). From item (vi) we
obtain that for each φ ∈ {ψ1, . . . , ψK} it holds

−K0

m
− εE ≤

1

m

m−1∑
k=0

φ(F k(Xi))−
∫
φdµ ≤ K0

m
+ εE .

One can show that Γ̂ can be constructed in such a way that for every j the

Birkhoff averages of ψj at every point in Γ̂ are between
∫
ψj dµ−λ and

∫
ψj dµ+λ.

The only difference is that we replace εD with the modulus of continuity of ψj taken
at δ0 (and taken the maximum over all ψj).

Together with (6.25), the choice of εE , and Sections 6.3–6.5 we obtain that for

every X ∈ Γ̂ and each φ ∈ {ψ1, . . . , ψK}∫
φdµ− γ

2
≤ lim inf

n→∞

1

n

n−1∑
k=0

φ(F k(X)) ≤ lim sup
n→∞

1

n

n−1∑
k=0

φ(F k(X)) ≤
∫
φdµ+

γ

2
.
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In particular, for every F -invariant probability measure ν supported on Γ̂∣∣∣ ∫ φdν −
∫
φdµ

∣∣∣ < γ.

Now recall that we concluded the above for all φ ∈ {ψ1, . . . , ψK}. Hence, with
γ0 ∈ (0, γ), (6.22), (6.23), and (6.24) we obtain

d(ν, µ) ≤
K∑
i=1

2−i
γ0

2‖ψi‖∞
+

∞∑
i=K+1

2−i
1

2‖ψi‖∞

∣∣∣ ∫ ψi dµ−
∫
ψi dν

∣∣∣
≤ (1− 2−K)

γ0

2
max

i=1,...,K
‖ψi‖−1

∞ + 2−K2 < γ.

This proves the theorem.

6.8. Perturbation from negative to positive exponents – Proof of Theo-
rem 4.7. In this section, we give prove Theorem 4.7. The proof is very similar to
the proofs of Theorems 4.3 and 4.5, so we will only indicate the main points. We
also consider only the case α < 0, β > 0, the other case is obtained reversing time.

In the case that h(µ) = 0 the following construction is almost identical with the
only difference that we take, instead of an exponentially growing number of points
and orbit pieces in the skeleton, a single point which will give rise to a periodic orbit
(with topological entropy 0). Hence, in the following, without loss of generality, we
assume h = h(µ) > 0.

6.8.1. Choosing quantifiers. Given h > 0, α < 0, β > 0, fix γ ∈ (0, h) and λ > 0.
We let εE , εH , εD, each much smaller than |α|, β, γ, λ, in particular we require

α + εE < 0. Let K1, . . . ,K4 be the constants from Axiom CEC+(J) and K ′3,KD

the constants provided by Lemma 3.6.
By the Skeleton∗ property relative to J and µ, there are universal numbers

mf ,mb ≥ 1 and constants K0, L0 ≥ 1 and n0 ≥ 1 such that for every m ≥ n0 there
is a skeleton X = {Xi} with Xi = (ξi, xi) having the properties that

(6.26) M
def
= cardX ≥ L−1

0 em(h−εH),

the finite sequences (ξi0 . . . ξ
i
m−1) are all different, for every ` ∈ {1, . . . ,m} it holds

(6.27) K−1
0 e`(−|α|−εE) ≤ |(f[ξi0... ξ

i
`−1])

′(xi)| ≤ K0e
`(−|α|+εE),

and there are finite sequences (θi1 . . . θ
i
ri), (βi1 . . . β

i
si), ri ≤ mf , si ≤ mb, so that

x′i
def
= f[θiri

... θi1.]
(xi) ∈ J, x′′i

def
= f[ξi0... ξ

i
m−1β

i
1... β

i
si

](xi) ∈ J.

6.8.2. Choosing the Markov rectangles and transition times. For i = 1, . . . ,M we
now consider the intervals

(6.28) I ′i
def
= B(x′i, e

−mβ) and H ′i
def
= f[θi1... θ

i
ri
ξi0... ξ

i
m−1β

i
1... β

i
si

](I
′
i).

Let

(6.29) (σi0 . . . σ
i
mi−1)

def
= (θi1 . . . θ

i
riξ

i
0 . . . ξ

i
m−1β

i
1 . . . β

i
si), mi

def
= ri +m+ si.

In the sequel we will use Corollary 3.5 to control distortion. For that we fix
δ0 > 0 small so that the modulus of continuity satisfies Mod(2δ0) < εD. Fix some
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small ε ∈ (0, 1) with ε + εD < β. We now also require that m is sufficiently large
so that

(6.30) e−mβ < δ0K̂
−1
0 e−(mb+mf )(ε+εD)e−m(ε+εD), where K̂0 = K0 ‖F‖mb+mf .

Applying the controlled covering in Lemma 3.6 to the intervals H ′i, we get finite
sequences (ηi0 . . . η

i
`i−1) to cover some neighborhood of J :

(6.31) f[ηi0... η
i
`i−1](H

′
i) ⊃ B(J,K4) with `i ≤ K2 |log |H ′i||+K ′3.

Like in Sections 6.2–6.5, this lets us construct a multi-variable-time horseshoe Γ

and its symbolic extension Γ̂. What remains is only to estimate the finite-time
Lyapunov exponents and the entropy of this horseshoe.

6.8.3. Controlling Lyapunov exponents. We first provide an estimate for mi and `i.
Observe that mi is between m and m + mb + mf . This, together with (6.27) and
(6.28), gives us

(6.32) K̂−1
0 e−m(β+|α|+εD+εE) ≤ |H ′i| ≤ K̂0e

−m(β+|α|−εD−εE).

Hence, together with (6.31) we have

(6.33) `i ≤ K2 log K̂0 +K2m(β + |α|+ εD + εE) +K ′3.

On the other hand, since by (6.31) we cover the interval J , we get

‖F‖`i |H ′i| ≥ |f[ηi0... η
i
`i−1](H

′
i)| ≥ |J |

and with (6.32) hence

`i ≥
1

log‖F‖
(
− log |H ′i|+ log |J |

)
≥ 1

log‖F‖
(
m(β + |α|+ εD + εE)− log K̂0 − |log |J ||

)
.

This provides the following estimate

(6.34)
1

1 +K2(β + |α|)
−O(εD + εE +

1

m
) ≤ m

mi + `i

≤ 1

1 + 1
log‖F‖ (β + |α|)

+O(εD + εE +
1

m
).

By the controlled distortion by Lemma 3.6 we have

(6.35) Dist f[ηi0... η
i
`i−1]|H′i ≤ |H

′
i|−εDKD.

What remains is to control the distortion along the whole trajectory. For that note
that, recalling (6.28),

K̂−1
0 e−m(β+|α|+εD+εE)emβ ≤ |H

′
i|
|I ′i|
≤ K̂0e

−m(β+|α|−εD−εE)emβ .

What remains is to control the distortion along the whole trajectory. For that
we now use Corollary 3.5. First note that for every ` ∈ {1, . . . ,mi} by (6.27) and

the definition of (σi0 . . . σ
i
mi−1) in (6.29) and recalling the definition of K̂0 in (6.30)

we have

|(f[σi0...σ
i
`−1])

′(xi)| ≤ K̂0e
`(−|α|+εE).
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We now can apply the corollary to the interval

(6.36) I ′i = B(x′i, e
−mβ) ⊂ Z def

= B(x′i, δ0K̂
−1
0 e−mi(ε+εD)),

(recall (6.30) to verify the inclusion) obtaining

(6.37) |log Dist f[σi0...σ
i
`−1]|I′i | ≤ `εD.

We are now ready to estimate the finite-time Lyapunov exponents. Indeed, by
the mean value theorem, there exists y ∈ I ′i satisfying

|J |
|I ′i|
≤ |(f[σi0... σ

i
mi−1η

i
0... η

i
`i−1])

′(y)| ≤ 1

|I ′i|
.

Therefore, by distortion (6.35) and (6.37), for every x ∈ I ′i we get

|J |
|I ′i|
· e−miεD |H ′i|εDK−1

D ≤ |(f[σi0... σ
i
mi−1η

i
0... η

i
`i−1])

′(x)| ≤ 1

|I ′i|
· emiεD |H ′i|−εDKD.

Substituting (6.28) and (6.36) and using (6.32) and recalling mi ≤ mf + m + mb

we get

|(f[σi0... σ
i
mi−1η

i
0... η

i
`i−1])

′(x)| ≤ emβemiεD
(
K̂0e

−m(β+|α|−εD−εE)
)−εD

KD

≤ KDK̂
−εD
0 e(mf+mb)εDem

(
β+(β+|α|+1−εD−εE)εD

)
.

Analogously,

|(f[σi0... σ
i
mi−1η

i
0... η

i
`i−1])

′(x)| ≥ |J |K−1
D K̂εD

0 e−(mf+mb)εDem
(
β+(β+|α|−1+εD+εE)εD

)
.

Summarizing, there is some constant K > 1 so that

K−1em
(
β+(β+|α|−1+εD+εE)εD

)
≤

|(f[σi0... σ
i
mi−1η

i
0... η

i
`i−1])

′(x)| ≤ Kem
(
β+(β+|α|+1−εD−εE)εD

)
.

Substituting the bounds on m/(mi + `i) in (6.34) we can bound the finite-time
Lyapunov exponents:

β

1 +K2(β + |α|)
−O(εD + εE +

1

m
)

≤ 1

mi + `i
log |(f[σi0... σ

i
mi−1η

i
0... η

i
`i−1])

′(x)| ≤ β

1 + 1
log ‖F‖ (β + |α|)

+O(εD+εE+
1

m
).

This immediately implies the estimates of the exponents in the horseshoe Γ̂.

6.8.4. Controlling entropy. As in the proof of Theorem 4.3, the topological entropy
of F on the horseshoe is estimated as follows. Observe that the transition times
in the horseshoe tij = m + si + `i + rj vary between numbers tmin ≥ m + 1 and
tmax ≤ m+ S(m), where

S(m)
def
= mb +mf + max

i
`i.

As before, using Proposition 5.2, we have

htop(T,Γ) ≥ logM − logS(m)

m+ S(m)
.
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It follows from (6.33) that

S(m) ≤ mK2(β + |α|) +mO(εE + εD + ε1 +
1

m
).

Hence, from (6.26) we get

logM − logS(m)

m+ S(m)
≥ h− εH

1 +K2(β + |α|)
−O(εE + εD + ε1 +

logm

m
).

This finishes the estimate of the entropy.

We finally explain the weak∗ approximation of measures in Γ̂. We assume that
the Skeleton X = {Xi} was chosen such that, analogously to Section 6.7 in the
proof of Theorem 4.5, the orbit of length m starting in the points Xi = (ξi, xi)
well approximate µ. Recall again that the connecting times ri, si are bounded
by some universal constants. Recall also that `i is of order mK2(β + |α|). By

construction, the set Γ̂ is built very close to these orbit pieces and hence any
invariant measure supported on it has generic points always staying a fraction
K2(β+|α|)/(1−K2(β+|α|)) of times close to them. This sketches the approximation
of the measure and finishes the proof.

7. Proofs of the main results

In this section we provide the still missing proofs of our main results.
Recall that, assuming CEC± and Acc±, there is some closed interval satisfying

the Axioms CEC±(J) and Acc±(J). Recall that for any µ ∈ Merg, by Proposi-
tion 4.11 the map F has the Skeleton∗ property relative to J and µ. With this in
mind, we now prove the theorems.

7.1. Proof of Theorem 1. Consider µ ∈ Merg with χ(µ) = 0 and h(µ) > 0. By
the comments above we can apply Theorem 4.5 (to J and µ) to obtain measures
with positive Lyapunov exponent which weak∗ and in entropy approximate µ. For
the negative exponent measure, it is enough to apply Theorem 4.6. �

7.2. Proof of Theorem 5. Recall that by Lemma 2.3 the axioms hold for any
(sufficiently small) closed interval. Now it is enough to apply Theorem 4.7 and
recall the definition of K2(F ) in (1.2). �

7.3. Twin measures – Proof of Fact 4. First note that the skew-product map
can be considered as the symbolic model of a C1 diffeomorphism which has a
dominated splitting in its tangent bundle into three bundles such that the central
one corresponds to the fiber direction. In this setting, the Katok approximation
by hyperbolic horseshoes applies to any given a hyperbolic measure, (see for in-
stance [11]). This implies that the measure µ is a weak∗ limit of invariant measures
distributed on hyperbolic periodic orbits with fiber Lyapunov exponent close to
χ(µ).

Given each such periodic point X = (ξ, x) of period p, the iterated fiber map has
derivative |(fpξ )′(x)| < 1. Since we consider circle maps, to each such point there

exists a p-periodic point Y = (ξ, y) satisfying |(fpξ )′(y)| ≥ 1. Now the sequence of
measures distributed on the corresponding periodic orbits has a subsequence which
converges weak∗ to an invariant measure µ̃ satisfying h(µ̃) = h(µ). Indeed, the
entropy of µ is determined by the entropy of the projected measure (compare (8.2))
and hence by the number of periodic points, only. The so obtained measure µ̃ has
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nonnegative fiber exponent. The so obtained measure µ̃ is not necessarily ergodic.
However, if µ is ergodic then its projection $∗µ is ergodic, too. In this case, since
the measure µ̃ has the same projection as µ, any of its ergodic components has
entropy equal to h($∗µ) = h(µ). Finally, there is some ergodic component of µ̃
with nonnegative exponent. �

7.4. Proof of Theorem 3. Denote h
def
= htop(F ). By the usual variational princi-

ple for entropy, we have

h = sup
µ∈Merg

h(µ) = max{ sup
µ∈Merg,<0

h(µ), sup
µ∈Merg,0

h(µ), sup
µ∈Merg,>0

h(µ)} > 0.

Let us distinguish the three cases:

1) h = supµ∈Merg,0
h(µ),

2) h = supµ∈Merg,<0
h(µ),

3) h = supµ∈Merg,>0
h(µ).

In Case 1 the assertion follows from Theorem 1.
Cases 2 and 3 are analogous, we give the proof of Case 2. By Fact 4 for every

ergodic measure µ ∈ Merg,<0 with large entropy there exists an ergodic measure
with equal entropy and exponent which is either zero or positive. In the former
case we are in Case 1. In the latter one we are done. �

8. Examples

In this section we introduce a simple class of step skew-product maps as in (1.1)
whose fiber maps satisfy the axioms in Section 2. In this section we consider two
types of examples (satisfying some open conditions): blender-like examples (Sec-
tion 8.1) and contraction-expansion-rotation examples first studied in [15] (Sec-
tion 8.2). Let us observe that although the nature of these two constructions is
quite different (although they share some common ingredients) these properties are
essentially the same C1-open and densely. Let us also observe that the examples
that we consider are robustly transitive step skew-product maps. In this section we
do not aim for full generality, but our goal is rather to present simple constructions.

8.1. Examples via blenders. To construct examples of skew-product maps sat-
isfying the axioms in our setting we begin by defining a blender of an iterated
function system (this definition can be seen as a translation of the definition of a
blender to the one-dimensional context). In the next definition we also borrow and
adapt the terminology commonly used for blenders (see, for example, [4, Chapter
6.2]).

Definition 8.1 (One-dimensional blenders). Consider diffeomorphisms f0, . . . ,
fk−1 : S1 → S1. We say that the IFS {fi} has an expanding blender if there are
finite sequences (ξ0 . . . ξr) and (η0 . . . η`), ξi, ηj ∈ {0, . . . , k−1}, such that the maps
g0 = f[ξ0... ξr] and g1 = f[η0... η`] satisfy the following properties: there are a number

β > 1, an interval [a, b] ⊂ S1, and points c, d ∈ [a, b], c < d, such that:

1. (uniform expansion) g′0(x) ≥ β for all x ∈ [a, d] and g′1(x) ≥ β for all
x ∈ [c, b],

2. (boundary condition) g0(a) = g1(c) = a,
3. (covering and invariance) g0([a, d]) = [a, b] and g1([c, b]) ⊂ [a, b]
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g0

g1

a bc d

Figure 5. expanding blender

(see Figure 5). We say that [a, b] is the domain of definition of the blender and
that [c, d] is the superposition interval of the blender.

The IFS {fi} is said to have a contracting blender provided the IFS {f−1
i } has

an expanding blender.

Remark 8.2. Following [3], it is straightforward to see that the property of having
a blender is an open property for the step skew-product. Given an IFS {fi} of
diffeomorphisms f0, . . . , fk−1 : S1 → S1 having an expanding blender, then every
family of maps g0, . . . , gk−1 : S1 → S1 which are C1-close enough to f0, . . . , fk−1

associates an iterated function system which has an expanding blender (where the
elements in the definition of the blender depend continuously on the IFS).

Proposition 8.3. Consider an IFS {fi} of diffeomorphisms f0, . . . , fk−1 : S1 → S1

having

1. an expanding blender with domain of definition [a+, b+] and superposition
interval [c+, d+] and

2. a contracting blender with domain of definition [a−, b−] and superposition
interval [c−, d−].

Suppose that every point x ∈ S1 has a forward and a backward iterate in the interior
of [a+, b+] and [a−, b−], respectively.

Then for every closed interval J+ ⊂ (c+, d+), the IFS {fi} satisfies the Axioms
CEC+(J+) and Acc±(J+). For every closed interval J− ⊂ (c−, d−) the IFS {fi}
satisfies the Axioms CEC−(J−) and Acc±(J−).

We postpone the proof of the above proposition and derive first some conse-
quences of it. In view of Remark 8.2 we have the following:

Remark 8.4. Consider an IFS {fi} of diffeomorphisms f0, . . . , fk−1 : S1 → S1

satisfying the hypotheses of Proposition 8.3. Then every family of circle diffeo-
morphisms g0, . . . , gk−1 that are C1-close enough to f0, . . . , fk−1 also satisfies these
hypotheses.

The following is a standard simple consequence of Proposition 8.3 whose proof is
omitted. For the transitivity part see, for instance, the arguments in [12, Section 5]
written using symbolic representations. The robustness follows from Remark 8.4.

Proposition 8.5. Consider an IFS {fi} of diffeomorphisms f0, . . . , fk−1 : S1 → S1

satisfying the conditions of Proposition 8.3. The the associated step skew-product
map F defined as in (1.1) is (robustly) transitive.
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Proof of Proposition 8.3. We only prove the statement about an interval J+, the
other one is analogous. Let J = J+ be a closed interval in (c, d) = (c+, d+) and
let [a, b] = [a+, b+] and β = β+ a corresponding expansion number. We proof that
Axioms CEC+(J) and Acc±(J) hold.

We start with a preliminary construction. Let α
def
= d − c. For any interval

I = I0 ⊂ [a, b] with length less that α we either have I ⊂ [a, d] or I ⊂ [c, b]. In
the first case let I1 = g0(I0), otherwise let I1 = g1(I0). We call I1 the successor of
I0. Arguing now inductively, for k ≥ 1 let the interval Ik be the successor of Ik−1,
repeating this process as long as the interval Ik−1 is contained either in [a, d] or in
[c, b].

The expansion property 1. of the blender implies |Ik| ≥ βk|I0|. Hence, there is
a first ι such that every of the intervals I0, . . . , Iι−1 is contained either in [a, d] or

in [c, b], and that Iι ⊃ [c, d]. Letting β̃ > 1 be an upper bound of the derivative of
g0 in [a, d] and of the derivative of g1 in [c, b], a straightforward calculation implies
that

logα− log |I0|
log β̃

≤ ι ≤ logα− log |I0|
log β

.

Applying this construction now to I0 = J , there are a closed subinterval K ⊂ J
and a finite sequence (i0 . . . iι) such that f[i0... iι](K) = [c, d]. Further, we have
f[i0... iι 1](K) ⊃ [a, a+βα] and hence there is a first integer s, independent of J and
K, such that f[i0... iι 1 0s](K) ⊃ [a, d]. This implies that with n = ι+ 2 + s

βn ≤ (f[i0...iι 1 0s])
′(x) ≤ β̃n

and
log(d− c)− log |J |

log β̃
+ 2 + s ≤ n ≤ log(d− c)− log |J |

log β
+ 2 + s.

This immediately implies Axiom CEC+(J).
The above construction implies also that the orbit of any (nontrivial) closed

subinterval of (a, b) covers [a, b). Indeed, just note that by construction a belongs to
the interior of g[i0...iι 1](J). This implies that the forward g0 iterates of this interval
covers [a, b]. We will summarize these remarks below (when arguing similarly for a
contracting blender).

Scholium 8.6. The forward orbit of any nontrivial closed subinterval of (a+, b+)
for the IFS {fi} covers [a+, b+]. The backward orbit of any nontrivial closed subin-
terval of (a−, b−) for the IFS {fi} covers [a−, b−].

Now, our hypothesis that every x ∈ S1 has a backward iterate in the interior of
[a, b] = [a+, b+] together with the first part of Remark 8.6 imply Axiom Acc+(J).

To see Axiom Acc−(J) recall that every x ∈ S1 has a backward iterate (a−, b−),
thus there is a small subinterval K of J having a backward iterate in (a−, b−).
The second part of Scholium 8.6 implies that the backward orbit of K (thus of J)
covers [a−, b−]. By hypothesis, every x ∈ S1 has a forward iterate in (a−, b−), which
implies that x belongs to the backward orbit of J and proves Axiom Acc−(J). This
completes the proof of the proposition for closed subintervals of (c+, d+). �

The following is an immediate consequence of our constructions or by applying
Lemma 2.5.
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Corollary 8.7. Consider an IFS satisfying the hypotheses of Proposition 8.3.
Then the IFS satisfies Axiom T and there is an interval J ⊂ S1 such that the

IFS satisfies Axioms CEC±(J) and Acc±(J).

8.2. Contraction-expansion-rotation examples. The hypotheses in the follow-
ing proposition are motivated by the constructions in [15, Theorem 2], where – for
simplicity of this exposition – we replace the assumption of forward minimality
in [15] by the existence of an irrational rotation. More general cases can be treated
by slight modifications of our arguments.

Proposition 8.8. Consider an IFS {fi} of diffeomorphisms f0, . . . , fk−1 : S1 → S1,
k ≥ 2. Assume that there are finites sequences (ξ0 . . . ξr), (η0 . . . ηs), and (ζ0 . . . ζt)
such that

1. f[ξ0... ξr] has an attracting fixed point and f[η0... ηs] has a repelling fixed point,

2. f[ζ0... ζt] is an irrational rotation.10

Then there are intervals J+, J− ⊂ S1 such that any IFS {gi} of maps g0, . . . ,
gk−1 : S1 → S1 C1-close enough to f0, . . . , fk−1, satisfies Axioms CEC+(J+) and
Acc±(J+) and Axioms CEC−(J−) and Acc±(J−).

Proof. For notational simplicity let us prove the proposition when r = s = t = 0
and (ξ0 . . . ξr) = 0, (η0 . . . ηs) = 0, and (ν0 . . . νt) = 1. The general case is similar.

As in the proof of Proposition 8.3, we show Axioms CEC+(J+) and Acc±(J+)
only, Axioms CEC−(J−) and Acc±(J−) follow similarly.

We begin by selecting appropriate neighbourhoods of f0 and f1. As the map f0

has a repelling fixed point there are an interval J ⊂ S1 and a neighbourhood V(f0)
of f0 such that for every g0 ∈ V(f0) and x ∈ J it holds g′0(x) > 1 + ε.

Since f1 is an irrational rotation there are a neighbourhood V(f1) of f1 and
numbers m0 and `0 such that

• for every g1 ∈ V(f1) and every interval A ⊂ S1 of size less that (1− ε/2)|J |
there exists m = m(A) ≤ m0 such that gm1 (A) ⊂ J ,

• for every g1 ∈ V(f1) and every pair of intervals B ⊂ S1 with |B| > (1−ε/2)|J |
and C ⊂ S1 with |C| < (1 − ε)|J | there exists ` = `(B,C) ≤ `0 such that
g`1(B) contains C.

Take now any pair of intervals H and I with |H|, |I| < (1 − ε)|J | and any pair
of maps g0 ∈ V(f0) and g1 ∈ V(f1). We will exhibit a trajectory ξ0 . . . ξj−1 with
j ≤ K2| log |H||+K3 such that g[ξ0... ξj−1](H) ⊃ I and log |g′[ξ0... ξj−1](x)| > K5j for

every x ∈ H. This will imply the proposition.
The argument now goes as follows, take any pair of maps g0 ∈ V(f0) and g1 ∈

V(f1) and any pair of intervals H and I with |H|, |I| < (1 − ε)|J |. Consider the
number m = m(H) associated to H with gm1 (H) ⊂ J and apply g0 to gm1 (H). In
this way we get the interval g0 ◦ gm1 (H) whose size is at least (1 + ε)|H|. If the
resulting interval is shorter than (1−ε/2)|J |, we can (and will) repeat the procedure.
If it is larger then we rotate it onto I, that is, we consider g`1 ◦ g0 ◦ gm1 (H) where
` = `(g0 ◦ gm1 (H), I) is the number associated to g0 ◦ gm1 (H) and I. By definition,
g`1 ◦ g0 ◦ gm1 (H) ⊃ I.

10This hypothesis can be replaced by the assumption that the IFS has a “sufficiently dense”
orbit, for instance, that every point has forward and backward iterates in the basin of attraction

and in the basin of repulsion of fixed points in item 1.
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At each step of this procedure we increase the size of the interval at least by a
factor (1 + ε), so the number k of steps we need to cover the interval I satisfies

k ≤ | log |H||
log(1 + ε)

.

Each step of the procedure (when the size of the considered iterations of H is less
than (1 − ε/2)|J |) takes at most m0 + 1 iterations. Finally, when one finally gets
(after at most k steps) an interval of size at least (1 − ε/2)|J |) one needs at most
`0 iterations at the end to cover I. Hence the total number of iterations needed to
cover I is at most

j ≤ k(m0 + 1) + `0 ≤ k(m0 + 1 + `0) ≤ (`0 + 1 +m0)
| log |H||

log(1 + ε)
.

Finally, the accumulated derivative at each point of H is not smaller than

(1 + ε)k ≥
(
(1 + ε)1/(m0+1+`0)

)j
.

Therefore

log |g′[ξ0...ξj−1](x)| ≥ K5j, K5 = log
(
(1 + ε)1/(m0+1+`0)

)
.

This concludes the proof of the proposition. �

8.3. Robust transitivity: general comments. We will explain why the hy-
potheses in Proposition 8.3 (and hence the Axioms CEC± and Acc±) are very
natural in the robustly transitive setting (for step skew-products with fiber S1).

For this we need to review some constructions in [6] (see also the extensions
in [25]). These papers consider C1-robustly transitive and non-hyperbolic diffeo-
morphisms having periodic points of different indices (dimension of the unstable
direction) and a partially hyperbolic splitting Ess ⊕ Ec ⊕ Euu with three non-
trivial bundles such that Ec is one-dimensional, Ess is uniformly contracting, and
Euu is uniformly expanding. In this setting, the strong stable foliation (tangent to
Ess) and the strong unstable foliation (tangent to Euu) are well defined. In the
case when there exists a foliation by circles tangent to Ec, [6, Theorem 1.6] claims
that there is an open and dense subset of those systems whose strong stable and
unstable foliations are both minimal (every leaf is dense).

The density of the strong unstable (strong stable) foliation translates to the
skew-product setting as follows. Every point has a forward (backward) orbit which
is dense in S1 by the underlying IFS. This immediately translates to the accessibility
conditions Acc± that holds for any non-trivial interval of the circle.

The second ingredient of [6] is the existence of blenders. Without giving all the
details, we note that the minimality of the strong stable foliation is guaranteed
by the existence of a finite family of center-unstable blenders that intersect nicely
every leaf of the strong stable and strong unstable foliations. This property turns
out to be robust and involves only leaves of bounded size. A similar condition is
used to guarantee the minimality of the strong unstable foliation, now considering
center-stable blenders.

Let us observe that blenders are just a special type of hyperbolic set satisfying
some geometrical properties (roughly, a superposition-like property). Definition 8.1
just translates the notion of a blender to the setting of skew-products.
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The transitivity of the diffeomorphisms implies that all center-unstable blenders
are homoclinically related (their invariant manifolds intersect cyclically). A sim-
ilar assertion holds for center-stable blenders. This homoclinic relation between
blenders implies that it is enough to consider just one center-unstable blender and
one center-stable blender, exactly as in Proposition 8.3.

The property of the orbit of the strong unstable and strong stable leaves inter-
sect nicely the corresponding blenders translates to following the property: every
point has forward and backward iterates in the domain of definition of the one-
dimensional blenders (both the contracting and the expanding).

In the following table we state a “dictionary” of the terms involved:

C1-robustly transitive diffeormorphism step skew-product map

• center-stable blender • contracting blender
• center-unstabe blender • expanding blender
• the unstable foliation crosses nicely
the blender

• every point has a forward iterate in
the interior of the domain of the blender

• the stable foliation crosses nicely the
blender

• every point has a backward iterate in
the interior of the domain of the blender

Let us finally observe that the proof of [6] can be translated mutatis mutandi
to prove that the hypotheses of Proposition 8.3 holds open and densely in the step
skew-product setting for robustly transitive maps having simultaneously periodic
points with are fiber contracting and periodic points which are fiber expanding.

Proposition 8.9. Consider the set S = S(Σk × S1), k ≥ 1, of all step skew-
product maps F as in (1.1) with C1-fiber maps which are robustly transitive and
have periodic points of different indices. Then there is an C1-open and dense subset
of S consisting of step skew-products satisfying Axioms T, CEC±(J), and Acc±(J)
for some interval J in S1.

Approximating general skew-products by step skew-products, one can get the
following:

Corollary 8.10. Consider the set T = T (Σk × S1) of all skew-product maps F as
in (1.1) with C1-fiber maps which are robustly transitive and have periodic points
of different indices. Then there is an C1-dense subset of T consisting of step skew-
products satisfying Axioms T, CEC±(J), and Acc±(J) for some interval J in S1.

Appendix. Entropy

Let us recall the definition of topological entropy of a general set (i.e., not nec-
essarily compact and invariant) following Bowen [8].

Consider a compact metric space X, a continuous map F : X → X, a set A ⊂ X,
and a finite open cover C = {C1, C2, . . . , Cn} of X. Given U ⊂ X we write U ≺ C if
there is an index j so that U ⊂ Cj , and U ⊀ C otherwise. Taking U ⊂ X we define

nF,C (U)
def
= 0 if U ⊀ C , nF,C (U)

def
= ` if F k(U) ≺ C for every k ∈ {0, . . . , `− 1} and

F `(U) ⊀ C, and let nF,C (U)
def
= ∞ otherwise. If U is a countable collection of open

sets, for d > 0 let

m(C , d,U)
def
=
∑
U∈U

e−dnF,C (U).
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Given a set A ⊂ X, let

mC ,d(A)
def
= lim

ε→0
inf m(C , d,U),

where the infimum is taken over all countable open covers U of A such that
e−nF,C (U) < ε for each U ∈ U . The topological entropy of F on A is

htop(F,A)
def
= sup

C
hC (F,A), where hC (F,A)

def
= inf{d : mC ,d(A) = 0}.

When A = X, we simply write htop(F ) = htop(F,X). In [8, Proposition 1], it
is shown that in the case of a compact set Y this definition is equivalent to the
canonical definition of topological entropy (see, for example, [29, Chapter 7]).

Recall that entropy is countably stable, that is, for every countable family of sets
A1, A2, . . . ⊂ X we have

(8.1) htop

(
F,
⋃
i≥1

Ai
)

= max
i≥1

htop(F,Ai).

Recall also the following result for factor maps. Let Y be a compact metric space
and let G : Y → Y be a continuous map. Assume that G is a (topological) factor of
F , that is, assume there exists a continuous surjective map $ : X → Y such that
$ ◦ F = G ◦$. Then by [20]

(8.2) sup
µ : µ◦$−1=ν

h(µ) = h(ν) +

∫
Y

htop(F,$−1(ξ)) dν(ξ).

Observe that in the case Y = Σk × S1, X = Σk, and $(ξ, x) = ξ, for every ξ ∈ Σk
we have htop(F,$−1(ξ)) = 0.
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